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Knowledge and thorough understanding of the characteristics of endodontic

nickel–titanium (NiTi) files is paramount for dentists performing root canal treatments to

patients. Understanding the behavior of the NiTi files guides the clinicians in choosing the

correct instruments for different clinical and anatomical situations. This review focuses

on the metallurgical properties of endodontic NiTi files, with a special emphasis on

recent developments and improvements in metallurgy and the effects of heat treatment

and surface treatment. In this study, the impact that such developments have on the

properties of endodontic NiTi files is discussed.
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INTRODUCTION

Since Walia and colleagues first introduced nickel–titanium (NiTi) instruments in the late 1980s,
NiTi instruments have revolutionized the root canal instrumentation by reducing the majority of
iatrogenic instrumentation issues commonly associated with stainless steel files such as zipping,
ledges, transportation, and perforation (1, 2).

The first NiTi rotary instruments were marketed in the 1990s (3). Despite significant
advancements in file design and manufacturing procedures for NiTi rotary instruments during
the last two decades, fracture of rotary instruments induced by torsional or cyclic fatigue remains
a concern for clinicians, particularly in calcified or severely curved root canals (4–6). The relative
proportions and properties of the microstructural phases govern the mechanical behavior of NiTi
alloy. Heat treatment (thermal processing) has been reported to influence the fatigue resistance
of NiTi instruments and is one of the most common methods for adjusting NiTi alloy transition
temperatures (7–10).

Nickel–titanium alloy has found a unique commercial application in the endodontic industry,
because of its shape memory effect and corrosion resistance results from phase transformation.
Novel NiTi instruments produced by using thermomechanical techniques, such as M-wire, R-
phase, and controlled memory (CM) files, have been launched in recent years and shown to have
enhanced flexibility and cyclic fatigue resistance when compared to conventional superelastic NiTi
files (11–13). New NiTi instrument systems with a titanium oxide surface layer [e.g., WaveOne
Gold (Dentsply Sirona, York, Pennsylvania, United States) and Reciproc Blue (VDW, Munich,
Germany)] are made from NiTi alloy heat-treated in a special way.
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In recent years, many new NiTi instruments have been
introduced, and understanding the nature of NiTi alloy
depending on their phases and their effects on instrument
performance is important for clinicians for attaining favorable
clinical results.

PROPERTIES OF EACH PHASE
(AUSTENITIC, MARTENSITIC, AND
R-PHASE)

The NiTi alloys of the endodontic instruments are made of
∼56% nickel and 44% titanium by weight, or a 1:1 atomic
ratio (equiatomic) (14). Similar to other metallic systems,
NiTi alloys can come in a variety of crystallographic forms.
Near-equiatomic NiTi alloys have three microstructural phases
(austenite, martensite, and R-phase), and their properties and
their respective proportions influence the mechanical properties
of the metal (15).

The austenite phase with the B2 cubic crystal structure
exists at higher temperatures and is stronger (∼80–90 GPa)
and stiffer than the martensite (14, 15), while the martensite
phase is a low-temperature monoclinic phase (B19′) with a lower
Young’s modulus and yield strength (∼30–40 GPa) than the
austenite phase (16, 17). This demonstrated that the martensite
can be easily deformed at low stress, while the austenite has
a substantially higher yield and flow stresses. The martensite
phase also supports reducing the risk of file fracture under
high stress conditions since it can be deformed rather than
fractured. Therefore, the abundant effort has been dedicated
to the introduction of martensitic alloys such as M-wire and
CM wire instruments into the NiTi instruments market. Various
studies investigated the performance of the instruments made
fromM-wire and CMNiTi and reported enhanced flexibility and
fatigue resistance than those of conventional NiTi instruments
(12, 13, 18).

The phase transformation from martensite to austenite and
austenite to martensite can occur in one or two steps, with
the two-stage transformation involving the formation of an
intermediate R-phase (19). The R-phase is a “Rhombohedral
phase” that differs from the cubic B2 phase in the austenite phase
(20). The R-phase transformation occurs before the B2-B19′

transition and shows thermoelastic martensitic transformation
features. The R-phase transformation can be induced by both
temperature and stress. The recoverable strain of the R-
phase/austenite transformation (∼0.5%) is smaller than that of
the martensite/austenite transformation in NiTi alloy, and the
temperature hysteresis is exceedingly modest (19). Furthermore,
the R-phase/austenite transformation has remarkable cyclic
stability and Young’s modulus of R-phase is lower than that of
the austenite (21).

THE PHASE TRANSFORMATION OF NiTi
ALLOY

Conventional superelastic NiTi alloys present in the austenite
form at room temperature. As austenite cools down, it begins to

transform into martensite at the martensite transformation start
temperature (Ms) and completes the transition at the martensite
transformation finish temperature (Mf). On the other hand,
whenmartensitic NiTi is heated past the austenite transformation
start temperature (As), the crystal structure of the NiTi begins to
transition to austenite, and once heated past the higher austenite
finish (Af) temperature, the NiTi crystal structure becomes
entirely austenite (Figure 1).

The phase transformation from austenite to martensite
can also be caused by stress or external force, which can
accommodate greater stress without increasing strain (14, 22).
Compared to stainless steel, the superelasticity of NiTi allows the
total recovery of the deformations up to 8% of the deformation
(14). As a result, a conventional NiTi instrument, in an austenitic
state at body temperature, exhibits transformational elasticity or
the capacity to return to its original shape after being distorted.
When external stress such as torsional stress or file friction
against canal walls is applied, the stress-induced martensitic
transformation occurs, resulting in more resilient materials with
a higher ultimate tensile strength (23). Because the stress-
induced martensitic state is not stable at room temperature,
once the stress is relieved, the deformed NiTi alloy immediately
reverts to the austenite phase. The NiTi files can shape the root
canal with a constant cutting force in this manner, even in a
curved root canal. When the NiTi alloy is deformed in the
martensite state by an external force, it can be also fully recovered
when heated. Deformation via martensite reorientation can be
observed at temperatures below As, the starting temperature
which is important for the reverse transformation of martensite
upon heating and is completed at Af (19).

SUPERELASTICITY AND SHAPE MEMORY

Nickel–titanium alloys show unique superelasticity and shape
memory properties (14, 24). When the ambient temperature is
higher than the Af temperature of the NiTi alloy, superelasticity
is interrelated to the occurrence of a phase transition of the
alloy when stress is applied above a critical level. When the
stress is relieved, the stress-induced martensitic change reverses
spontaneously and the material returns to its previous shape and
size (24). In other words, when the endodontic instrument is
removed from the root canal, it reverts to its original shape (25).
The enhanced flexibility of NiTi instruments over stainless steel
instruments is due to this reversible thermoelastic martensitic
transition, which makes the instrumentation of curved root
canals easier and safer (14). Superelasticity occurs when austenite
and martensite undergo a reversible phase change. As a result,
transformation temperatures have a significant influence on the
mechanical characteristics and behavior of NiTi, which can be
influenced by minor compositional changes, impurities, and heat
treatments during the manufacturing process (26).

HEAT TREATMENT OF NiTi ALLOYS

The goal of heat treatments is to change the transition
temperatures of NiTi alloys and, as a result, modify fatigue
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FIGURE 1 | Differential scanning calorimetry curves of nickel–titanium (NiTi) instruments. The austenite-finish (Af ) temperature shown with blue dotted line is 17◦C for a

“conventional” superelastic NiTi file (A) and 55◦C for heat-treated NiTi file shown with a red dotted line (B). The blue bar represents the temperature range between

room temperature and body temperature.

resistance. Superelastic conventional NiTi instruments existed
in the austenite phase at room and body temperatures, which
limited their usage in severely curved canals due to the stiffness
of the instrument and low fatigue resistance (7, 27). The heat
treatment process releases the internal strain of NiTi alloy and
increases the phase transformation temperature of NiTi, resulting
in more martensite phase at clinically relevant temperatures
(7, 10), which makes heat-treated NiTi instruments higher
flexibility and fatigue resistance than those of conventional NiTi
instruments (Figure 2).

In early 2000, a new method for optimizing the structure
of NiTi wire blanks for rotary instruments has been developed.
Several proprietary thermomechanical processing techniques
have been established with the goal of creating superelastic
NiTi wire blanks that contain the significantly stable martensite
phase in clinical conditions. M-wire (Dentsply Tulsa Dental
Specialties) was introduced in 2007. It was developed by
applying a series of heat treatments processes and contains
three phases: martensite, R-phase, and austenite (11). M-
wire instruments include Dentsply’s ProFile GT Series X,
ProFile Vortex, ProTaper Next, and WaveOne. In 2008, a
new manufacturing process was developed by SybronEndo:
Twisted Files (TF). TF is manufactured by twisting the NiTi
rod, while most NiTi files are manufactured by the grinding
method. The manufacturer claims that TF instruments were
created by thermally transforming a raw NiTi wire in the
austenite phase into the R-phase. R-phase occurs within a
very narrow temperature range on the heating or cooling
curve between martensitic and austenitic forms and made it
possible to twist the NiTi rod. Previous studies reported that
TF has greater cyclic fatigue resistance than files that have
been manufactured by grinding, while the torsional resistance
of R-phase files was significantly lower than that of ground
files (28–30).

In 2010, CM wire (DS Dental, Johnson City, TN,
United States) was introduced as a new NiTi alloy with
high flexible properties. CM NiTi files are made by a specific
thermomechanical technique that controls the memory feature
of NiTi alloy, making them exceptionally flexible but lacking
the shape memory which is seen in other superelastic NiTi
files. In other words, CM NiTi files do not rebound after
unloading, and their original shape is restored following
the application of heat. Thermally treated CM alloys would
be primarily or entirely in the martensite phase at body
temperature because the Af temperature of CM wire is ∼55
and 50◦C (7–9, 102). CM NiTi files include HyFlex CM and
EDM (Coltène/Whaledent, Altstätten, Switzerland), Typhoon
Infinite Flex NiTi Files (Clinician’s Choice Dental Products,
New Milford, CT, United States), and VTaper 2H (SS White,
Lakewood, NJ, United States).

Thermal treatments have been reported to influence the
mechanical properties and transformation features of NiTi
alloys based on their thermomechanical history (31). Heat
treatment would be applied prior to machining the instrument
to reduce the work hardening of the alloy (32, 33). Recently,
the application of this heating process also has been applied
after the machining of the files, with the aim of transforming
the alloy into a slightly different crystalline phase structure
with enhanced mechanical properties (improved flexibility
with superior mechanical resistance) (33). Post-machining heat
treatment is applied to K3XF (SybronEndo, Orange, CA,
United States) instrument. K3XF showed similar torsional
properties, but greater flexibility and resistance to cyclic fatigue
than those of the original K3 instrument (33, 34).

In comparison to conventional superelastic NiTi rotary
instruments, heat-treated NiTi instruments have greater
flexibility and cyclic fatigue resistance (7). It can be assumed
that the cutting efficiency of the comparatively soft and flexible
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FIGURE 2 | The photomicrograph of the fracture surface of NiTi instruments with the region of crack propagation and dimple area outlined (dotted line).

NiTi instruments is lower than that of the relatively stiff NiTi
instruments. However, two investigations (35, 36) indicated
that a heat-treated NiTi instrument (HyFlex CM) showed
the most efficient cutting instrument in lateral action against
dentine and acrylic resin when compared to other coronal
flaring instruments such as BioRace (FKG Dentsaire SA, La
Chaux-de-Fonds, Switzerland), ProFile (Dentsply Maillefer,
Ballaigues, Switzerland), and ProTaper (Dentsply Maillefer).

SURFACE TREATMENT OF NiTi ALLOYS

Surface treatment of NiTi instruments reduces inherent defects,
increases surface hardness and flexibility, and improves fatigue
resistance and cutting efficiency (37–39). Microcracks are
frequently formed on the surface of the instrument, indicating
the very first stage of the fatigue phenomenon (40). Thus,
a treatment that improves surface smoothness is expected
to inhibit crack initiation and increase fatigue resistance.
Electropolishing refers to any electrochemical procedure that

aims to reduce the surface irregularities of material and achieve
a high gloss finishing. It is carried out by immersing the part
in a specially formulated, usually acidic, electrolyte solution and
passing a direct electric current to facilitate a selective dissolution
of the material (39). RaCe (FKG Dentaire) and EndoSequence
(Brasseler, Savannah, GA, United States) NiTi file systems have
undergone the electropolishing process. Previous studies (41, 42)
have demonstrated that electropolishing improves the fatigue
resistance of NiTi instruments, while some other studies have
shown that the benefits of electropolishing may vary depending
on the instrument type, design, and cross-sectional area (43, 44).

The surface hardness and wear resistance of heat-treated NiTi
instruments have been reported to be improved using surface
engineering techniques. Physical vapor deposition describes a
variety of vacuum deposition methods that can be used to
produce thin films and coatings. Several manufacturers have
devised thermomechanical processing sequences to generate a
titanium oxide surface layer for the NiTi instrument. Gao et
al. found that the comparatively hard titanium oxide surface
layer of the Vortex Blue (Dentsply Tulsa Dental, Tulsa, OK,
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United States) instrument may compensate for the loss of
hardness when compared to ProFile Vortex M-wire while
enhancing cutting efficiency and wear resistance (45). HyFlex
electrical discharge machining (EDM) is manufactured via EDM,
a non-contact thermal erosion process that partially melts and
evaporates the wire by high-frequency spark discharges and
shows higher resistance to cyclic fatigue than HyFlex CM (46).

FUTURE PROSPECTS

Endodontic hand- and engine-driven NiTi files have been
available for clinicians already for almost 30 years. Continuous
development has taken place since the introduction of the
first NiTi files. It is highly likely that this path of incremental
improvements will continue in the foreseeable future. However,
there is currently no specification or international standard
for assessing the fracture resistance of endodontic rotary
instruments. Despite the fact that the cyclic fatigue and torsional
test do not accurately represent clinical settings, it is required for
evaluating the mechanical properties of endodontic instruments.
By modifying the microstructure of the NiTi alloy through
heat treatment, the mechanical properties of the alloy can be
enhanced. Because the heat-treated files have a higher resistance
to cyclic fatigue as well as an increase in ductility, the incidence
of file fracture during clinical use might be reduced (46, 47). It is
assumed that the higher ductility assessed by angular distortion
gives the heat-treated instrument a higher “safety factor,” because
files with more observable distortion of the cutting spirals are
more likely to be discarded before breakage (48). However, a
decrease in cutting efficiency has been reported in the heat-
treated instruments (49). One of the potentially interesting recent
observations is the effect of cold on the fatigue resistance of NiTi
files (50). Whether this result can be transferred to the clinical
situation of the root canal, remains to be seen. As rotary NiTi

files fracture mainly due to limited fatigue resistance, it can be
assumed that success in improving this characteristic of the NiTi
files will be a key factor in future improvements of NiTi files in
the instrumentation of the most difficult anatomies.

CONCLUSIONS

The changes in transformation behavior as a result of
heat treatment have been found to affect the mechanical
characteristics, enhancing clinical performance compared with
files of similar design and size made from conventional
NiTi alloy. Heat-treated and CM NiTi instruments are
frequently employed by clinicians for endodontic treatment
nowadays. Although the details of the thermomechanical
treatment history of the new NiTi wires are unknown until
now, it appears that thermomechanical processing is a very
promising method for improving the efficiency and safety
of contemporary endodontic instruments. However, it is
important to remember that all instruments have strengths
and weaknesses and that properties are determined by a
variety of factors such as alloy type and degree of taper and
cross-sectional design.
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