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Wnt Signaling in Periodontal Disease
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Periodontitis is a multifactorial and chronic condition associated with the formation of

a dysbiotic biofilm, leading to a pro-inflammatory environment that can modulate cell

signaling. The Wnt pathway plays fundamental roles during homeostasis and disease,

and emerging evidence suggests its involvement in the maintenance of the periodontium

and the development of periodontitis. Here, we summarize the role of the Wnt/β-catenin

and non-canonical Wnt signaling pathways in periodontitis. The accumulated data

suggests specific roles for each branch of the Wnt pathway. Wnt5a emerges as a critical

player promoting periodontal ligament remodeling and impairing regenerative responses

modulated by the Wnt/β-catenin pathway, such as alveolar bone formation. Collectively,

the evidence suggests that achieving a proper balance between the Wnt/β-catenin and

non-canonical pathways, rather than their independent modulation, might contribute to

controlling the progression and severity of the periodontal disease.
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INTRODUCTION

Oral diseases constitute a global health problem (1). It is estimated that 99% of the adult population
presents inflammatory gingival disease (2), while the prevalence of severe periodontitis might
reach 10–12% (3). Periodontitis also implies a significant economic burden (4) and is closely
related to systemic conditions (5–7). Therefore, we need to better understand the biological basis
of periodontitis to address its systemic effects and develop new pharmacological approaches. In
this regard, the study of signaling pathways and their modulation during tissue development,
maintenance, and disease can contribute to our understanding of periodontitis and provide a source
of therapeutic targets.

The Wnt signaling pathway comprises a family of secreted glycoproteins that modulate
processes such as embryonic development and cell differentiation, proliferation, survival, and
polarity (8, 9). Given the multiple biological processes modulated by this pathway, abnormal
Wnt signaling has been associated with several diseases, including periodontitis. Consequently,
addressing the role of Wnt signaling in this disease might provide new therapeutic approaches and
a deeper understanding of the link between periodontitis and other systemic conditions. Therefore,
the main goal of this article is to summarize the relationship between periodontitis and the Wnt
signaling pathway, extending previous reviews by providing an integrative view encompassing
different Wnt signaling modalities, the relative balance between these, and its contribution to
specific aspects of periodontal disease. First, a brief overview of this pathway will be provided.

OVERVIEW OF THE WNT SIGNALING PATHWAY

The Wnt pathway is usually divided among two main branches: the “Wnt/β-catenin” (or
“canonical”) pathway and the “non-canonical” (or “Wnt/β-catenin-independent”) pathway
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(Figure 1). This pathway requires Wnt ligands, Frizzled (FZD)
receptors and a variety of co-receptors (11) and intracellular
effectors (Figure 1). Wnt ligands preferentially activate a specific
pathway. For instance, Wnt1 and Wnt3a activate the Wnt/β-
catenin pathway, while Wnt5a and Wnt11 activate the non-
canonical branch. However, the ability of Wnt ligands to activate
a given pathway depends on the availability of specific Frizzled
receptors and co-receptors (12, 13). For instance, Wnt5a can
either activate or inhibit the Wnt/β-catenin pathway (14–17).
Therefore, assessing the effect of Wnt ligands requires a deep
understanding of the cellular context.

The Wnt/β-catenin pathway involves the binding of Wnt
ligands to FZD receptors and LRP5/6 co-receptors and the
subsequent stabilization and nuclear translocation of β-catenin
(Figures 1A,B). Meanwhile, the non-canonical Wnt pathway is
mediated by ligands such as Wnt5a and Wnt11, FZD receptors,
and co-receptors such as ROR1/2 and RYK, among others
(11), triggering intracellular processes that are independent
from β-catenin stabilization (Figure 1C). Importantly, both Wnt
branches share some proteins, such as FZD receptors and
Dishevelled, leading to potential crosstalk. In addition, several
secreted proteins can modulate Wnt signaling. These include
Dickkopf (DKK) proteins, soluble Frizzled related proteins
(sFRPs), R-spondin proteins, Wnt inhibitory factor 1 (WIF1)
(18), and Sclerostin (SOST) (19–21).

As noted above, abnormal Wnt signaling has been related to
several diseases. Hyperactivation of the Wnt/β-catenin pathway
has been linked to cancer (22) and bone pathologies (23), while
Wnt5a modulates cell migration and invasion, particularly in
the context of metastasis (24), and has also been related to
inflammation and fibrosis. For instance, Wnt5a induces the
secretion of CCL2/MCP-1, which stimulates the recruitment of
monocytes and their maturation to macrophages (25–27).

The Wnt pathway also plays a role in the development and
maintenance of periodontal tissues, through the regeneration of
both the alveolar bone by modulating the RANK/RANKL/OPG
axis (28–30), and the periodontal ligament and cementum
(31). Mechanical signals can also modulate Wnt signaling (32),
particularly the Wnt/β-catenin pathway in the context of bone
and teeth (33).

There is a growing body of knowledge associating the Wnt
pathways to periodontitis. The evidence discussed in this review
suggests that the relative balance between canonical and non-
canonical Wnt signaling is lost in periodontitis, implying that
restoration of this balance, rather than independent modulation
of a specific Wnt pathway, might be required for recovering of
periodontal tissues.

WNT SIGNALING AND THE
PERIODONTIUM

Periodontal tissues include the gingiva, periodontal ligament
(PDL), alveolar bone, and root cement. The PDL has a rich
content of proteins and polysaccharides and is composed of
collagen fibers, fibroblasts, epithelial cell rests of Malassez and
other cell types (34, 35). The functions of the PDL and the

remaining support tissues include attaching the tooth to its bony
socket, supplying nutrients to the socket and cementum, and
protecting the teeth (36). Addressing in full detail the structure
of the PDL and its functional relationship with the alveolar bone
and cementum is beyond the scope of this article; however,
comprehensive reviews have been published recently (37, 38).

Gingivitis and periodontitis are inflammatory diseases
associated with the formation and persistence of a supra- and
sub-gingival bacterial biofilm on the dental surface (39, 40).
Gingivitis is the first manifestation of the immune response
to the biofilm and is characterized by gingival inflammation
without loss of periodontal attachment (41). If the biofilm
persists, gingivitis becomes a chronic condition that, together
with local and systemic risk factors, may favor the progression
into periodontitis (42). Periodontitis is characterized by
gingival inflammation together with irreversible destruction of
periodontal tissues. Importantly, inflammation might lead to
altered signaling mechanisms that result in disease pathogenesis
(43), linking periodontitis with systemic diseases and promoting
the severity of each condition in a bidirectional way, thus
strengthening reciprocal oral-systemic associations (5–7).

Importantly, the infection by periodontopathic bacteria and
the associated virulence factors and inflammatory mediators,
might modulate the Wnt pathway, influencing the progression
of periodontitis (44–46). Therefore, it is of great relevance to
understanding how the Wnt pathway affects the periodontium
during tissue maintenance and disease.

Wnt Signaling in Alveolar Bone and Root
Cement Maintenance
The role of the Wnt signaling pathway in bone metabolism is
well-established (47). The Wnt/β-catenin pathway is associated
with differentiation of mesenchymal stem cells (MSCs) toward
the osteoblastic lineage while inhibiting adipogenesis and
chondrogenesis (30, 47–49). Hyperactivation of the Wnt/β-
catenin pathway leads to an increase in bone volume, while
its inhibition correlates with a decrease in bone volume,
sometimes with root resorption due to disorganization of PDL
collagen fibrils and the absence of cementum (50–52). On the
other hand, the non-canonical Wnt pathway might promote
osteoclastogenesis (53), although the role of Wnt5a on bone
metabolism has not been fully elucidated (54).

The role of the Wnt/β-catenin pathway in cementum
homeostasis might depend on the level of activation and the
cell type (55–59). Negative modulation of the Wnt/β-catenin
pathway in cells from the PDL might positively modulate the
regeneration of cementum (60, 61). However, there is increased
deposition of cementum in cell lines with higher levels of
Wnt/β-catenin activity (62). Mechanistically, the Wnt/β-catenin
pathway induces the expression of Osterix (Osx), leading to
DKK1 expression, which dampens Wnt/β-catenin signaling (50,
63). Therefore, proper fine-tuning of the Wnt/β-catenin pathway
might be necessary to promote cementum formation.

Epithelial rests cells from the periodontium, which are
sensitive to Wnt/β-catenin stimulation, might also be involved
in the deposition of cementum during early development (61).
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FIGURE 1 | Wnt signaling in the periodontal ligament in homeostasis. (A) Schematic representation of the Wnt/β-catenin pathway. In the absence of Wnt ligands, a

degradation complex targets β-catenin for phosphorylation and further degradation. Also, Frizzled (FZD) receptors might be cleared from the plasma membrane by the

ZNRF3/RNF43 ubiquitin ligases (not shown). Wnt/β-catenin target genes are not expressed in this context. (B) Schematic representation of the Wnt/β-catenin

pathway in the presence of Wnt ligands. The β-catenin destruction complex translocates to the plasma membrane in response to early activation events, including

LRP5/6 phosphorylation. The destruction complex eventually becomes internalized into multivesicular bodies (MVBs) (10), and newly synthetized β-catenin becomes

stabilized and translocate to the nucleus, where it binds to TCF/LEF transcription factors to promote the expression of target genes. (C) Simplified schematic

representation of the non-canonical Wnt pathway. Here, Wnt ligands bind to FZD receptors and specific co-receptors, such as ROR1/2 or RYK. Intracellular effectors

modulate specific aspects of cell behavior, such as cell migration. Also, ATF2-dependent transcription might be elicited. β-cat, β-catenin; WNT-OFF, pathway

inactivation in the absence of ligands; WNT-ON, pathway activation in the presence of ligands. For simplicity, some components and receptors are not shown. (D)

Cells from the periodontal ligament (PDLCs) are sensitive to different Wnt signals, which in turn promote different responses at the cellular level. Wnt/β-catenin signals

can promote the expression of osteogenic markers and the secreted inhibitor DKK1, thus modulating the activation of this pathway. On the other hand, non-canonical

signaling mediated by Wnt5a might hamper the expression of osteogenic markers while promoting the expression of PDL-related genes and the turnover of cell-matrix

adhesion. Additional cues, such as R-spondins, cytokines, or LPS, can modulate the response of PDLCs to specific Wnt inputs. See the main text for details.
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In animal models, it has been observed that Malassez epithelial
cells express higher levels of Wnt3a, relative to other cell
types from the periodontium (64). In addition, Wnt/β-catenin-
sensitive stem cells and epithelial cells from the periodontium
can differentiate toward a cementogenic lineage to repair root
resorption in rats (63).

Altogether, these findings encourage further research
regarding the signaling pathways and mechanisms involved
in cementum formation and suggest a crucial role for the
Wnt/β-catenin signaling pathway in this process.

Wnt Signaling and the Periodontal
Ligament
A study employing the murine model of continuous eruption
of the incisors described the existence of a gradient of Wnt/β-
catenin activity across the PDL, with higher activity in the
interface between the cementum and the PDL, correlating
with higher cell proliferation. In contrast, lower Wnt/β-catenin
activity is observed in the interface between the PDL and
the alveolar bone, matching higher differentiation toward the
osteogenic lineage (51, 65). This suggests that spatially fine-
tuning of the Wnt/β-catenin pathway is necessary for both
proliferation and differentiation in the PDL. Later studies using
transgenic mice corroborated these findings and demonstrated
that excessive activity of the Wnt/β-catenin pathway leads to a
reduction of the space occupied by the PDL and disorganization
of collagen fibers, together with a decrease in bone resorption and
alveolar bone accumulation (50, 51).

It has also been suggested that human fibroblasts present in
the PDL can differentiate toward distinct cell lineages, promoting
the nodular formation of mineralized deposits, collagenmatrices,
and/or reparative fibrous structures in response to periodontal
wounds (66). Cells present in the PDL are sensitive to cues that
activate theWnt/β-catenin pathway (67), and this pathwaymight
increase PDL mineralization (68). On the other hand, PDL cells
cultured in vitro express the mRNAs of WNT5A, ROR2, FZD2,
FZD4, and FZD5, and these cells are sensitive to Wnt5a (69). The
stimulation of PDL cells with Wnt5a abrogates the expression
of osteogenic markers and increases the abundance of POSTN
(periostin), FBN1 (fibrillin), and COL1A1. The authors linked
these effects to a possible role of Wnt5a in the remodeling of
the PDL. Later studies in a cell line derived from immortalized
human fibroblasts from the PDL demonstrated that JNK and the
non-canonical co-receptor ROR2 are required to mediate Wnt5a
signaling (70) (Figure 1D).

Secreted Wnt modulators might also play a role during PDL
development andmaintenance. Fibroblasts from the PDL express
sFRP1, and the inhibition of this protein increased CTNNB1
(the gene encoding for β-catenin), levels and the expression of
osteogenic markers (60). R-spondin proteins are secreted by cells
from the healthy PDL in rats and by primary cultures of PDL
cells, fulfilling an essential role in regulating the osteoblastic
differentiation of immature human PDL cells through theWnt/β-
catenin pathway (71). Also, TGF-β can activate β-catenin to
modulate the differentiation of PDL cells (72). Finally, an
inflammatory context might modulate theWnt pathway through
secreted molecules. For instance, IL-6 and TNF-α might inhibit
the osteogenic and cementogenic differentiation in cells from

the PDL by activating the non-canonical Wnt pathway (73)
(Figure 1D).

In summary, the cellular components of the periodontium
express ligands, inhibitors, and receptors of the Wnt pathway
and are sensitive to cues that activate or inhibit this pathway
(Figure 2A). Moreover, the evidence obtained from in vitro
studies shows that each branch of the Wnt pathway might
have different roles: while the Wnt/β-catenin pathway has been
correlated with the osteogenic differentiation, the non-canonical
Wnt pathway might inhibit this differentiation program.
Consequently, the study of possible alterations in the Wnt
pathway in periodontitis is attractive from a clinical perspective.

WNT SIGNALING IN THE PERIODONTAL
DISEASE

Changes at the Level of Ligands,
Receptors, and Modulators of the Wnt
Pathway
Establishing a precise diagnosis for periodontal disease depends
on laborious measurements, likely to be influenced by the
expertise of the treating physician (74). Therefore, the
identification of molecular markers is highly valuable, and
several reports have searched for changes in the levels of specific
proteins in patients.

One report measuredWnt5a levels in serum, failing to observe
differences between subjects with and without periodontitis;
however, there was higher expression of sFRP5 in patients
without periodontitis, relative to patients with periodontitis
followed by tooth loss, leading to changes in the sFRP5/Wnt5a
ratio (75). In contrast, two independent studies (44, 76)
correlated an increased expression of WNT5A with a higher
degree of periodontal destruction and observed lower expression
of this ligand in healthy subjects. Also, one study reported
higher SOST protein levels in tissue samples from patients
with moderate to severe periodontitis, while a similar trend,
albeit not statistically significant, was seen for Wnt5a (77).
When using a more permissive classification of periodontitis,
the difference between disease and control tissues was not
observed in samples from gingival crevicular fluid, suggesting
that changes in the expression of Wnt5a might be highly
restricted to the damaged site in severe periodontitis, thus
explaining the absence of significant differences in serum
samples (75).

The Wnt Pathway, Dysbiosis, and
Inflammation
In human stem cells from the periodontal ligament
cultured on osteogenic medium and stimulated with
LPS from E. coli and DKK1, LPS promoted, while
DKK1 impaired, osteogenic differentiation (78). Also,
proteolysis by gingipains might induce partial degradation
of GSK-3β, thus increasing the nuclear fraction of
β-catenin (46).

The inflammatory context can also modulate the Wnt
pathway. For instance, the treatment of PDL cells with
cytokines such as IL-6 and TNF-α inhibits cell proliferation, the
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FIGURE 2 | Wnt signaling in periodontium maintenance and periodontitis. (A) The different cellular components of the periodontal ligament (PDL) are embedded in a

rich extracellular matrix composed of Collagen I (Col-I) and III (Col-III) fibers. Studies performed in animal models suggest the existence of a gradient of Wnt/β-catenin

activity across the PDL (black triangle), with higher levels of osteogenic differentiation in areas closer to the alveolar bone. Macrophages within the PDL might secrete

factors such as IL-6 or TNF-α, which might inhibit the osteogenic differentiation of resident cells in the context of periodontal disease. Secretion of Wnt5a and

R-Spondins has also been reported. For simplicity, only the indicated cellular types are shown. (B) In a healthy context, the Wnt/β-catenin pathway might have a

crucial role in the homeostasis of the PDL and the maintenance of the bone and cementum. However, the challenge mediated by periodontopathic bacteria might

promote the local production of Wnt5a, which in turn might contribute to sustaining an inflammatory loop due to its ability to induce the expression of MCP-1, thus

promoting the recruitment of macrophages. This can contribute to an imbalance between the Wnt pathway branches, favoring the non-canonical Wnt pathway.

Wnt5a might thus promote bone tissue loss, decreasing tooth insertion. P. gingivalis might also induce JAK3 phosphorylation and increased Wnt3a levels (not shown),

in turn reducing inflammation. The physiological outcome might thus depend on the relative balance of secreted cytokines and Wnt modulators. Figures based on

work created with BioRender.com.
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relative activity of ALP, the expression of genes and proteins
related with osteogenic and cementogenic differentiation and
the activation of the Wnt/β-catenin pathway (73). More
significantly, the same treatments induced an increase in the
levels of WNT5A, FZD6, and DKK1, suggesting that the
inflammatory context might shift the balance from a Wnt/β-
catenin to a non-canonical profile, dampening the osteogenic
and cementogenic differentiation. In agreement with this
notion, blocking the non-canonical Wnt pathway stimulated
cementogenesis in these cells, even in the presence of IL-6 or
TNF-α (73).

In addition, the exposure of human gingival cells to LPS from
P. gingivalis differentially modulates the expression of WNT5A
and SFRP5. While WNT5A levels were increased in subjects
with periodontitis and in cells treated with LPS, the levels of
SFRP5 were increased in healthy subjects; however, the exposure
to LPS induced a reduction in SFRP5 levels (79). LPS from P.
gingivalis also increases WNT5A levels in the cell line THP-
1 (44).

Collectively, these observations indicate that the diseased
environment shifts the balance between Wnt pathways, favoring
Wnt5a-mediated signaling (Figure 2B). Wnt5a has a role in
cell migration and invasion, due to its ability to promote both
the turnover of focal adhesions (80) and the expression of
proteins such as Laminin-γ2 (81). Interestingly, the exposure
of PDL cells to periodontopathogens and Wnt5a significantly
increases proliferation and migration, together with a significant
upregulation in the expression of genes such as POSTN,
COL1A1, and FBN1 (70). Therefore, the pathogenic challenge
in the PDL might lead to changes in the differentiation of
progenitor cells and the remodeling of the extracellular matrix
through Wnt5a.

MCP-1 might be important during the local inflammatory
response by initiating the recruitment of monocytes as
a host defense mechanism (82, 83). As noted above,
Wnt5a induces MCP-1 expression (25–27). Macrophage
infection with P. gingivalis increases Wnt5a levels, while
the reduction of Wnt5a decreases the production of MCP-
1 and other pro-inflammatory mediators such as IL-1β
and MMP2 (84). In this same study, Wnt5a was shown
to be elevated in the gingival tissues of peri-implantitis
patients (84).

This evidence suggests a strong link between the non-
canonical Wnt pathway and inflammation in periodontitis.
However, the Wnt/β-catenin pathway might also modulate
the inflammatory response. A recent report showed that
P. gingivalis increases JAK3 phosphorylation in several
cell types, including monocytes and innate immune cells;
in turn, JAK3 signaling stabilizes Wnt3a, leading to a
reduction in pro-inflammatory cytokines, and restricting
the severity of periodontitis, since abrogating JAK3
signaling in a mice model of P. gingivalis-induced oral
infection leads to enhanced bone loss (85). Thus, both
Wnt pathways play a role in mediating different aspects of
the inflammatory response, further suggesting that proper
balance between Wnt modalities might help restoring
tissue homeostasis.

Additional Evidence From Experimental
Animal Models
In a murine model of ligature-induced periodontitis (86),
local treatment with sFRP5 inhibited inflammation and bone
loss, which correlated with a lower number of osteoclasts.
Periodontitis was associated with a high expression of Wnt5a
and lower expression of sFRP5, a profile that was reversed
after sFRP5 treatment (79). Meanwhile, a report employing
a rat model of occlusal pressure removal by extraction of
opposite teeth showed that Wnt5a levels were decreased in
the PDL tissue in sites where the occlusal pressure had been
eliminated, relative to controls (69). Therefore,Wnt5a expression
is dynamic and can be regulated by either the inflammatory or
mechanical context.

On the other hand, in a study using a model of bone-
periodontal defect by fenestration in rats, the activation of the
Wnt/β-catenin pathway resulted in the significant deposition
of cellular cementum and formation of well-organized PDL
fibers (68), while another report showed that the constitutive
deletion of Dkk1 in osteocytes, in the model of ligature-induced
periodontitis, abolished alveolar bone loss (87). By histological
analysis, the study reported a lower number of inflammatory
infiltrates, a reduction in the expression of TNF-α and IL-1 in
gingival tissue, and a lower number of osteoclasts, together with
an improvement in bone formation.

DISCUSSION

Collectively, the evidence reviewed in this article shows that
the Wnt/β-catenin pathway promotes cell proliferation and
fine-tuning of this pathway is required for proper osteogenic
differentiation. In contrast, the non-canonical Wnt pathway,
mainly mediated by Wnt5a, might be hyperactivated in the
context of periodontitis, potentially leading to a shift between
opposite Wnt modalities. These relationships are summarized in
Figure 2.

The role of the Wnt pathway in periodontitis has been
reviewed recently (88, 89). Here, we complement and advance
these observations by showing that proper balance between
Wnt modalities, rather than independent modulation of
single pathways, might be a better approach to restore tissue
balance in periodontitis. Although additional data is required
to corroborate this model, the evidence reviewed in this
article offers possible avenues to therapeutic approaches.
Several modulators of the Wnt pathway have been tested,
particularly in the context of cancer research (90). However,
drugs targeting specific nodes might be needed to restore
the balance between Wnt/β-catenin and non-canonical
Wnt modalities.

This evidence also unveils open questions. For instance, it
will be interesting to determine whether other Wnt ligands
are involved in periodontitis progression, or whether other
modulators are involved in fine-tuning the activity level of each
Wnt pathway, both during tissue maintenance and disease. Also,
the precise molecular mechanisms by which periodontopathic
bacteria modulate the Wnt pathway remain to be established.
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At the pharmacological level, the identification of specific
intracellular transducers of Wnt5a might allow developing
targeted drugs to dampen the signaling pathways induced by this
ligand. Future studies addressing these and other questionsmight
improve our understanding of periodontitis and provide new
therapeutic opportunities.
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