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Teeth are complex structures where a soft dental pulp tissue is enriched with nerves,

vasculature and connective tissue and encased by the cushioning effect of dentin and

the protection of a hard enamel in the crown and cementum in the root. Injuries such as

trauma or caries can jeopardise these layers of protection and result in pulp exposure,

inflammation and infection. Provision of most suitablematerials for tooth repair upon injury

has been the motivation of dentistry for many decades. Wnt signalling, an evolutionarily

conserved pathway, plays key roles during pre- and post-natal development of many

organs including the tooth. Mutations in the components of this pathway gives rise to

various types of developmental tooth anomalies. Wnt signalling is also fundamental in

the response of odontoblasts to injury and repair processes. The complexity of tooth

structure has resulted in diverse studies looking at specific compartments or cell types

of this organ. This review looks at the current advances in the field of tooth development

and regeneration. The objective of the present review is to provide an updated vision on

dental biomaterials research, focusing on their biological properties and interactions to

act as evidence for their potential use in vital pulp treatment procedures. We discuss the

outstanding questions and future directions to make this knowledge more translatable

to the clinics.
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WNT SIGNALLING PATHWAY

Wnt signalling pathway is critical during various stages of embryogenesis, tissue homeostasis and
wound repair where it controls regulation of cell proliferation, differentiation, polarisation, and
apoptosis. Here, a brief introduction of Wnt signalling pathway is followed by its role during tooth
and periodontal tissue development, homeostasis, and regeneration. Particularly, significance of
Wnt signalling is reviewed in dental pulp stem cells and odontoblasts. We also look at factors
affecting odontoblast’s function and regulation of epigenetics in dental pulp cells by Wnt signalling
pathway. We finally look at how new advances in biomedicine and technology utilises the new
knowledge in tissue regeneration and how that can be applied in dentistry.

Wnt signalling pathway consists of 19 cysteine rich protein ligands and the receptor
complex which comprises of 10 seven-pass transmembrane receptors called Frizzled
(Fzd), and LDL receptor-related proteins 5 and 6 (LRP5 and LRP6) which mediate the
signalling. Upon binding of the Wnt ligand to the extracellular cysteine rich domain of
Fzd, signal is transduced to a cytoplasmic phosphoprotein called Dishevelled (Dsh/Dvl).
Wnt signalling pathway can be canonical or non-canonical (1). In canonical Wnt
signalling, binding of ligands to receptors and coreceptors results in the formation
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of Wnt-Fz-LRP complex and recruitment of Dsh/Dvl. This
results in recruitment of the Axin complex to the receptor,
inhibition of Axin-mediated β-catenin phosphorylation
and subsequently stabilisation of β-catenin. This results in
translocation of β-catenin into nuclei to form the TCF/LEF
complex and activate Wnt target genes. In the absence of Wnt,
cytoplasmic β-catenin is degraded by a β-catenin destruction
complex. This complex includes Axin, adenomatosis polyposis
coli (APC), protein phosphatase 2A (PP2A), glycogen synthase
kinase 3 (GSK3) and casein kinase 1α (CK1α) (2).

Non-canonical Wnt signalling consists of Wnt-PCP and
Wnt-Ca2+ pathway (3). This pathway signals through Fzds,
ROR2, RYK or through Fzds with ROR, or RYK as co-
receptor and results in activation of downstream effectors
such as calcium/Calmodulin dependent protein kinase II,
mobilisation of Ca2+, heterotrimeric G proteins and multiple
small GTPases (4). Non Canonical Wnt signalling is involved in
the maintenance of stem cells, regulating cell polarity, directional
cell movement, promoting invasion, and inhibiting the canonical
Wnt//β-catenin signalling cascade (5) (Figure 1).

WNT SIGNALLING DURING TOOTH
DEVELOPMENT

Teeth are epithelial appendages and develop through reciprocal
interaction between surface epithelium and the underlying neural
crest derived mesenchyme in the developing maxillary and
mandibular arches. Critical roles of various signalling pathways
such as Wnt, Shh, FGF and Eda in this process has been
well-established. The very specific location of tooth initiation
is determined by these signalling pathways (6). Wnt/β-catenin
signalling is expressed at early stages of tooth development
and in the epithelial signalling centres that regulate budding
and crown morphogenesis (6–9). Active β-catenin signalling is
also expressed in the underlying mesenchyme and is required
for epithelial morphogenesis and the induction of odontogenic
fate (6, 8, 10). Similarly, late stages of tooth development and
formation of the crown and roots requires a well-orchestrated
network of different signalling pathways which also includes
Wnt (11). It has recently been shown that Wnt inhibitor,
NOTUM, is required for normal development of molar root.
Ablation of Runx2, which is expressed in subpopulation of root
progenitors results in down regulation of NOTUM upregulation
of Wnt signalling and subsequently disruption of odontoblastic
differentiation and altered root morphology (12).

Non canonical Wnt signalling pathway has also been
shown to regulate root development through Receptor tyrosine
kinase (RTK)-like orphan receptor 2 (Ror2) which is of the
non-canonical Wnt receptors. Ror2 is expressed in dental
mesenchyme and its loss results in disruption of proliferation and
differentiation of mesenchymal cells and subsequently alteration
in molar root size. Cdc42 required for cell cycle progression
has been identified as a potential downstream mediator of Ror2
signalling in root formation (13). These findings partially explain
how disruption in Wnt signalling during different stages results

in various forms of developmental defects ranging from tooth
agenesis to odontomas (14–17).

WNT SIGNALLING IN TOOTH
HOMEOSTASIS

With the many significant roles that Wnt pathway plays during
different stages of tooth development, it is no surprise for it
to be implicated in tooth homeostasis. In fact, odontoblasts
are responsive to endogenous Wnt signals and maintain their
Wnt responsiveness throughout their lifetime. The regenerative
capacity of multiple mammalian tissues depends on Wnt/β-
catenin signalling pathway and its activation. This has been
extensively shown in murine teeth where shallow tooth damage
usually results in activation of odontoblasts and formation of
reactionary dentin that protects the pulp. Severe tooth damage,
however, leads to odontoblast death and subsequent activation
of resident dental pulp stem cells, their proliferation and
differentiation into new odontoblast-like cells. These cells are
then recruited to the site of damage to form reparative dentin
(18, 19). This repair process is accompanied by increased Axin2
expression which results in differentiation of Axin2 expressing
cells into odontoblasts-like cells. These cells are produced in
the event of trauma or injury and secrete reparative dentin,
a process finely tuned by the autocrine Wnt signals produced
by Axin2 expressing cells (20). In addition, proliferation and
apoptosis in dental pulp stem cells is regulated byWnt signalling.
Treatment of human dental pulp stem cells with liposome-
reconstituted form of Wnt3A (L-WNT3A) results in increased
Wnt response, enhanced mitotic activity and reduced apoptosis.
Similarly, treatment of injured teeth with L-WNT3A preserves
pulp vitality after acute exposure and results in elevated Wnt
response and subsequently dentin regeneration (21). Various
studies have demonstrated the significance of Wnt signalling
pathway in tooth regeneration. Similarly, Lithium ions and
Lithium Chloride (LiCl) that activate the Wnt pathway can
induce tubular dentin formation. In vivo application of LiCl in
rat molars results in higher β-catenin and a complete tertiary
dentin (22). A number of small molecules that inhibit glycogen
synthase kinase 3 (GSK3), a key enzyme in Wnt signalling
pathway, have been shown to promote activation ofWnt pathway
in vitro and dentin repair in mice and rats with experimental
pulp exposures (23–26). Treatment of dental pulp exposures
with Semaphorin 3A, promotes formation of an odontoblastic
layer, dentin tubules, and predentin (27). Presence of Wnt/β-
catenin signalling in dental pulp cells does not necessarily
translate into promotion of odontoblast differentiation and
dentin regeneration. For example, overexpression of Wnt10a
significantly increases the proliferation of DPSCs, but decreases
the expression of odontoblast differentiation-related genes,
such as Dentin Sialophosphoprotein (DSPP), Dentin Matrix
Acidic Phosphoprotein 1 (DMP1), Alkaline Phosphatase (ALP),
and Collagen type 1 alpha 1 chain (COL1A1), suggesting
that overexpression of Wnt10a may negatively regulate the
differentiation of DPSCs into odontoblast (28, 29). Another
factor that can decrease dentin regeneration is the sympathetic
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FIGURE 1 | Schematic Illustration of Wnt Signalling Pathway. The canonical Wnt pathway, acts through Fzd and LRP5/6 receptors is mediated by β-catenin and its

translocation to nucleus, activation of TCF/LEF transcription factor and regulation of gene expression. Non-canonical Wnt pathway signals through Fzd and/or

ROR1/ROR2/RYK receptors and is transduced by the WNT/PCP (planar cell polarity), WNT/RTK (receptor tyrosine kinase) and WNT/Ca2+ signalling cascades. In the

Wnt/Ca2+ pathway, binding of Wnt to Fzd activates DVL which then activates calcium-binding proteins including protein kinase C (PKC) and calmodulin-dependent

kinase II (CamKII) and subsequently transcription factor NFAT. In the Wnt/PCP pathway, signal is mediated by GTPases RhoA and Ras and activates

RhoA-Rho-associated kinase (ROCK) axis or JNK and subsequently regulation the cytoskeleton.

nervous system. Beta-2 adrenergic receptors are located in the
odontoblastic layer of dental pulp in rat molars and treatment
of experimental cavities with the sympatholytic beta antagonist,
propranolol, results in higher tertiary dentin formation than
control groups (30). Other signalling pathways such as TGF-β
and BMP are also involved in formation of reparative dentin
by regulation. For example, BMP-2 regulates differentiation of
pulp cells to odontoblasts whilst TGF-β stimulates odontoblast
differentiation and mineralisation (31–33).

DENTAL PULP STEM CELLS

The close anatomical and functional relationship between dentin
and pulp results in formation of a dentin-pulp complex. Pulp
cells contribute to the turnover of extracellular matrix and play
a crucial role in the recovery of tooth damage (34, 35). Dental
pulp stem cells (DPSC) demonstrate great proliferation and
have great potential for a range of applications in stem cell

research and regenerative medicine thanks to their ability to
differentiate into various cell lineages in vitro. As an example,
when subject to loading, they express tendon makers such
as Scleraxis, Tenascin-C, and Collagens (36). DPSCs have
recently been shown to have higher odontogenic potential than
other sources of stem cells in the tooth [stem cells from the
apical papilla < DPSC, periodontal stem cells (PDLSC)]. This
capacity can be enhanced by supplementing cultures with 17ß-
estradiol (37). When cultured on different surfaces such as
plastic, hydroxyapatite and β-tricalcium phosphate, DPSCs show
higher proliferation capacity and greatest osteogenic potential
when compared to cells isolated from adipose tissue, and bone
marrow (38).

There is an increasing interest in better understanding the
capacity of DPSC differentiation into odontoblasts to explore
avenues that enhance this process. Induced pluripotent stem cells
have been shown to induce pulp-like tissue with the presence
of tubular dentin in vivo (39). A group of unique multipotent
stem cells have been identified from mouse dental papilla
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through three-dimensional spheroid culture. These cells ae called
multipotent dental pulp regenerative stem cells and demonstrate
osteogenic/odontogenic differentiation capabilities and are able
to form dentin and neurovascular-like structure (40). Exogenous
factors such as nitric oxide are shown to directly induce
odontogenic capacity of DPSCs in rats (41). Platelet-rich plasma
can promote proliferation and odontogenic differentiation of
Neural Crest Stem cells derived from human dental apical papilla
when used at the correct concentration (42). Further in-depth
analysis of the mechanism of these processes and key singling
pathways involved would be valuable. A recent study has shown
that retinoid acid receptor-related orphan receptor α (RORα),
is expressed in dental papilla cells and is upregulated during
odontoblastic differentiation (43). RORα is also a receptor for
melatonin and mediates the pro-odontogenic effect of melatonin
suggesting a potential of their use in dentin regeneration.

IMPACT OF INFLAMMATION AND
SENESCENCE ON ODONTOBLASTS

One of the factors affecting odontoblast function is senescence.
Aged odontoblasts demonstrate decreased autophagic activity,
accumulation of intracellular lipids, and loss of functionality
(44). Aged DPSCs also demonstrate lower levels of cytoplasmic
DMP1 in odontogenic differentiation, reduced contribution
to mineralisation process, altered secretion of matrix
metalloproteinases, and lower neurogenic differentiation
potential (45–50). These changes may have an impact on
formation of tertiary dentin at later stages of life. It is also worth
exploring signalling pathways upstream and downstream of
senescence in the tooth. Wnt signalling pathway can mediate
senescence in bone marrow MSCs and its chronic activation can
induce senescence in lung epithelial cells (51, 52). Regulation of
senescence in odontoblasts can pave the way for new therapeutics
in geriatric dentistry. Diet and metabolism have an impact on
tooth homeostasis. Mice with Low Density Lipoprotein (LDL)
receptor deficiency (Ldlr−/−) and on high fat diet demonstrate
narrower pulp, less elongated incisor, and disappearance of
predentin in incisors (53). Treating experimental pulp exposures
with leptin results in angiogenesis, odontogenic differentiation
and mineralisation in rat (54). Interestingly, A drug commonly
used for the treatment of hyperlipidaemia, Simvastatin, has been
shown to promote odontogenic differentiation and formation of
new dentin (55).

Odontoblasts are immunocompetent cells and respond to
bacterial components at early stages. They produce a range
of antibacterial substances such as defensins, nitric oxides,
chemokines, and cytokines and contribute to a staged pulpal
inflammatory response (56). This response is governed by the
intensity of the inflammatory reaction. Detection of microbial
pathogen in odontoblast is mediated by pattern recognition
receptors (PRRs) such as Toll-like receptor and the nucleotide-
binding oligomerisation domain (NOD) (57). Toll-like receptors
(TLR) mediate signals from components of bacterial cell wall
during inflammatory reactions (58). Interestingly, Toll-like
receptors have a role during development of mouse tooth germs.

Activation of TLR4 inhibits mineralisation of enamel and dentin
suggesting that TLR4 may decrease the mineralisation of hard
tissues and trigger the maturation of ameloblasts (59).

Resident inflammatory cells in a healthy pulp also detect their
environment via immune-surveillance and challenge pathogenic
bacteria. In fact, macrophage populations in dental pulp are
critical for dental pulp stem cell activation and formation of
reparative dentin (60). Wnt signalling may play an important
role in regulation of tooth inflammation. An inflamed pulp
tissue exhibits increased levels of some MMPs, such as MMP2
and 3 (50, 61, 62). Wnt signalling have been shown to induce
MMP expression and subsequently affect transmigration of T cell
(63). GSK3, is also a key mediator of pro-inflammatory cytokine
production during bacterial infections through the TLR pathway
and is a potential regulator of periodontal inflammation in vitro
(64). These studies suggest potential regulation of inflammation
in tooth by targeting Wnt signalling.

Treatment of murine teeth with Lipopolysaccharide which
is an inflammatory stimulus and Simvastatin results in
angiogenesis, repressed inflammatory mediators, and increased
dentin regeneration. Here Simvastatin, acts by minimising
inflammatory effects and increasing regenerative potential (55).
Resolvin E1 (RvE1) is a dietary omega-3 polyunsaturated fatty-
acid metabolite and effective in resolving inflammation and
wound healing. Treatment of experimentally induced pulp injury
in rats with RvE1, demonstrated pro-healing properties, reduced
necrosis of damaged pulp, and promoted formation of reparative
dentin (65).

One of the key requirements during tissue regeneration is
angiogenesis vascular endothelial growth factor (VEGF) family
are expressed in human dental pulp and exhibit autocrine and
paracrine roles in local blood vessels and immune cells. VEGF
is also the most potent angiogenic and vasculogenic factor in
tertiary dentin formation with positive effect on proliferation,
differentiation, mineralisation, neovascularizing, and formation
of reparative dentin both in vitro and in vivo (66). Lineage
tracing studies have shown that during reparative dentinogenesis,
odontoblasts arise from perivascular cells expressing alpha
Smooth Muscle Actin (aSMA) (33).

In a carious exposure, the unique effect of pathogens is added
to cellular changes secondary to inflammation. A factor that
needs to be considered in tooth regeneration. Interestingly, it
has been shown that expression of VEGF is higher in teeth
with caries (67). This finding can be utilised in development of
natural avenues for treatment of carious teeth. Comparison of
ultrastructural and chemical changes that take place in arrested
carious lesions demonstrate extensive remineralisation with
deposition of Mg containing Hydroxyapatite crystals (Mg-Hap)
in tubules of caries-arrested dentin (68). This suggests natural
process of remineralisation can contribute to caries treatment a
potential that can be harvested in therapeutic approaches.

EPIGENETICS

Epigenetic modification serves an important role in cell
differentiation. Epigenetics can operate at various levels, such as
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interference with transcriptional and translational information
through non-coding RNAs, modification of posttranslational
histone cores and methylation of cytosine residues in DNA
structure. Histone methylation is one of the most robust
epigenetic marks and is essential for the regulation of multiple
cellular processes. A recent study has shown that a short-term
activation ofWnt signalling byWNT-3A induces a genomicDNA
demethylation and increases histone acetylation and methylation
in DPSCs, highlighting the regulation of the epigenetic barrier
by Wnt signalling in DPSCs (69). Histone methyltransferases
(HMTs) and histone demethylases (HDMs) are crucial for the
osteogenic differentiation of human bone marrow and tooth.
And histone demethylation may play an important role in
reparative dentinogenesis. HDM KDM5A is an enzyme with

significantly enhanced expression during cytodifferentiation in
hDPCs undergoing odontogenic induction. Knocking down
KDM5A in hDPCs results in greater alkaline phosphatase
activity, mineral deposition and increased expression of
odontogenic markers DMP1, DSPP, Zinc finger protein Osterix
(OSX), and Osteocalcin (OCN) (70). DNA methylation regulates
the inflammatory response of human odontoblasts in carious
pulp. knocking down the DNA Methyltransferase 1 gene results
in Lipoteichoic acid-induced inflammatory cytokines in human
odontoblast-like cells (71). Acetylation governs differentiation
and de-differentiation potential of DPSCs. A range of Histone
deacetylases (HDACs) are expressed in dentin-pulp complex that
regulate odontoblasts differentiation (72, 73). As an example,
inhibition of HDAC4 and HDAC5, increases odontoblastic

FIGURE 2 | Table and schematic, summarising different roles of Wnt pathway during development, homeostasis, and regeneration of tooth and periodontium.

Numbers in the schematic corresponds to the number of pathway component in the table. 1: canonical Wnt pathway is involved in determination of specific tooth

germ location during development and induction of odontogenic fate, tooth budding and crown morphogenesis. 2: Noncanonical Wnt pathway regulates root

development. 3: Wnt3A regulates proliferation and apoptosis in dental pulp stem cells. It is also involved in the epigenetic regulation of DPSCs. 4: Wnt10 regulates

proliferation of DPSCs. 5: Axin2+ cells are activated upon tooth injury and induce secretion of reparative dentin. In the periodontium these cells contribute to

cementoblasts formation during postnatal development and adult homeostasis. 6; Inhibition of GSK3 promotes dentin repair. It is a potential regulator of periodontal

inflammation. 7: Notum, Wnt inhibitor is involved in molar root morphogenesis. A part of this schematic was adapted from Xu et al. (79).
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gene expression and promote the odontoblast induction (74).
HDAC6 regulates the fusion of autophagosomes and lysosome
during odontoblast differentiation. Decreased autophagy
results in downregulation of odontoblastic differentiation
capacity (75).

WNT SIGNALLING IN PERIODONTAL
HOMEOSTASIS AND DISEASE

Periodontitis is a chronic inflammatory condition of tooth
supporting tissues that results in loss of tissue attachment. This
condition has also been linked to many systemic conditions
such as diabetes, rheumatoid arthritis and cognitive impairment
(76, 77).

GSK3 has been shown as a potential regulator of periodontal
inflammation in vitro (64). Systemic administration of GSK3β
inhibitors in vivo result in abrogation of bacterial-induced
bone loss. A recent murine study has demonstrated that
differentiation of cementoblasts producing the mineralised tissue
in the root, contributes to maintenance of periodontal tissue
attachment as well as its restoration in the event of periodontitis.
Different populations of stem cells contribute to cementoblasts
differentiation at various stages of life. Perivascular-derived
cells expressing CD90 and perivascular-associated cells that
express Axin2 contribute to cementoblasts during post-natal
development. Whereas, during adult homeostasis, cementoblast
are formed from responsive Axin2+ cells. Contribution of CD90
expressing cells to cementoblast differentiation occurs only upon
induction of periodontitis (78). These findings have great clinical
implication and emphasise the crucial role of Wnt signalling in
homeostasis of tooth and its periodontium. These roles of Wnt
signalling are summarised in table and schematic in the Figure 2.

The development of a new generation of dental therapies on
biological-based approaches is now a major goal in regenerative

dentistry. Our understanding of dental tissue regeneration
is advancing but needs to be combined with a compatible
and practical delivery system to be translated into clinical
application. Advanced biomaterials and technology can be used
to modulate tissue microenvironment and enhance the efficiency
of regeneration process. This has been shown in the use of low
level laser and magnetic fields to enhance DPCs differentiation as
well as novel imaging techniques to visualise dental pulp using
tissue clearing method (80–84). However, these advancements
need to be tested for their accessibility and delivery. Development
of suitable scaffolds that can stimulate and guide stem cell
differentiation in dental tissues is equally important and can serve
as delivery vehicle.

ReDent (Regeneration of Dentine) allows delivery of small
concentration of a novel GSK3 small molecule inhibitor drug
via hydrogel into tooth cavity and results in rapid stimulation of
resident DPSCs to proliferate and differentiate into odontoblast-
like cells that produce reparative dentine (85). LithGlass is a novel
glass ionomer formulation specifically designed to rapidly release
lithium ions to stimulate odontoblast activity in non-exposed
pulp lesions. The reactionary dentin produced restores original
dentin thickness (86). Both ReDent and LithGlass represent
simple, affordable solutions to improve dental care and hopefully
form part of the new vanguard driving regenerative dentistry.
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