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Oral childhood diseases, such as caries and gingivitis, have much more than a local

impact on the dentition and tooth surrounding tissues, which can affect systemic

conditions. While the mouth is frequently exposed to microbial stressors that can

contribute to an inflammatory state in the entire body, chronic disorders can also interfere

with oral health. Sharing common risk factors, a dynamic interplay can be driven between

1. dental caries, gingivitis, and type I diabetes mellitus, 2. early childhood caries and

obesity, and 3. caries and cardiovascular diseases. Considering that there are∼2.2 billion

children worldwide and that childhood provides unique opportunities for intervention

targeting future health promotion, this review is of prime importance and aimed to

explore the relationship between the oral microbiome and oral chronic diseases driven

by metabolic dysfunction in childhood.

Keywords: mouth, bacteria, obesity, cardiovascular disease, type I diabetes

INTRODUCTION

The mouth is a part of the human body and cannot be considered independent. The oral cavity
harbors a diverse microbiome and the second largest number of microorganisms after the gut (1),
with ∼500–700 species (2). There are many distinct niches in the oral cavity that characterize a
complex habitat providing shedding (soft tissues/mucosa) and non-shedding (teeth) surfaces for
microbial colonization (1). The dysbiotic state of the oral microbiome triggers the most common
biofilm-mediated oral diseases in children: caries and gingivitis (2).

Dental caries affects more than 530 million children worldwide (3) and is characterized
by tooth demineralization due to the action of organic acids after bacterial dietary substrate
fermentation (4, 5), while gingivitis is characterized by bleeding and swelling due to the initial
inflammatory process of the gums, which can progress to the destruction of tooth-supported tissues
(periodontitis) (6). Both diseases culminate in tooth loss, prejudicing the mastication process,
phonetics, respiration, swallowing, and even the quality of life.
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Advances in the knowledge of how host-associated microbial
communities promote or protect against pathogenic microbes
and how microorganisms contribute to inflammatory diseases
are extremely important. In light of this, studies targeting the
oral microbiota in health and disease will provide valuable
information on the functional and metabolic changes in diverse
pathological states, as well as the identification of molecular
signatures, which could lead to assertive therapies considering
precision medicine (1). Interestingly, oral samples are easy to
collect, and, therefore, studies in this regard have been increasing
in the past few years. Progress in the field of molecular biology
has led to culture-independent techniques, which have revealed
many uncultivable microorganisms that better represent the oral
microbiota and its complexities.

Systemic diseases such as obesity, cardiovascular problems,
and type I diabetes mellitus (T1DM) have been shown to be
influenced by dental plaque-associated oral diseases. It should
be noted that oral bacteria are frequently swallowed along
with saliva and solid and liquid foods during the digestion
process, reaching the stomach and gut (7).Moreover, studies have
demonstrated that gut microbial communities are associated
with obesity (8–11) and are associated with T1DM through the
immune system (12). Immunological changes in the gut can be
reflected in the pancreas, where insulin is produced in response
to increasing glucose levels in the bloodstream (12). In addition,
as tooth nourishment is derived from the pulp and blood vessels
from the surrounding tissues, oral bacteria can also spread into
many organs, such as the heart via the bloodstream (13).

In light of the above knowledge, oral diseases have muchmore
than a local impact on the dentition and tooth contiguous tissues,
interacting with systemic conditions. However, chronic disorders
can also interfere with oral health. A dynamic interplay can be
driven between 1. dental caries, gingivitis, and T1DM; 2. early
childhood caries and obesity, and 3. caries and cardiovascular
diseases as they share common risk factors (Figure 1). Thus,
the present review is an attempt to investigate the relationship
between the oral microbiome and oral and chronic diseases
driven by metabolic dysfunction in childhood.

SUBSECTIONS AND DISCUSSION

T1DM
Diabetes mellitus is a group of chronic metabolic diseases
characterized by elevated levels of blood glucose as a result
of defects in insulin production, action, or both (14). The
most common type of diabetes mellitus in children and
adolescents is type 1 or insulin-dependent diabetes (juvenile
or childhood-onset diabetes). T1DM is caused by genetic
autoimmune destruction of β-cells in the pancreas, in which
all or a subset of islets in the pancreas lack insulin-secreting
β-cells, leading to hyperglycemia and a decrease in insulin
production (15). The production of multiple islet autoantibodies
can be precipitated by several environmental factors, including
enterovirus infections, nutritional factors (deficiency of vitamin
D, excessive consumption of cow milk proteins and nitrates)
excessive amounts of glucagon, epinephrine, growth hormones,
glucocorticoids, and thiazides and others (16–18). According to

WHO, there are large differences in the incidence and prevalence
of T1DM, ranging from over 60 to under 0.5 cases annually per
100,000 children aged under 15 years (19). The clinical symptoms
of T1DM are polydipsia, polyphagia, polyuria, weight loss,
blurred vision, difficulty concentrating, hypotension, abdominal
pain, and dehydration, among others. Laboratory findings are
hyperglycemia, glycosuria, and ketonuria (20).

DENTAL CARIES, GINGIVITIS, AND T1DM

Caries and T1DM
The oral cavity is composed of several ecosystems, such as teeth,
gingival tissues, tongue, mucosa, palate, and tonsils that harbor
diverse bacteria, fungi, or viruses that coexist in symbiosis to
maintain a healthy state. When a disturbance in the diversity
and proportions of species or taxa within the microbiota occurs
(dysbiosis), disease-promoting microorganisms proliferate,
causing pathologies such as dental caries, gingivitis, and
periodontitis (21). The microbiota of the oral cavity can also play
role in many systemic diseases such as diabetes, cardiovascular
diseases, and obesity (22).

Dental caries is a biofilm-mediated, diet modulated,
multifactorial, non-communicable, dynamic disease resulting in
enamel demineralization, determined by biological, behavioral,
psychosocial, and environmental factors (23). Although there is
still a need for longitudinal studies, recent meta-analyses have
found that T1DM is associated with a high risk for dental caries
(24, 25). The prevalence of dental caries among 538 children and
adolescents with T1DM from 10 different studies worldwide was
67%. The prevalence was the highest in South America (84%)
and the lowest in patients with diabetes having good metabolic
control (47%) (24). In another meta-analysis, T1DM patients
had significantly higher levels of dental caries in permanent
teeth but not in deciduous teeth than the non-diabetic group.
However, no significant differences were found between patients
with well-controlled and poorly controlled T1DM (25). Some
studies have found correlations between metabolic control and
diabetes course, together with dental caries stages (26–29). The
divergent findings described above are probably related to the
cut-offs of HbA1c as well as to age strata in the studies (25). The
groups of T1DM children with HbA1c of > 10% exhibited more
caries lesions and bleeding gums than the other groups (28).

Different species of bacteria, such as Streptococcus, Veillonella,
Actinomyces, Granulicatella, Leptotrichia, Thiomonas,
Bifidobacterium, and Prevotella, have been associated with
the development of dental caries in children (30, 31). The
majority of studies on T1DM patients were conducted using
laboratory culture techniques or polymerase chain reaction
(PCR) analysis (22, 32–35). Generally, patients with well-
controlled diabetes have fewer decayed surfaces and lower counts
of Streptococcus mutans, lactobacilli, and yeast than those with
poorly controlled diabetes (33–35). Samples from the bottom of
the oral cavity and dorsum of the tongue were collected from 50
T1DM children aged 10–18 years and assigned into two groups:
well-controlled and poorly controlled groups. Twenty-five
children were used as healthy controls. Collected samples were
analyzed for total bacteria and different species of Streptococcus,
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FIGURE 1 | Interplay between oral and systemic diseases. The oral cavity, particularly when caries and gingivitis/periodontitis are present, could act as microbial

reservoir, interplaying with cardiovascular disease (via the bloodstream), obesity (via the digestive system), and diabetes type I (via the immune system).

Enterococcus, Staphylococcus, Candida, and anaerobic bacteria.
The authors found an increased amount of Streptococcus mitis
in T1DM children than in healthy children. A significantly
higher number of different strains was isolated from diabetic
groups, mainly in poorly controlled diabetes (22). Another study
revealed significantly higher levels of dental plaque and higher
counts of S. mutans in T1DM children with poor glycemic
control than in the healthy control group. Candida albicans
levels were not statistically different among the groups, but those
with poor glycemic control showed an increased frequency of
detection (32).

Some risk factors inherent to patients with diabetes could
potentialize the development or progression of tooth decay.
Of interest, diabetic children consume daily meals more
frequently, which favors in the saliva: higher episodes of low pH,
lower concentration of bicarbonate, reduced unstimulated and
stimulated secretion flow rates leading to xerostomia, increased
glucose levels, lower levels of antimicrobial proteins such as
lactoferrin and lysozyme, and bacterial proliferation (36–38).

Given the importance of the disturbances mentioned
above, further scientific evidence is necessary to elucidate the
relationship between the development of dental caries lesions in
children with diabetes considering the associated factors.

Plaque-Induced Gingivitis and T1DM
Commonly, there is a symbiotic relationship between the host
and the oral microbiome to maintain homeostasis, and a
dysbiosis between the dental biofilm and the host’s immune-
inflammatory response may initiate gingivitis (39). In addition,
poor nutrition can cause increased inflammation (40), and
biofilm can accumulate rapidly in inflamed gingiva. The clinical
signs (redness and edema) and symptoms of inflammation
confined to the gingiva is reversible when the biofilm is
disrupted or removed (39, 41). However, if gingivitis is not
controlled, it can progress to periodontal disease comprising
the periodontal ligament, cementum, and alveolar bone in
older ages.

The primary parameter to evaluate the presence of gingivitis
is bleeding on probing (BOP) (41, 42). A patient with an intact
periodontium is diagnosed with gingivitis when the BOP score
is ≥10%. Localized gingivitis involves a BOP score of 10–30%,
whereas a score of >30% is classified as generalized gingivitis
(41). When only a few sites are affected by mild inflammation,
the condition is referred to as incipient gingivitis (39, 41).

In adolescents, other local factors, such as dental caries, mouth
breathing, crowding of the teeth, and tooth eruption can modify
the incidence and severity of gingivitis. Significant changes in
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steroid hormone levels during puberty also have a transient effect
on inflammation of the gingiva (39, 43).

Clinical studies have demonstrated that the presence of
diabetes may be considered a risk factor for periodontal disease in
children and adolescents (44, 45). Gingivitis is the predominant
form of periodontal disease in childhood, and the level of
glycemic control may be more important in determining the
severity of gingival inflammation than the quality of plaque
control (46–48).

Hyperglycemia causes a hyperinflammatory response in the
presence of bacterial biofilm. Individuals with diabetes have
impaired neutrophil and macrophage function, altered collagen
production, exaggerated collagenase activity, hyperinflammatory
responsive monocytes, and an increased release of pro-
inflammatory cytokines (49, 50). Another factor that may modify
host responses is the accumulation of advanced glycation end-
products (AGE) and their interaction with AGE receptors in
children with diabetes (49).

Previous studies have shown that gram-positive species
(e.g., Streptococcus spp., Actinomyces viscosus, Peptostreptococcus
micros) and gram-negative species (e.g., Campylobacter gracilis,
Fusobacterium nucleatum, Prevotella intermedia, Veillonella spp.)
are associated with gingivitis (51). A clinical study showed
that Capnocytophaga sputigena and Capnocytophaga ochracea
were associated with gingivitis in children with T1DM and that
glycemic and lipid parameters were higher in patients with
T1DM, albeit within normal values (46).

Periodontopathogenic bacteria can cause direct damage to
periodontal tissues or indirect tissue damage by inducing the
release of inflammatory cytokines and other mediator bacteria
(51). The transition from health to disease follows the principles
of primary ecological succession, rather than the acquisition of
new organisms (41), suggesting that clusters of bacteria may be a
more robust discriminant of disease (41).

Of interest, poorly controlled diabetes may cause xerostomia
due to hyposalivation. Xerostomia is indirectly related to gingival
disease activity through the accumulation of dental plaque in
young adults (52).

Despite an increase in the number of studies that have assessed
the association between diabetes and gingival inflammation, no
consensus has yet emerged about a possible causal relationship
(53, 54). A recent systematic review and meta-analysis concluded
that the severity of periodontal inflammation is higher in
children and adolescents with T1DM than in healthy individuals.
However, the authors did not provide strong evidence that
periodontitis is a significant risk factor for T1DM in children
(53). Other studies on childhood diabetes have also shown that
gingival inflammation is higher in children with T1DM than in
non-diabetic children (44, 45) and suggested that periodontal
destruction can begin early in children with diabetes.

Regarding the influence of glycemic control elements on
the presence of gingivitis, data are not conclusive, suggesting
other factors, such as those related to patients’ immunological
responses (55). A recent study showed no significant differences
in periodontal status between controlled and poorly controlled
diabetic patients and healthy children (56). In a case-control
study involving 80 children and adolescents (aged 5–18 years)
with T1DM, a significant effect of diabetes on an increased risk

of oral and periodontal diseases in children was not confirmed
(57). In the same context, a comparative cross-sectional study
on children with T1DM and non-diabetic children with mixed
dentition, both sexes (7–13 years) and without a distinction
of race demonstrated that the periodontal conditions were
similar among patients in both groups, without statistical
differences in any periodontal indexes (46). This study also
demonstrated throughmicrobiological analysis that red-complex
bacteria were present at a few sites. Fusobacterium nucleatum
and Campylobacter rectus were more frequently detected, and
interleukin (IL)-6 levels were similar between the groups (46).
On the other hand, an up-to-date research by Jensen et al.
(58) demonstrated that worsening glycemic control is associated
with increased severity of early markers of periodontal disease
in children and adolescents with T1DM. In that study, it
was also observed that glycemic control was related to the
complexity and richness of the microbiota of the gingival
plaque and lower brushing frequency, independent of glycated
hemoglobin (HbA1c) (58). Thus, well-designed clinical studies
are still required to clarify the interplay between diabetes and
inflammation of gingival and periodontal tissues.

EARLY CHILDHOOD CARIES AND
OBESITY

As mentioned above, dental caries is a major oral health problem
and in the early childhood, is characterized by the presence of one
or more deciduous teeth with the presence of a carious lesion,
cavitated or not, in children under the age of 6 year (59).

It is important to highlight that primary teeth maintain the
space for adequate development of the permanent dentition and
are essential for the child’s well-being, phonetics, esthetics, and
mastication. Unfortunately, most early childhood caries (ECC)
lesions remain untreated (59), leading to chronic pain, infections,
and other comorbidities (60).

In the last 45 years, worldwide, obesity has increased three-
fold, and ∼38 million children under the age of 5 years
were overweight or obese in 2019 (61). While overweight is
characterized by a body mass index (BMI) of the 97–99.9th
percentile, obesity is defined by a BMI of >99.9th percentile in
those aged younger than 5 years (62). Overweight or obesity in
childhood is considered a risk factor for adulthood obesity and
might be directly related to diabetes and cardiovascular disorders.

The effect of obesity on functional and metabolic changes
in the human body is an important topic to explore. As
believed before, the adipose tissue is not only responsible
for energy storage, but an endocrine organ, producing
adipokines (leptin, adiponectin, visfatin, resistin, apelin).
As weight gain is connected to increased adipose tissue
mass, these hormones might probably be produced in higher
concentrations, significantly affecting the metabolism of
macronutrients (63) and causing a “metainflammation”
(64). An usual consequence of obesity is the metabolic
syndrome characterized by a clustering of risk factors (insulin
resistance, hyperleptinemia, hypoadiponectinemia) predisposing
individuals to the development of future comorbidities (64).
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A recent systematic review showed that children with high
BMI scores had about a two-times higher chance of experiencing
ECC than lean children (65). Despite both diseases (ECC
and obesity) being complex and sharing a common risk
factor (diet), microbial dysbiosis also plays a critical role (9),
profoundly affecting disease course/development. Remarkably,
the human oral and gut microbiomes present enormous
complexity and several functions such as the development of
immunity and defense against pathogens. Gut microorganisms
also produce short chains of fatty acids that are important
for energy metabolism, synthesis of vitamins, and fat storage
(66). Unlike the human genome, which is relatively constant,
the microbiome is dynamic and is altered by changes in
development, environmental factors such as diet and use of
antibiotics, and the response to disease (67).

Harboring billions of microbes (68), the oral cavity
microbiome is composed mainly of the following phyla:
Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, and
Fusobacteria (69, 70). Despite being a polymicrobial disease,
the predominance of acidogenic and aciduric bacteria (4, 5, 71)
favors the demineralization process of the dental tissues after
carbohydrate fermentation, leading to white chalky spot lesions
that further progress into dentin cavitation (4, 5). Notably,
it was estimated that children with severe ECC exhibited
94.5 phylotypes vs. 113.4 in caries-free children, suggesting
that microbial variety and complexity in dental biofilm are
significantly higher in healthy subjects (72). This is because
carious lesions could act as retentive niches for cariogenic
bacteria, which dominate as the disease progresses, leading to a
decrease in the overall richness of the biofilm community (72).

While high numbers of mutans streptococci are significantly
associated with early caries lesions, lactobacilli are linked to an
advanced staged cavitation (73, 74). Conversely, quantitative PCR
analysis of biofilm bacteria according to different stages of ECC
indicated that S. mutans were also present in higher numbers
in dentine caries lesion/cavitations, as well as Bifidobacterium
spp. (75). Scardovia wiggsiae, a specie belonging to the phylum
Actinobacteria, has also been linked to ECC (30), as well
Veillonella, Prevotella, Porphyromonas, Actinomyces species, and
the fungus C. albicans (76–79). Even with genetic sequencing
using the 16S ribosomal RNA gene, and better understood of the
richness and diversity of the oral microbiome, S. mutans has still
been identified as the most discriminatory specie between health
and disease (80).

The classical main pathogens of dental caries, S. mutans
and lactobacilli, belong to the Firmicutes phylum, which was
found to be enhanced in samples collected from cavitated carious
lesions (70). Interestingly, an increase in the abundance of the
Firmicutes phylum, one of the largest in the gut microbiome,
is commonly observed in childhood obesity (8, 10, 81). In this
respect, bacteria belonging to this phylum may be related to
weight gain, such as an increase in the species of Eubacterium
halllii, Clostridium leptum, and certain Lactobacillus species.
Clostridium leptum is an important carbohydrate-fermenting
bacterium belonging to the Clostridial IV set. Along with other
intestinal microorganisms, they are capable of fermenting fiber
and unabsorbed sugars from the diet, producing short-chain fatty
acids that can act as an energy source for the human host, and

can also influence intestinal epithelial function (9, 82). In line
with this information, germ-free mice receiving a microbiota
transplant increase their caloric uptake, energy harvest and body
fat (83).

The microbiota could be considered an endocrine organ
related to the maintenance of energy homeostasis and host
immunity (84). It is understood that gut microorganisms are
capable of 1. increasing energy production from food, 2.
contributing to subclinical inflammation, and 3. regulating fatty
acid tissue composition (85, 86). Moreover, under dysbiotic
conditions, the functioning of the intestinal barrier and gut-
associated lymphoid tissues is altered, favoring the passage
of lipopolysaccharides, which activate inflammatory pathways
that might contribute to the development of insulin resistance
(84). Additionally, the production of gastrointestinal peptides
associated with satiety is also changed, leading to increased
food intake.

It is important to highlight that the oral cavity and gut provide
ideal niches for the largest microbiomes in the human body,
due to the moist, warm, and nutrient-rich environments. The
difference between them relies on the shedding characteristics
of the mucosa vs. the non-shedding characteristics of the teeth.
However, due to the arsenal of adhesive molecules, streptococci
can colonize many types of surfaces (87). Intriguingly, some
groups of bacteria could overlap in oral and stool samples
(88–90), due to oral bacteria often being swallowed together
with saliva and food during the digestion process. A recent
study involving preschoolers investigated whether Firmicutes
and Bacteroidetes levels in the mouth reflected the gut condition
in obesity and ECC, demonstrating that Firmicutes phyla
behave differently according to the nutritional status (obesity
or eutrophy) and caries experience, and that dental biofilm and
gut microbiome might share levels of similarity. In addition,
the authors found significantly higher numbers of Firmicutes in
obese children with ECC than in those with obesity and free of
caries in both the mouth and gut (88).

The pivotal role of oral bacteria ectopically colonizing the
gut remains unknown (91). In addition, it is challenging to
distinguish between bacteria that truly reside in the gut and
those that are temporarily present in the gut (92). In animal
models, bacterial colonization success in the gut has been
suggested to depend on their ability to metabolize dietary and
host carbohydrates, as well as bile acids (93).

Although ECC and obesity are preventable, they continue
to affect millions of children (59); therefore, studies involving
common approaches should be conducted and will certainly be
more effective. Moreover, the hypothesis that the mouth might
act as a reservoir for intestinal pathogens that can aggravate
diseases connected to the gut microflora (93) is of prime
importance and should be further explored.

CARIES AND CARDIOVASCULAR
DISEASES

The first common risk approach for cardiovascular pathologies
and caries can be established by considering the individual’s
lifestyle, particularly eating habits. The high consumption of
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ultra-processed foods, fermentable carbohydrates, and saturated
fats has led to an increase in the number of cases of hypertension,
atherosclerosis, and cardiovascular diseases, as well as the
number of individuals affected by caries (94).

Remarkably, bacteria found in cariogenic biofilms can
synthesize extracellular polysaccharide matrix from dietary
sugars, favoring the adhesion of multispecies microorganisms
(95, 96). As described in the previous sections of the present
review, when this biofilm is undisturbed, that is, when brushing
and flossing are not frequent, the propensity for carious lesions
is enhanced. In addition, when dental caries progresses until a
severe stage the pulp, an organ full of nerves and capillaries,
is exposed and there is higher risk of bacteremia via the
bloodstream. This way, the typical pathogens associated with
tooth decay, S. mutans and Lactobacillus spp., together with
Veillonella spp., Scardovia spp. and other oral streptococci
get access to other organs, such as the heart, causing an
increase in the levels of systemic antibodies, and with possible
development of a variety of cardiovascular disturbances, i.e.,
infectious endocarditis (97, 98).

Infectious endocarditis is characterized by endocardial surface
contagions. Valves are the most affected structures, but other
endocardial tissue locations might also be involved (99).
Endocarditis is intimately linked to microorganisms in the group
of oral streptococci, staphylococci, enterococci, gram-negative
bacilli, some fungi (Candida spp.), fastidious microbes, and
cultivable intracellular microorganisms such as Chlamydophila
spp., S. mutans, and Staphylococcus aureus (99). Severe sepsis or
septic shock has a mortality rate of 20–25% and is associated
with microorganisms such as Staphylococcus aureus and non-
hemolytic streptococci.

Curiously, S. mutans was the most frequently detected
bacteria in atheromatous plaques and unhealthy heart valve
tissues (100–102). When S. mutans and other oral bacteria
enter the circulatory system (103) reaching the heart tissues,
they easily adhere to heart valves, producing an insoluble
dextran from blood glucose and forming biofilms (97). According
to the composition and structure of the rhamnose glucose
polysaccharide connected to the cell wall, S. mutans can be
divided into four different serotypes: c, e, f, and k. Although
serotype c is the most common in the oral cavity, serotypes
e and f are shown to invade primary human coronary
artery endothelial cells. Intriguingly, invasive strains carry the
surface protein with collagen- and laminin-binding activity
(cnm) gene, which can bind to collagen and laminin in
vitro, favoring adherence to endothelial tissues and triggering
inflammatory responses, similar to other surface structures of
S. mutans (104–106).

Another important oral disease that begins with the imbalance
of the healthy microbiota in the subgingival environment is
periodontitis. As already mentioned, it is an oral infectious
disease that can develop in late childhood or adolescence, caused
mainly by gram-negative bacteria, with the destruction of the
tissues supporting the teeth as a result of an injury caused by
the pathogenic biofilm. Hence, in the presence of periodontal
disease, the junctional epithelium and connective tissue are not

firm and the risk of bleeding is enhanced, favoring the access of
oral microorganisms, especially S. mutans, to the capillaries and
bloodstream (97, 103).

Chronic periodontitis can alter the lipid profile, contributing
to the progression of atherosclerosis (107). Furthermore,
the host’s response to gram-negative periodontopathogens
bacterial lipopolysaccharides is a pro-inflammatory response,
with the production of IL-6, prostaglandin E2, and matrix
metalloproteinases, culminating in tissue destruction. In
addition, the production of IL-1 beta, IL-6, and tumor necrosis
factor-alpha can promote hyperlipidemia, potentializing the
risk of atherosclerosis, which is the main cause of heart disease.
Studies have shown that cardiovascular problems, such as
coronary heart disease, stroke, peripheral vascular disease,
cardiomyopathy, atherosclerosis, and myocardial infarction, are
linked to chronic infection and inflammation, which is the case
in periodontitis (95, 108).

Antibiotic therapy is used for the treatment of diseases such
as infectious endocarditis and sepsis. In this regard, we have
to be mindful that due to the high resistance rate of some
microorganisms in the infectious processes, the combination
of antimicrobials may be necessary, as well as prolonged drug
treatment to avoid recurrence. More than 50% of patients require
surgery in cases of heart failure, uncontrolled infection, and
embolism prevention (99).

Finally, it is important to point out that the oral cavity
is a reservoir for complex commensal microbiota, which is
a dysbiotic condition that favors caries and periodontitis
development. Jointly with the presence of microbes in
the mouth, relevant risk factors like sugar-rich food and
lack of proper tooth brushing or flossing are also closely
associated with the installation and progression of oral diseases.
Regarding a common risk approach, a balanced diet with
low to moderate fermentable carbohydrates intake/ultra-
processed foods not only reduces the chances of cariogenic
biofilm formation, but contributes to improving the general
functioning of the body. Thus, healthy gums and teeth
are associated with a low risk of developing infectious
oral diseases, bacteremia, and associated cardiovascular
disturbances (95, 108).

FINAL CONSIDERATIONS

Altogether, in a critical point of view all the diseases described
above are of high complexity and reinforce the holistic
concept that the mouth could not be separated of the body.
It should be prohibitive focusing too narrowly on single
chronic diseases alone. In this regard, a multidisciplinary
approach should be emphasized, bringing together healthcare
professionals from different fields, with different expertise,
such as dentists, physicians, nutritionists, psychologists and
nurses. The organization and interrelationship between these
professionals, will favor since the early diagnosis and effective
preventive strategies, until assertive diagnosis and treatment
plan, improving prognosis and patient’s quality of life.
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It should be kept in mind that multidisciplinary teams
have higher chances of meeting the demands of patients with
complex care needs, attaining in the development of a special
routine supporting their care goals. When the right attention
in the communities is delivered, well-being is favored and
unnecessary complicated treatments or hospitalizations
could be avoided, reducing the oral/systemic health
budget expenditure.

Of interest, the clinical practice based on scientific
evidences requires the ability to locate information and
appraise it critically. Literature reviews play important roles in
this regard.

In summary, considering the relationship between the
oral microbiome and chronic diseases driven by metabolic
dysfunction in childhood, it should be highlighted that:

- Microbe establishment is linked to biological,
behavioral, and psychosocial factors associated with an
individual’s environment.

- A better understanding of the human microbiome could
indicate the potential microorganisms connected to health
or disease.

- Current molecular biology technologies favor knowledge
acquisition concerning microbial diversity and its relationship
with physiopathological conditions, but the exact mechanism
connecting oral diseases and microbiota to chronic diseases
driven by metabolic dysfunction during childhood is far from
being completely understood.
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