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The pathophysiology of SARS-CoV-2 infection is characterized by rapid virus replication

and aggressive inflammatory responses that can lead to acute respiratory distress

syndrome (ARDS) only a few days after the onset of symptoms. It is suspected that

a dysfunctional immune response is the main cause of SARS-CoV-2 infection-induced

lung destruction and mortality due to massive infiltration of hyperfunctional neutrophils in

these organs. Similarly, neutrophils are recruited constantly to the oral cavity to combat

microorganisms in the dental biofilm and hyperfunctional neutrophil phenotypes cause

destruction of periodontal tissues when periodontitis develops. Both disease models

arise because of elevated host defenses against invading organisms, while concurrently

causing host damage/disease when the immune cells become hyperfunctional. This

represents a clear nexus between periodontal and medical research. As researchers

begin to understand the link between oral and systemic diseases and their potential

synergistic impact on general health, we argue that translational research from studies in

periodontology must be recognized as an important source of information that might lead

to different therapeutic options which can be effective for the management of both oral

and non-oral diseases. In this article we connect concepts from periodontal research

on oral inflammation while exploring host modulation therapy used for periodontitis

as a potential strategy for the prevention of ARDS a deadly outcome of COVID-19.

We suggest that host modulation therapy, although developed initially for management

of periodontitis, and which inhibits proteases, cytokines, and the oxidative stress that

underlie ARDS, will provide an effective and safe treatment for COVID-19.
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INTRODUCTION

The outbreak of viral pneumonia cases from SARS-CoV-2
was first reported by the Chinese government in December
2019 (1). As with other viral diseases SARS-CoV-2 can cause
various respiratory infections, including multifocal interstitial
pneumonia which was leading to admission to intensive care and
death in infected patients (2). This infection, named Coronavirus
disease 2019 (COVID-19) (3), can cause complications including
the development of acute respiratory distress syndrome (ARDS);
an often fatal disorder (2, 4).

ARDS is caused by many pathogens including influenza and
coronavirus. Although its precise pathophysiologic mechanisms
are not completely clear, it could be the result of direct damage
caused by the viral pathogen and then, more importantly,
the triggering of a complex dysregulation of the inflammatory
environment (5, 6). Indeed, it has been argued that the host-
mediated lung and other tissue damage has more to do with the
massive infiltration of polymorphonuclear neutrophils (PMNs)
in the lungs rather than purely direct viral effects in relation to
morbidity and mortality (4, 6, 7).

Immuno-Inflammatory Pathogenesis of
COVID-19
Data from cohorts of critically ill patients with COVID-19-
related pneumonia provide evidence of cytokine profiles like
those of hyperinflammatory states seen in bacterial and viral
pneumonias (4, 8). SARS-CoV-2 invades the host cell by binding
of its viral spike glycoprotein to the host’s cellular receptor for
ACE2. Once in the cell, the virus may “deceive” the immune
system through strategies that prevent pattern recognition
receptors (PRRs) such as toll-like receptors (TLRs) from
recognizing pathogen-associated molecular patterns (PAMPs)
and will start replicating freely within the infected cells using
their own organelles and other cellular components (9). In
addition, SARS- CoV-2 has also evolved strategies that interfere
in the production of type I/III IFN which are essential for
the development of effective immunity (9). As a result of this
state of unchecked replication, SARS-CoV-2 can reach high
titres shortly after initial infection that leads to an exponential
production of PAMPS, cell damage and release of damage-
associated molecular patterns (DAMPS), all of which triggering
a hyperactive inflammatory responses (10).

The attachment of SARS-CoV-2 to ACE2 for host cell
entry leads to down-regulation of ACE2 and a subsequent
increase of angiotensin II (ANGII) (11–16) which dysregulate
the renin-angiotensin system (RAS) (17). In elevated levels,
ANGII acts as a pro-inflammatory mediator that ultimately
activates NFκB, disintegrin, and metalloprotease 17 (ADAM17)
(18). This activated pro-inflammatory environment triggers the
production of reactive oxygen species (ROS), fibrosis, matrix
metalloproteinases (MMPs), production of cytokines such as IL-
6 and IL-8 by macrophages and recruitment of PMNs. The virus
also activates NFκB (11, 15) that amplifies downstream signaling
for cytokine production (14, 15). The release of cytokines
activates pathogenic T helper type 1 (Th1) cells rapidly which
then secrete additional pro-inflammatory cytokines (11, 12, 19).

This is followed by additional infiltration of macrophages and
PMNs into alveolar cavities where they begin to contribute
to the hyper-inflammatory response (11, 14, 15). ANGII is
also known to trigger the coagulation cascade by activating
platelets through surface AngII receptors binding and inducing
platelet shape change (20) both of which associated with
thrombosis (21). In summary, SARS-CoV-2 binding to ACE2
for cell invasion is likely the first step for activation of the
cytokine storm which releases uncontrolled levels of cytokines,
including IL-1β, 1L-6, IL-8, and IL-10 (22), that prime the
host for development of hyperactive inflammatory responses.
Manifestation of the cytokine storm is extremely complex but in
general in addition to virus-induced infiltration of inflammatory
cells to the lungs causing oxidative stress and initial inflammation
it relies on even more PMN infiltration into the lung whereby
cytokines, MMPs, PMN elastase, ROS, and nitric oxide (NO)
are released into the inflamed tissue (22, 23) causing diffuse
alveolar damage, pulmonary edema, pulmonary fibrosis, acute
lung tissue destruction, multiple organ failure and death. These
developments essentially describe ARDS as seen in patients
suffering from COVID-19 (11–16).

PMNs are the first and most numerous innate immune cells
to reach the infection site and therefore play a central role in
the resolution of inflammation through specific mechanisms of
virus inactivation including the release ofMMPs, cytokines, ROS,
peroxidases and PMN extracellular traps (NETs) (24). This is
of course protective. But PMNs can also become “hyperactive,”
and when this happens, PMNs contribution to antiviral defense
can cause harmful effects to the host including the development
of pneumonia and ARDS (25–27). Paradoxically then, despite
the critical roles played by PMN cells insofar as clearance of
viral pathogens and other infectious disease is concerned it’s
recognized that excessively sensitized/activated PMN responses
promote a vicious cycle of inflammatory damage to the very
tissues to which they were dispatched as a consequence of a
PMN-induced cytokine storm (24). Notably, MMP-2 and−9
destroy the extracellular matrix in the lungs by degrading
collagen found in the basement membrane comprising their
parenchymal architecture (22). The virucidal effects of ROS and
the recruitment and activation of even more PMNs through the
production of cytokines can perpetuate the hyperinflammatory
response thereby leading to lung and other tissue injuries
including the development of vasculitides and thrombotic
conditions characteristic of ARDS (24, 27). In addition, ROS
production further increases vascular and epithelial permeability,
allowing for continuous infiltration of PMNs and serosanguinous
exudates into the alveolar space (27). Finally, the formation
of NETs aided by activated platelets in response to endothelial
damage, ROS and IL-1β production and virus replication may
increase the risk of thromboembolic events in COVID-19
patients by triggering complement activation and further fuelling
the coagulation cascade (9) (Figure 1).

A summary of the role of PMNs on the severity of COVID-19
in recent studies is shown in Table 1.

To prevent this, we hypothesize that any treatment which
could prevent excess PMN infiltration and hyperactivation while
also blocking excessive levels of MMP activity, elastase activities
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FIGURE 1 | Schematic representation of the interactions amongst and between four independent pathophysiologic pathways involved in the cytokine storm cascade

during COVID-19. Note mechanisms for COVID parallel those also described for periodontal diseases.

and simultaneously reducing excessive ROS levels or activity
might represent a useful approach to the prevention and/or
amelioration of the morbidity and mortality associated with the
cytokine storm/ARDS in patients with COVID-19.

Links Between Oral Inflammation and
Systemic Disease
As researchers begin to understand the link between oral and
systemic diseases more clearly and their potential synergistic
impact on general health, we argue that translational research
from studies in periodontology must be recognized as an
important source of information that might lead to new and
different therapeutic options which can be effective for the
management of both oral and non-oral diseases.

While evidence of associations between periodontal
diseases and systemic conditions have long been noted
(36), there has been increased interest in determining
the underlying mechanisms that might explain the oral-
systemic pathophysiology. We suggest that a causal and
indeed bidirectional link may exist between periodontitis
and systemic non-communicable diseases. However, we also

have to recognize that they could also be manifestations of
common underlying pathophysiological mechanisms. This said,
these two concepts are not mutually exclusive, and therefore
we must emphasize that both putative mechanisms could be
involved in those associations, as demonstrated by studies
that show bidirectionality of association. For instance, early
epidemiological studies have demonstrated the bidirectional
adverse interrelationship between an altered host inflammatory
response in PD and the metabolic imbalance in diabetes (37)
while more recently, a causal association was demonstrated
between periodontitis and chronic kidney diseases mediated
via oxidative stress (38), which seems highly relevant to this
argument. We also point out that oxidative stress is a key element
of PMN hyperfunctionality related to overproduction of ROS
and downregulation of endogenous antioxidants such as NrF2
mediated expression of superoxide dismutase (39). Inflammation
is therefore the common factor amongst periodontitis and the
chronic diseases of aging, or simply “the disease” (40). Insofar
the individual’s susceptibility to systemic diseases, our research
support the hypothesis that PD sensitizes or primes the
peripheral innate immune system, and predominantly the
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TABLE 1 | Summary of the role of PMNs on the severity of COVID-19 in recent

studies.

As predictors of poor

outcomes

Higher PMN counts in non- survivors than in

survivors (4)

Increased NET formation associated with

COVID-19–related ARDS (28)

Increased NET formation as a potential

biomarker for disease severity (28)

PMN-to-lymphocyte ratio as the most

promising predictive factor for critical illness

incidence of COVID-19 pneumonia (29)

Markers of PMN activation amongst the most

potent discriminators of critical illness (30)

PMN activation preceding the onset of critical

illness and predicting mortality (30)

Higher levels of specific markers of NETs in

patients receiving mechanical ventilation than in

those breathing room air (31)

Neutrophilia observed In the last 24 h

preceding death (32)

NETs infiltrate in lungs of patients with a fatal

outcome (32)

Dramatic increase of PMNs with COVID-19

severity and ARDS (33)

Increased number of circulating PMNs as an

indicator of worse outcomes (2)

Linked to dysregulated

immune response

Blood PMNs produce high levels of NETs; NETs

are highly detected in the tracheal aspirate and

lung tissue (34)

SARS-CoV-2–activated PMNs induce lung

epithelial cell death through the release of NETs

(34)

PMN activation-associated signatures

prominently enriched in severe patient groups

(35)

Dysregulated NET formation in lungs (6)

PMNs in such a manner as to allow those cells to trigger and/or
exacerbate inflammatory diseases in distant organ systems (41).

Periodontal Disease-Induced
Immunopathology and COVID-19
The oral cavity is unique in that the teeth are the only structures
in the body that de facto protrude through the lining epithelium,
in this case the gingival tissues. As such a unique seal exists
between the gingiva and tooth surfaces and therefore between
the oral cavity and its contents thereby preventing ingress of
microbial or other pathogens into the body (42). This biologic
seal, specifically a connective tissue and epithelial attachment
to cementum, is not perfect and is permeable even in health
but moreso in states of inflammation. To enhance protection
from pathogens, cells of the innate immune system such as
PMNs, are recruited constantly to the oral cavity as part
of a healthy and self-limiting inflammatory response against
the challenges imposed by the oral microorganisms found in
the dental biofilm (43). Interestingly, while bacteria or their
by-products may lead to periodontal tissue damage, the host

immunoinflammatory response to microorganisms in dental
biofilms, when uncontrolled, is considered the main cause of
periodontal pathogenesis (40, 44), something akin to destruction
of lung tissues observed in ARDS. In parallel to what is seen
in ARDS, the initial host immune response starts when PRRs
expressed in the membrane of epithelial cells and gingival
fibroblasts interact with PAMPs, including lipopolysaccharide
(LPS) found in the cell wall of specific periodontal bacteria (45).
LPS is considered a potent ligand for TLR4 (46) and activation
of both the TLR2 and TLR4 pathways has been described
in studies with Porphyromonas gingivalis (47). PAMP-TLRs
binding and MyD88 signaling results in the activation of the
downstream signaling pathways associated with inflammation
and upregulation of pro-inflammatory transcription factors,
such as NFκB (48), leading to the release of inflammatory
cytokines and chemokines (49, 50). The most common cytokines
involved in this process are TNF-α, IL- 1β, IL-6, and IL-8
(51, 52), while chemokines include CXCL8/IL-8, CCL2, CCL3,
and CCL5 (49, 50) and their release causes vasodilation and
chemical gradients that facilitate the migration of leukocytes,
mostly PMNs from the vasculature to the site of injury (53).
Infiltration of such inflammatory cells leads to release of ROS,
MMPs and NETs, as well as to chemotaxis and phagocytosis as
defense mechanisms against infection and inflammation (54–
58). However, as periodontal diseases are not considered as a
classic bacterial infection but rather a dysbiotic disease such
mechanisms are necessary but possibly not sufficient to cause
disease (59). Periodontal dysbiosis leads to a disturbance of
the local homeostasis and immune subversion that increases
microbial colonization, virulence, and persistence to disease,
and result in persistent recruitment of PMNs (60) with
hyperfunctional or hyperactive phenotypes (43, 54–56, 61–
63). Similar to what happens in patients with COVID-19,
these now hyperactivated PMNs pour out high levels of ROS
and degradative enzymes along with ever increasing levels of
proinflammatory cytokines (55, 56, 62). These actions lead to
severe destruction of the connective tissues about the affected
teeth leading to pain, bleeding and ultimately tooth loss (58, 64).

This phenotype of hyperinflammatory PMNs has also been
observed to play an important role in the pathogenesis of
systemic diseases such as diabetes and cardiovascular disease,
suggesting an epidemiological association between periodontal
diseases and systemic conditions (65, 66). More importantly,
these hyperactivated phenotypes have been observed in severe
cases of COVID-19 (67, 68), as well as in aging-related
conditions (69). Therefore, the presence of periodontitis in
patients who are infected with SARS-CoV-2 could represent an
as yet unrecognized comorbidity that could contribute to more
severe symptoms of COVID-19. While there are now emerging
scientific publications that align with this suggestion (70, 71), it
still stands in the grounds of scientific inference. Two plausible
mechanisms may explain this association: one being related to
the periodontitis-induced inflammatory response; a pre-existing
pro-inflammatory state. This could act synergistically and
therefore amplify the systemic inflammatory response induced
by infection with SARS-CoV-2. Another possibility includes the
notion there could be a genetic predisposition of the host to
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develop hyperinflammatory conditions that are favorable to both
the development of PD or COVID-19. Regarding the former, our
team’s previous research has shown that an increase in the level of
hyperactivated PMNs in bone marrow and blood can be caused
by periodontal inflammation and that this predisposes to an
exacerbated PMN response to distant inflammatory conditions.
In other words, PD primes the immune system and thus
intensifies the overall innate immune response, thus exacerbating
general inflammatory disease (41) including COVID-19.

Similarly, in an experimental study of the respiratory
mucosa before, during, and after respiratory syncytial virus
(RSV) infection in humans, participants who succumbed to
infection had more activated PMNs in their airways before
exposure to the virus than those who staved off infection.
After viral exposure, a reduction in antiviral response in
the neutrophilic mucosal environment was observed, more
specifically suppression of interleukin-17 (IL-17), followed by
disease onset. The authors hypothesized that primed PMNs,
typically associated with immune response to previous bacterial
infections might increase the individual’s susceptibility to
symptomatic viral infections and potentially even COVID-
19 (72). A strong hyperactivation phenotype in peripheral
PMNs has already been directly associated with severe cases
of COVID-19, including increased phagocytosis, degranulation
and chemotaxis, and increased expression of genes involved in
pro-inflammatory cytokine release. Within these severe cases,
the emergence of an immature PMN population, characteristic
of emergency myelopoiesis, was the main difference observed
between the immune responses in fatal and non-fatal cases of
COVID-19 (73). NET formation in tissue injury and thrombotic
complications are additional pathogenic mechanisms whereby
circulating PMNs can lead to more severe COVID-19 (6, 28, 31,
32, 34). This highlights another potential mechanisms linking
PD as a potential comorbidity in COVID-19 cases: the pro-
thrombotic state as a result of PD-associated haemodynamic,
endothelial, and inflammatory triggers that may lead to an
abnormality in the coagulation or fibrinolysis system (74).

From Bench to Chairside With a Bridge to
the Bedside—Host Modulation Therapy
(HMT)
We suggest that the SARS-CoV-2 pandemic has highlighted
the need for a greater understanding of the role of PMNs
in combating viral infections, as COVID-19-related PMN-
mediated inflammation in the lungs can be life-threatening
(6). While supporting the potential role of PD-related innate
immune response in systemic inflammatory conditions, our
team proposes the use of host modulation therapy (HMT), as
designed initially for treatment of PD for treatment of systemic
inflammatory diseases that interact with PD (41), as well as in the
prevention and treatment of ARDS, given the similarity of the
underlying inflammatory mechanisms. Hereunder we describe
the tenets of HMT.

HMT has been established in periodontology as a successful
therapeutic approach for management of chronic periodontal

and refractory periodontal diseases, all of which are PMN-
mediated disorders. This therapy, pioneered by our group
(notably Dr. Golub’s group), was a paradigm shift in periodontal
therapy for using tetracycline-based molecules and not reliant
on their antimicrobial properties, to downregulate the activities
of PMN-derived MMPs, suppression of inflammatory cytokines,
and for quenching of ROS (75–78). In relation to periodontitis,
work has focused on the use of subantimicrobial dose doxycycline
(Periostat R©), but higher dose use over a short term is certainly
feasible when treating extreme cases of inflammation as in the
acute stage of COVID-19. This has also led to the development
of effective treatment for rosacea using sub-antimicrobial-dose
doxycycline slow release form (Oracea R©/Aprillon R©) (79) More
recently, this concept was boosted by Serhan’s studies on pro-
resolving lipid mediators in which he argues that a failure
in resolution of inflammation rather than its hyperactivation
leads to chronic inflammation (80, 81). Pre-clinical studies have
shown that treatment with lipid mediators after experimentally
induced periodontitis in animals was associated with bone loss
prevention, regeneration of periodontal tissues and bacterial
shifts in the subgingival microbiota (82–84). In humans,
differences in pro-resolving lipidmediator profiles were observed
between periodontally healthy and periodontitis participants
and thus associated with the state of periodontal inflammation
(85). These targets are important factors contributing to the
breakdown of periodontal tissues, but also to other tissues being
attacked by dysregulated inflammation-mediated destruction
observed in periodontitis and ARDS (including stimulation of
the vasculitides). Along similar lines, our group has shown that
the flavonoids, resveratrol, and curcumin, downregulate ROS-
mediated oxidative stress, inhibit ROS production/activity, and
inhibit pro-inflammatory cytokine formation in animal model
studies of periodontitis, which should protect tissues under
inflammatory attack (86, 87). In animals subjected to cigarette
smoke inhalation, we showed that resveratrol effectively blocks
the harmful effects of aryl hydrocarbons found in cigarette smoke
and the environment, which could be very important inasmuch
as smoking represents a significant comorbidity for COVID-19
and is also a major risk factor for periodontitis and favor healing
(88, 89). There is also evidence animal model data showing that
by usingHMT, the development of ARDS can be blocked (90, 91).

We suggest that the effectiveness of HMT could be
independent of the type of infectious virus because it targets the
host’s cellular mechanisms that propagate ARDS (and of course
PD) and not only the virus itself. Therefore, we suggest that
mutations of the virus should be equally less material insofar as
the putative effectiveness of HMT in prevention and treatment
of ARDS. Recent evidence showed that tetracyclines have in
vitro activity in post-entry stages of the infection with SARS-
CoV-2 (92) and resveratrol blocks replication of coronavirus
and other respiratory viruses (93, 94). We propose that the use
of drug/nutraceutical HMT described initially for periodontitis
could reduce morbidity, mortality, and possibly longer-term
sequelae of COVID-19.

The concept of HMT emerged for the treatment of
periodontitis almost 40 years ago, after the identification of
host-response mechanisms as the mediators of the destruction
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FIGURE 2 | Proposed multidrug treatment approach, developed in part from therapeutic targets identified for management of periodontal diseases for each phase of

Covid-19 presenting both inhibitory (in red) and stimulating or improvement-associated effects (in green). Note also that the use of antivirals (other than doxycycline) is

depicted in a slightly faded font to delineate that these other therapeutics were not developed from or based on periodontal research investigations.

of the collagen-rich periodontal tissues and subsequent
experiments with systemic drugs that inhibited collagen- and
bone-destructive enzymes. Around the same time HMT was
shown to be effective for downregulation of pathologically
elevated levels of inflammation in systemic conditions such as
arthritis, cancer, lung and cardiovascular diseases and rosacea
(95). Based on this concept, we have presented evidence,
described initially in the periodontal research literature,
about the protective properties of a new approach to therapy,
HMT, that fits precisely the treatment needs of patients
with COVID-19/SARS-CoV-2 infection. And, unlike other
medications being investigated for the treatment of COVID-
19-mediated lung disease there are virtually no concerns about
potential toxicity.

The rationale for this proposed treatment approach is
based on the use of some or all the compounds identified
above to inhibit the cytokine storm/ARDS, including PMN-
mediated hyperinflammatory responses and tissue destruction
and including the development of thromboembolic disorders.
This approach should reduce hospitalization, ICU admissions,
and death associated with COVID-19 markedly as suggested
in Figure 2.

CONCLUSION

We suggest that we’ve demonstrated how research focused
initially on oral inflammatory diseases has illuminated
therapeutic targets that can be attacked by relatively simple and
safe compounds, thereby reducing hospitalization, morbidity
and mortality associated with COVID-19.
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