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Introduction: Deregulation of the cerebrovascular system has been linked to

neurodegeneration, part of a putative causal pathway into etiologies such as

Alzheimer’s disease (AD). In medical imaging, time-of-flight magnetic resonance

angiography (TOF-MRA) and perfusion MRI are the most common modalities

used to study this system. However, due to lack of resources, many large-

scale studies of AD are not acquiring these images; this creates a conundrum,

as the lack of evidence limits our knowledge of the interaction between

the cerebrovascular system and AD. Deep learning approaches have been

used in recent developments to generate synthetic medical images from

existing contrasts. In this review, we study the use of artificial intelligence

in the generation of synthetic TOF-MRA and perfusion-related images from

existing neuroanatomical and neurovascular acquisitions for the study of the

cerebrovascular system.

Method: Following the PRISMA reporting guidelines we conducted a scoping

review of 729 studies relating to image synthesis of TOF-MRA or perfusion

imaging, from which 13 met our criteria.

Results: Studies showed that T1-w, T2-w, and FLAIR can be used to synthesize

perfusion map and TOF-MRA. Other studies demonstrated that synthetic images

could have a greater signal-to-noise ratio compared to real images and that

some models trained on healthy subjects could generalize their outputs to an

unseen population, such as stroke patients.

Discussion: These findings suggest that generating TOF-MRA and perfusion

MRI images holds significant potential for enhancing neurovascular studies,

particularly in cases where direct acquisition is not feasible. This approach could

provide valuable insights for retrospective studies of several cerebrovascular

related diseases such as stroke and AD. While promising, further research is

needed to assess their sensitivity and specificity, and ensure their applicability

across diverse populations. The use of models to generate TOF-MRA and

perfusion MRI using commonly acquired data could be the key for the

retrospective study of the cerebrovascular system and elucidate its role in the

development of dementia.
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1 Introduction

A complete and definitive understanding of the etiology of

Alzheimer’s disease (AD) remains elusive. Many hypotheses have

been proposed, launching numerous studies of biomarkers at

different stages of cognitive impairment in order to understand

both its origin and future trajectory (Duchesne et al., 2023).

While reports have long hypothesized that dysregulation of the

cerebrovascular system is a likely initiator of neurodegeneration

(Mann, 1985; Kalaria, 1992; de la Torre, 1999), recent empirical

evidence has demonstrated how it is in fact a key co-morbidity

in the early development of AD, preceding large scale amyloid

deposits (Iturria-Medina et al., 2016). Therefore, the evaluation of

cerebrovascular function appears crucial both for understanding

and early detection of AD.

Magnetic resonance angiography (MRA) and perfusion

imaging are the main techniques used for this purpose. MRA,

particularly in the form of time-of-flight (TOF) imaging, provides

detailed visualization of blood vessels, allowing the evaluation

of vessel integrity and extracting vessel morphology, such as the

diameter, volume and surface without the need for contrast agents

(Laub, 1995; Miyazaki and Akahane, 2012; Wheaton and Miyazaki,

2012). Perfusion imaging for its part measures dynamic aspects

of cerebral blood flow (CBF), cerebral blood volume (CBV),

and mean transit time (MTT), providing insight into the brain’s

hemodynamic state. Multiple MR techniques map perfusion,

such as arterial spin labeling (ASL), a non-invasive acquisition

allowing for the calculation of the CBF, dynamic susceptibility

contrast MR (DSC-MRI) and dynamic contrast-enhanced MR,

both based on the use of an injected contrast agent (Parkes et al.,

2004; Essig et al., 2013; Gaillard, 2016; Koenig et al., 1998; Petrella

and Provenzale, 2000). Computed tomography (CT) perfusion

and positron emission tomography imaging can also be used for

this purpose (Ueda et al., 1994; Koenig et al., 1998; Ueda et al.,

1999; Wachtel et al., 2001). These measurements are crucial for

identifying abnormalities in blood flow that may contribute to the

pathogenesis of neurodegenerative diseases such as Alzheimer’s.

However, TOF-MRA and perfusion imaging both require

significant resources, including access to high-field MRI scanners

(typically 1.5 or 3T), which are necessary for acquiring high-

resolution images and trained personnel that are essential for

acquisition and analysis. Furthermore, the time needed for each

scan can be upwards of tens of minutes depending on the

acquisition protocol, which is even more significant in large

imaging studies where optimizing participants time is essential

and the use of contrast agent is not recommended when possible

(Wheaton and Miyazaki, 2012; Miyazaki and Akahane, 2012;

Albert et al., 2010; Parkes et al., 2004). This, without mentioning

the recency of some of these techniques, such as ASL, which

makes their availability scarce and the difficulties in ensuring

standardization of imaging across scanners in a multi-centric

setting. For these reasons, many large studies, such as ADNI 1,

ADNI 2, ADNIGO, the COMPASS-ND and the UK Biobank, have

historically not included some of these modalities, even though

MRI scanners would allow such acquisition (Jack et al., 2008; Albert

et al., 2010; Smith et al., 2014; Gunter et al., 2017; Chertkow et al.,

2019). On the other hand, modalities like T1-weighted (T1-w), T2-

weighted (T2-w), fluid-attenuated inversion recovery (FLAIR), T2*

or susceptibility weighted imaging (SWI) and others, are present

in most imaging studies relating to AD (e.g., LaMontagne et al.,

2019; Smith et al., 2014; Jack et al., 2008; Gunter et al., 2017; Albert

et al., 2010). These are necessary if one wishes to measure cortical

atrophy, detect white matter lesions and other cerebrovascular

abnormalities (Abrigo et al., 2023; Luo et al., 2019; Prosser, 2024).

Thus, given the emphasis on other hypotheses, there exists a

conundrum in that evidence to either support or infirm the role

of cerebrovascular perfusion in dementia remains scarce, which

drives the exclusion of such sequences in acquisition protocols due

to limited scanning time.

The capacity to generate synthetic estimates of these image

types from other, more easily obtained contrasts (e.g., T1-weighted,

T2-weighted or FLAIR) would unlock the study of cerebrovascular

deregulation in a number of legacy, retrospective studies; while

possibly allowing prospective studies to save valuable scanning time

by not including these contrasts in their imaging protocols.

Although image generation is a new field of research, the

application of these techniques to medical image synthesis has

recently started seeing significant leaps with the introduction

of generative adversarial networks (GANs) in 2014 and U-nets

in 2015 (Goodfellow et al., 2014; Ronneberger et al., 2015;

Kazeminia et al., 2020; Yi et al., 2019) (see extensive review

by Ali et al., 2022). Similarly, Transformers have shown great

potential in generating accurate and precise images, outperforming

convolutional networks in tasks such as tumor segmentation

(Vaswani et al., 2017; Abu-Srhan et al., 2021; Zhao et al., 2022;

Manzari et al., 2023). One of their key advantages lies in attention

mechanisms, which mirror aspects of human vision (Manzari et al.,

2023; He et al., 2022; Shamshad et al., 2023). These mechanisms

allow the model to focus on specific areas of an image by assigning

variable importance to different regions, effectively filtering out

noise (Bahdanau et al., 2016; Vaswani et al., 2017; He et al.,

2022). This not only improves accuracy but also makes the models

more interpretable than standard convolutional models, which is a

significant asset in health science (Bahdanau et al., 2016; Vaswani

et al., 2017; He et al., 2022). Typical Transformer structure enables

it to efficiently handle large amounts of data while overcoming

the limitations of convolutional models, such as their difficulty

in capturing non-local information and distant pixel correlations

(Vaswani et al., 2017).

To our knowledge, no review has yet been published to date on

the generation of images of the cerebrovasculature and its function.

Therefore, our objective was to review the state of the art in this

field, with specific attention to the comparison of the types of MRI

input data, the different learning architectures, and the choice of

metrics used for assessing the accuracy of synthesis.

2 Method

2.1 Eligibility criteria

To be included in this review, the studies needed to be

original research papers, published in English, reporting on either

“perfusion imaging” or “TOF-MRA”, and include terms relating to

“medical image synthesis” and “machine learning”. Papers were not

excluded based on date of publication, but image synthesis being

Frontiers inDementia 02 frontiersin.org

https://doi.org/10.3389/frdem.2024.1408782
https://www.frontiersin.org/journals/dementia
https://www.frontiersin.org


Lamontagne-Caron and Duchesne 10.3389/frdem.2024.1408782

a fairly novel field of research (Goodfellow et al., 2014), studies

were expected to have been published after 2014. All forms of

inputs used to generate images were accepted; likewise for all types

of participants (e.g., with or without cognitive decline). Exclusion

criteria were studies generating the wrong image (i.e., non TOF-

MRA and non perfusion images), using the wrong organ (non-

brain or non-human images), and with the wrong outcome, such

as not generalizable outside their training data.

2.2 Information sources and search
strategy

This scoping review followed the PRISMA reporting guidelines

(Page et al., 2021). The study was conducted in the PubMed

database in October 2023. Since machine learning is a quickly

evolving field, a similar search was conducted in two pre-

publication repositories, arXiv and medRxiv. The keywords used

for the search were “((perfusion imaging) OR (arterial spin

labeling)) AND (image synthesis) AND ((machine learning) OR

(deep learning) OR (Artificial intelligence) OR (neural networks))”

and “(TOF-MRA) AND ((synthetic) OR (machine learning) OR

(synthesis))”.

2.3 Study selection process

Abstracts and articles management for the review was

performed with the software Covidence (Innovation, 2023) by

both authors as reviewers. Once the initial search was completed,

abstracts were uploaded to Covidence and duplicates removed.

Both reviewers performed a screening process based on abstracts,

followed by a full-text review during which articles were included

or excluded according to the criteria mentioned above. Conflicts

were resolved at a consensus conference between reviewers.

2.4 Data extraction

Data was extracted by one of the reviewers (RLC) using a

Covidence data extraction spreadsheet made for this review. The

basic characteristics of the study included the authors, date of

publication, the studied population (sex, age, number of subjects,

cognitive status) and data acquired or used during the study. These

data are reported in Table 1. Furthermore, information about the

methodology used to generate the images was obtained: the type

of machine learning architecture, training metric(s), validation

method(s), type(s) of input to the network, as well as network

output(s).

2.5 Synthesis method and quality
assessment

Results of the scoping review are presented in Tables with

the description of the academic work. However, for this review,

no strict bias assessment scale was used, since most studies

only reached the algorithm stage, data and algorithm biases

were assessed using the framework of bias in machine learning

(Mehrabi et al., 2021), specifically the “data to algorithm” phase

of development. The quality of each study was assessed on sample

size used for training, the use of standard validation tasks and

representation of the data.

3 Result

3.1 Study selection

Seven hundred and twenty-nine studies were uploaded to

Covidence from the PubMed, medRXiv, and arXiv databases. From

these, 45 duplicates were removed. During the review of the title

and abstract, 656 articles were deemed irrelevant, leaving 28 papers

for the full-text review, which excluded a further 15 articles. For

the most part, papers were excluded for having the wrong study

design (e.g., doing segmentation instead of image generation; or

generating images on other organs than the brain), leaving 13

papers for data extraction and reporting (seven on perfusion and

six on MRA synthesis). The selection process is represented in

Figure 1.

3.2 Study characteristics

Study characteristics are presented in Table 1. Overall, we found

thirteen studies relating to the generation of perfusion maps, ASL

or TOF-MRA images. Seven studies were related to the generation

of perfusion maps, either synthesizing cerebral blood flow (CBF),

cerebral blood volume (CBV), mean transit time (MTT), time-to-

maximum (TMax), time-to-peak (TTP), or a combination of these

maps. For the studies generating TOF-MRA, Kossen et al. (2021),

Subramaniam et al. (2022), Kossen et al. (2022) also synthesized

arteries’ segmentation labels while the other two only generated

images. Finally, one paper generated ASL images.

The studies were conducted by nine different research teams.

The first team (Kossen and colleagues) published four papers;

the Huang research team published Li et al. (2021) and Huang

et al. (2019) and all other teams had n = 1 paper. Regarding

data provenance, most studies used in-house datasets or did not

specify the origin of the data (n = 5). Of the studies that used

databases, four used the PEGASUS database, containing subjects

affected by steno-occlusive disease (Mutke et al., 2014), three used

the 1000plus database, with patients admitted to ER with acute

stroke (Hotter et al., 2009), and one used a dataset acquired at the

Heidelberg University Hospital, also including patients with acute

stroke (Kossen et al., 2023).

3.3 Subjects characteristics

While three of the papers studied neurologically healthy

subjects, three studies worked on patients with unspecified

cerebrovascular disease, and other studies focused on patients

with dementia (n = 2), acute ischemic stroke (n = 4), steno-

occlusive disease (n = 1), Moyamoya disease (n = 1), or intracranial

aneurysms (n = 2), as shown in Table 2.

Frontiers inDementia 03 frontiersin.org

https://doi.org/10.3389/frdem.2024.1408782
https://www.frontiersin.org/journals/dementia
https://www.frontiersin.org


Lamontagne-Caron and Duchesne 10.3389/frdem.2024.1408782

FIGURE 1

PRISMA diagram. The description of study selection through Covidence, following the PRISMA protocol.

Most studies did not report participants’ age and sex. In fact,

only Zhang et al. (2020), Asaduddin et al. (2023), Fujita et al.

(2020), You et al. (2022) mentioned the male to female ratio in their

datasets. The same is true for participant’s age, with only Huang

et al. (2019), Zhang et al. (2020), Li et al. (2021), Asaduddin et al.

(2023), Fujita et al. (2020) reporting age averages or range. Finally,

only Hess et al. (2019) and Gava et al. (2023) explicitly mentioned

exclusion criteria for their participants. For example, Hess et al.

(2019) excluded 38 cases where their arterial input function was

inaccurate while Gava et al. (2023) excluded 12 time series with no

or low contrast, images with excessive artifacts due to participant’s

movement, or premature termination of the acquisition. It should

be noted that most studies using existing datasets tend to refer to

the original study for any information about the data, rather than

reporting salient information themselves, including quality control

results.

3.4 Network characteristic

Deep learning was used by all authors to generate images in a

variety of architectures. The most commonmethod used was GAN,

with eight articles using a variation of this model, followed by U-

nets (n = 2), convolutional neural networks (CNN; n = 2), residual

networks (ResNet; n = 1) and simple neural network (NN; n = 1).

It is of note that some definitions overlap between architectures.

For example, at a high level, a ResNet, a U-net, and a GAN are all

CNNs or use convolutions in some way. In this paper, following the

authors’ convention, we will use the most differentiating definition,

meaning GANs using U-net will be referred to as GANs, ResNet

using CNN referred to as ResNet, and so forth.

Multiple variations of GAN models were used. We will first

review the three studies by Kossen and colleagues that explored

various GAN configurations. In Kossen et al. (2023) they first

used a model with a time convolution, to generate perfusion

maps with lower error rate and higher peak signal to noise ratio

PSNR than images produced with a standard pix-2-pix (p2p)

GAN. PSNR and SNR are metrics for evaluating the quality of

synthetic images by measuring the clarity of the synthetic image

compared with the level of the signal in the real image. In image

synthesis, higher SNR values indicate that the model successfully

minimizes noise in the generated images, improving their overall

quality. In Kossen et al. (2021) the authors compared a traditional

GAN with a Wasserstein-GAN (WGAN) and its variations with

gradient penalty and spectral normalization. In short, the WGAN

is a novel network architecture which uses different optimization

methods, allowing the training to be more stable and reducing the

vanishing gradient problem (Arjovsky et al., 2017). They concluded

that the WGAN with gradient penalty and spectral normalization

yielded images with the best quality (FID of 37.01) and most

accurate segmentation labels (Dice score of 0.85), compared to

traditional GAN (FID: 141.82; Dice score: 0.79) (Kossen et al.,

2021). The follow-up study, Kossen et al. (2022), obtained worst

results (average FID of 62) while investigating the use of GAN

for data anonymization. This was likely due to the anonymization

factor impacting image quality and realism (Kossen et al., 2023).

Outside of this research team, the paper by Subramaniam et al.

(2022) demonstrated more accurate results by using 3D vs. 2D

GAN. This paper also uses the FID score as a validation metric,

but the value was computed from the MedicalNet model (Chen

et al., 2019), a ResNet trained on medical images instead of on

the commonly used Inception-v3 model (Szegedy et al., 2015).

Using this, they recorded a FID of 0.0206 and a Dice score of

0.841 for their best model with spectral normalization and mixed

precision model. Li et al. (2021) used a variational auto-encoder

(VAE)-GAN to generate perfusion maps from T1-weighted (T1-w)
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TABLE 1 Study characteristics.

ID References Output Dataset

Perfusion studies

1 Hess et al., 2019 CBF, CBV, TTP,

MTT, Tmax

–

2 Huang et al., 2019 ASL –

3 Zhang et al., 2020 CBF, CBV, tBAT,

T1, B1

–

4 Li et al., 2021 ASL ADNI-1

5 Asaduddin et al.,

2023

CBF, CBV, MTT,

Tmax

–

6 Gava et al., 2023 CBF, CBV, TTP –

7 Kossen et al., 2023 CBF, CBV, MTT,

Tmax, TTP

Heidelberg (n = 204)

PEGASUS (n = 80)(n = 72)

TOF-MRA Studies

8 Olut et al., 2018 TOF-MRA IXI (n = 440)

9 Fujita et al., 2020 TOF-MRA -

10 Kossen et al., 2021 TOF-MRA

Segmentation label

PEGASUS (n = 66)

1000plus (n = 55)

11 Subramaniam

et al., 2022

TOF-MRA

Segmentation label

PEGASUS (n = 72)

1000plus (n = 65)

12 You et al., 2022 TOF-MRA -

13 Kossen et al., 2022 TOF-MRA

Segmentation label

PEGASUS (n = 66)

1000plus (n = 65)

This table shows what modality is generated by each model in the section Output. Studies

generated either CBF, cerebral blood flow; CBV, cerebral blood volume; MTT, mean transit

time; TMax, time-to-maximum; TTP, time-to-peak; ASL, arterial spin labeling; TOF-MRA or

segmentation labels of arteries. the Dataset column shows several publicly available databases

were used, such as ADNI-1, Heidelberg, IXI, PEGASUS and 1000plus, while studies marked

by “–” used in-house data or did not disclose the origin of the data.

images. Using these synthetic images they managed to improve the

diagnosis of AD in patients without perfusion images by 43% in

machine learning models. Finally, the steerable filter GAN model

from Olut et al. (2018) demonstrated the possibility of synthesizing

TOF-MRA fromT1- and T2-w images. The filter is designed to help

the model emphasize vascular structure, in doing so the obtained

higher PSNR and Dice score than comparable models without

steerable filter.

The study from You et al. (2022) used the cycleGAN, an

unsupervised machine learning method that allows image-to-

image translation (Zhu et al., 2020), to generate TOF-MRA

with very low background noise. In fact, overall image quality,

sharpness and vessel appearance were on average higher in

the synthesized TOF-MRA than the original training PETRA

images. A visual analysis by 17 radiologists also did not show

significant differences in diagnostic power between synthetic and

normal TOF-MRA. The peak signal to noise ratio (PSNR) was

also high with 17.51 dB on average and a structural similarity

index measurement (SSIM) of 0.71 ± 0.02. For perfusion maps,

Asaduddin et al. (2023) generated images with SSIM of 0.87 ±

0.08 an PSNR of 27 ± 4 dB using GAN. On the other hand,

their U-net generated more accurate images [higher PSNR and

lower root mean square error (RMSE)], but with lower structural

similarity (Asaduddin et al., 2023). Similarly, Kossen et al.

(2023) obtained SSIM as high as 0.986 and PSNR as high

as 42 dB, using a GAN with a time convolution to generate

perfusion maps.

The second most used neural network was the U-net. Fujita

et al. (2020) used such a network to generate TOF-MRA from

3D quantitative synthetic MRI. In combination with a single

convolution layer, they were able to generate TOF-MRA for

healthy subjects and aneurysm patients, despite the training

data containing only healthy subjects. Furthermore, the synthetic

images had a better signal-to-noise ratio than the real TOF-

MRA, with PSNR as high as 35.3, and the extraction of arterial

vessels showed no difference between the real and synthetic TOF-

MRA, except for small vessels (Fujita et al., 2020). The SSIM of

0.93 and a high frequency error norm of 0.86 also shows high

accuracy when compared to the ground truths. Using radiologists

to manually segment the infarct core and penumbra, Gava

et al. (2023) showed no significant difference between synthetic

perfusion maps and real perfusion maps. Moreover, they showed

an acceptable (>0.7) match between all ground truth images and

their corresponding synthetic images and the lesions’ volume were

also highly correlated (>0.98) between synthetic and real images

(Gava et al., 2023).

Finally, the CNN from Hess et al. (2019) closely resembling

a U-net (down-sampling followed by up-sampling with cross

connections), but they first applied a convolution on the time axis

of the sequences. Using this model, they obtained mixed results,

with some synthetic maps close to the ground truth and others very

far due to various reasons, such as unregistered images. Overall, the

best model had a mean absolute error of 0.513 (for values bounded

between 0 and 20). These results were significantly worse than

the GAN model from Kossen with a MAE of 0.015 for the same

task, the generation of Tmax maps (Hess et al., 2019). The model

from Zhang et al. (2020) is a fully connected voxel-wise neural

network to generate different perfusion maps from fingerprinting-

ASL, a sequence of 500 images using different parameters (labeling

duration and label-control acquisition order). Without using CNN

they managed to generate images with comparable parameter

values to the ground truth in both gray and white matter. Synthetic

values were also shown to be related with their corresponding

images with a coefficient of determination ≥ 0.65 for CBF, CBV,

T1 and bolus arrival time. Synthetic images were also used to

identify high bolus arrival time and low CBF regions consistent

with obstructed arteries inMoyamoya disease patients, even though

this type of data was not used during training (Zhang et al.,

2020).

3.5 Input image description

From Table 3, we see that the studies reviewed utilized nine

different types of input data: noise vector (n = 3), DSC-MRI (n

= 2), T1-w (n = 2), T2-w (n = 1), MR fingerprinting arterial

spin labeling (MRF-ASL) (n = 1), contrast-enhanced time-resolved

dynamic MR angiography (DA-MRA) (n = 1), CT perfusion (n =

1), 3D quantification using an interleaved look locker acquisition

sequence (3D QALAS) MRI (n = 1) and pointwise encoding time
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TABLE 2 Subjects characteristics.

ID References Population description Age
[years]

Sample
size

F/M

1 Hess et al., 2019 Acute ischemic stroke – 151 –

2 Huang et al., 2019 MCI, AD and healthy 70.56± 7.20 355 –

3 Zhang et al., 2020 Neurollogically healthy

Moyamoya disease

26± 4

36.3± 0.9

10 6/4

4 Li et al., 2021 MCI, AD and healthy 70.56± 7.20 355 –

5 Asaduddin et al., 2023 Ischemic stroke

with occlusion or stenosis

30-73 60 31/29

6 Gava et al., 2023 Acute ischemic stroke – 115 –

7 Kossen et al., 2023 Stroke

Steno-occlusive disease

– 276 –

8 Olut et al., 2018 Neurologically healthy – 440 –

9 Fujita et al., 2020 Neurologically healthy

Intracranial aneurysms

27.4± 4.2

69.7± 6.1

15 3/12

10 Kossen et al., 2021 Cerebrovascular disease – 121 –

11 Subramaniam et al., 2022 Cerebrovascular disease – 137 –

12 You et al., 2022 Intracranial aneurysms 60± 11 377 293/84

13 Kossen et al., 2022 Cerebrovascular disease – 131 –

This table shows the diagnostic status of the studied population in the column population description, the age distribution in column age, the total number of subjects in Sample size and the

female to male ratio in the column F/M. For the age, data is provided in the formmean± std for all but one study where the statistic was only provided as a range.

reduction with radial acquisition MRA (PETRA-MRA) (n = 1).

The most common type of data used was noise vectors, employed

in models by Kossen and colleagues for vessel segmentation and

image synthesis. These were used since the purpose of the models

were to generate images for data augmentation and thus did not

need to translate from another image. Additionally, DSC-MRI,

used in studies such as Hess et al. (2019) and Kossen et al. (2023),

provides perfusion data, capturing CBF dynamics, cerebral blood

volume (CBV), time to peak (TTP), mean-transit time (MTT) and

max arrival time (Tmax) using contrast agent. Similarly, other raw

perfusion images were used e.g., MRF-ASL in Zhang et al. (2020),

and CT perfusion in Gava et al. (2023). These models were used

to bypass the traditional methods of processing these images into

perfusion maps, as in the case on Hess et al. (2019) where they

tried to make an end-to-end model with some success. Two studies

used different MRAmodalities to generate TOF-MRA or perfusion

maps. Indeed, Asaduddin et al. (2023) used DA-MRA, an agent-

based contrast used to visualize arteries, by subtracting a baseline

image to a time-series of contrast agent enhanced images and You

et al. (2022), where they use the PETRA-MRA sequence, a contrast

utilizing ultra-short echo times which can display blood vessels near

or in hard-to-image areas such as the skull base.

More in line with an assessment of status with respect to

the impact in dementia, we found studies that used structural

MRI, such as T1-w and T2-w images (e.g., Huang et al., 2019;

Li et al., 2021) for image-to-image translation. Similarly, Fujita

et al. (2020) used the 3D QALAS sequence, which allows for the

coaquisition of T1-, T2-W and FLAIR, to generate TOF-MRA

images. These are mostly used due to their ability to provide high-

resolution anatomical details of gray and white matter boundaries

and detecting structural changes such as brain atrophy.

3.6 Methodological quality

Studies from Hess et al. (2019), Zhang et al. (2020), Asaduddin

et al. (2023), Gava et al. (2023), Fujita et al. (2020), Kossen et al.

(2021), Subramaniam et al. (2022), Kossen et al. (2022) had a

dataset containing <200 participants, with Fujita et al. (2020)

only having 15 and Zhang et al. (2020) 10 (Table 2). The studies

counteracted this by using several data augmentation techniques.

For example, Fujita et al. (2020) mentioned 90o rotation along the

x and y axis and the addition of Gaussian noise to the images,

while Hess et al. (2019) randomly offset the perfusion sequence

by −5 to 30 frames by reflecting the sequence. Furthermore, all

studies, except Gava et al. (2023) and Zhang et al. (2020) trained

their network on 2D or 3D patches of images or sequences to

enhance their datasets. Finally, the more focused task of medical

image generation and the careful use of data augmentation still led

to accurate results, even though the datasets were much smaller

than most recent state of the art image generation models, such as

DALL-E 2 (650 · 106 training images) (Ramesh et al., 2022).

Only You et al. (2022), Fujita et al. (2020), Asaduddin et al.

(2023), Huang et al. (2019), Li et al. (2021) and Zhang et al.

(2020) reported on population age and four of those reported on

population sex. The lack of demographics information makes it

difficult to evaluate the generalizability of their model in a clinical

context.

In addition, many studies used different methods to evaluate

the performance of their model. While most studies used metrics

commonly used in the field of machine learning, such as FID

score, PSNR, SSIM, and MAE, some studies, such as Zhang et al.

(2020), used no structural nor error metrics to evaluate their model.

Additionally, Asaduddin et al. (2023), Kossen et al. (2023), Kossen
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et al. (2021), Kossen et al. (2022), Olut et al. (2018), Subramaniam

et al. (2022) and the paper by Gava et al. (2023) evaluated their

models on other tasks such as vessel segmentation or infarct core

segmentation accuracy (either manual or using machine learning).

Subramaniam et al. (2022) and Fujita et al. (2020) also used visual

assessments by radiologists as a qualitative metric.

4 Discussion

4.1 Summary

To study the cerebrovascular system in retrospective studies of

dementia, new tools must be utilized to counteract the lack of TOF-

MRA or perfusion maps in historical datasets or to negate the need

to acquire such images in prospective studies. In this review, we

identified eleven studies utilizing several different machine learning

architectures to synthesize TOF-MRA, perfusion maps, or ASL

images. Of those, one study generated ASL images, five generated a

variety of perfusionmaps (CBF, CBV, Tmax, etc.) and five generated

TOF-MRA. All studies, except Hess et al. (2019), managed to

consistently generate accurate images. A variety of deep learning

models were used in the studies, from simple CNN to U-nets and

numerous variations of GANs.

4.2 Model architecture and performance

It is difficult to establish which model, if any, is inherently

superior, since the tasks to be accomplished and their validation

differed greatly. The Kossen research team demonstrated the power

of WGAN for the generation of medical images. More precisely,

the Subramaniam paper concluded that 3D WGAN with spectral

normalization, gradient penalty and mixed precision obtained

the best performance. Additionally, their WGAN outclassed the

traditional GAN in every instances. On the other hand, You

et al. (2022) generated higher quality images. The cycleGAN

model demonstrated a greater signal-to-noise ratio than TOF-MRA

obtained using a scanner, which is a significant and promising result

for the use of machine learning for the study of the cerebrovascular

system. Moreover, the SNR, PSNR and SSMI from Fujita and

Asaduddin, both using U-net, were all higher than the values

from You et al. (2022) which could indicate that the first model

is superior, but since both used significantly different training

data, such conclusion cannot be verified. Moreover, Asaduddin’s

study showed U-nets generated more accurate images while GANs

generated more structurally sound images while less accurate when

compared with the ground truth. This discrepancy is important

when trying to generate images for a given subject, but less

important when data augmentation is the purpose, like the Kossen

team’s studies. In terms of the generation of perfusion maps,

most authors demonstrated that their models produce comparable

results with the state-of-the-art. Gava et al. (2023) generated

perfusion maps using only registered CT images and no additional

information, as opposed to traditional deconvolution methods that

necessitate the arterial input function. Segmentation of the infarct

core also showed an accurate representation of the ischemic core,

with high Dice score for the validation set (>0.70). On a similar

task, Kossen et al.’s temporal pix-2-pix model reported a MAE 34

times lower for generating Tmax maps than the CNN from Hess

et al. Additionally, the temporal pix-2-pix outclassed traditional

GANs on all metrics (NRMSE, SSIM, and PSNR).

Overall, we could conclude that U-nets would be the best option

to generate perfusion or TOF-MRA images when large datasets are

available. The main reason for this being that these models produce

more accurate images which is an important criterion for image to

image translation for diagnosis purposes. Additionally, the use of

3D kernels over 2D improves results as shown by Subramaniam

et al. (2022). On the other hand, there is a clear knowledge gap in

the use of newer deep learning technologies, such as Transformers

and attention networks, although these have been used in the

medical field with great success.

4.3 Methodological quality

Methodological quality was inconsistent between studies.

First, not all studies mentioned data augmentation, which is

essential for building a generalized model and when working with

smaller datasets. The use of patch learning and other geometric

transformations have been known to be effective ways of improving

the performance of amodel since AlexNet and the dawn of CNN for

computer vision (Krizhevsky et al., 2017). It is even more essential

for training with low amount of data, which is the case for eight

of the eleven articles. Nevertheless, neither Gava et al. (2023) nor

Hess et al. (2019) mention geometric augmentation, which could

have impacted the generalizability of their technique and thus final

validation results.

In addition, most studies used 2D convolutions instead of

3D convolution. For the case of TOF-MRA it is clear that the

model from Subramaniam, which uses 3D convolution, obtained

better results than the 2D model from the same research team

(Kossen et al., 2021, 2022). The results from Fujita et al. (2020)

also demonstrated the strength of 3D convolution even for smaller

U-net models. For most studies, the reason for not using 3D

convolution appears likely to be the lack of computing power, as

mentioned in Subramaniam et al. (2022), and Kossen et al. (2022,

2021).

4.4 Data considerations

Only Huang et al. (2019), Zhang et al. (2020), Li et al. (2021),

Asaduddin et al. (2023), Fujita et al. (2020), You et al. (2022)

reported the age and only Zhang et al. (2020), Asaduddin et al.

(2023), Fujita et al. (2020), You et al. (2022) reported the sex of

the training participants. As previously explained, this discrepancy

makes it impossible to evaluate the impact of such variations

on the output of the model. Moreover, it was recently exposed

that biases in neuroimaging AI models were rampant, both in

age and sex, which impacted the performance on trials with

more complex data (Chu et al., 2023; Chen et al., 2023). Our

research seems to support this general claim of bias in medical

AI. Indeed, even though age and sex have been known to be

important factors in ischemic stroke, only Asaduddin et al. (2023)

of the four papers on that subject provided this information

(Roy-O’Reilly and McCullough, 2018; Rexrode et al., 2022). This
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TABLE 3 Network characteristic.

Author Architecture Metrics Input image Input
resolution
[mm3]

Output
resolution
[mm3]

Scanner
strength

Hess et al. (2019) CNN TC MAEC DSC-MRI – – –

Huang et al. (2019) ResNet PVE correction

CBF computing

CBF ANOVA

T1-w 3× 3× 5 3× 3× 5 3 T

Zhang et al. (2020) Regression NN SNR

Corr

R2

MRF-ASL – – 3 T

Li et al. (2021) VAE-GAN AD diagnostic T1-w – – 3 T

Asaduddin et al.

(2023)

U-net

p2p GAN

RMSE

PSNR

SSIM

Segmentation

DA-MRA 1.6× 1.2× 0.9 1.8× 1.8× 4 3 T

Gava et al. (2023)

U-net Segmentation CT perfusion – – 80 kV

150 mA

Kossen et al. (2023) p2p GAN TC

p2p GAN

MAE

NRMSE

SSIM

PSNR

VA

DSC-MRI 1.8× 1.8× 5 1.8× 1.8× 5 3 T

Olut et al. (2018) Steerable GAN PSNR

Segmentation

T1-w, T2-w – – 1.5 T

3 T

Fujita et al. (2020) U-net TC SNR

PSNR

SSIM

HFEN

VA

3D QALAS MRI 0.5× 0.5× 0.5 0.5× 0.5× 0.5 3 T

Kossen et al. (2021) DCGAN

WGAN-GP

GP-SN

FID

Segmentation

Noise vector – 0.5× 0.5× 0.7 3 T

Subramaniam et al.

(2022)

WGAN-GP

GP-SN

GP-SN-MP

FID

VA

Segmentation

Noise vector – 0.5× 0.5× 0.7 3 T

You et al. (2022) cycleGAN SNR

PSNR

SSIM

VA

PETRA-MRA 0.625×0.625×0.625 0.6× 0.6× 0.6 3 T

Kossen et al. (2022) WGAN-GP

GP-SN

SN-MP

FID

Segmentation

Noise vector – 0.5× 0.5× 0.7 3 T

The table shows characteristics of the networks used to generate medical images. The architecture describes the type of network and the metrics column shows if and how the networks’ results

were validated and evaluated. FID, The Fréchet Inception distance; MAE, mean absolute error; MAEC, MAE clipped; PVEC, partial volume correction; PSNR, peak signal to noise ration; SSIM,

structural similarity index measurement; NRMSE, normalized root mean squared error; corr, the correlation between ground truth and synthetic voxels; R2 , the coefficient of determination;

HFEN, the High frequency error norm; VA, visual assessment, are all the metrics used in the studies to assess the performance of the networks. The final column refers to the type of image(s)

used to generate either perfusion or MRA images, where DSC-MRI, Dynamic susceptibility contrast-MRI; T1-w, T1-weighted images; T2-w, T2-weighted images; MRF-ASL, MR fingerprinting

arterial spin labeling; DA-MRA, contrast-enhanced time-resolved dynamic MR angiography; 3D QALAS MRI, 3D-quantification using an interleaved Look-Locker acquisition sequence with

T2 preparation pulse; PETRA-MRA, pointwise encoding time reduction with radial acquisition MRA were used. For the resolution, papers that did not provide the information or where the

information was not relevant, such as non-imaging data of the Kossen research group and Zhang et al. (2020), are marked as “–”.

lack of demographic data limits the evaluation of the models’

generalizability, particularly in real-world clinical applications.

Models trained on incomplete or homogenous datasets may fail to

perform accurately across diverse patient populations, potentially

introducing bias in diagnostic outcomes (Singh et al., 2022). In

ischemic stroke and other cerebrovascular diseases, for example,

sex differences can influence disease progression, recovery, and

response to treatment (Rexrode et al., 2022). Furthermore, age-

related changes in cerebral hemodynamics are critical when

studying neurovascular conditions, as older populations are more

prone to vascular pathology (Peters, 2006; Matteis et al., 1998). On

a more general note, it is wildly known that the brain undergoes

significant physical changes with age, including atrophy; and that

the cerebrovascular system weakens with time, which impacts

blood flow and increases the probability of vascular diseases (Peters,

2006; Matteis et al., 1998). Because of this, it is obvious that the

perfusion maps and arterial structures extracted from TOF-MRA

should be impacted by age.
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As a result, it becomes crucial for future studies to include

comprehensive demographic reporting, and to ensure that machine

learning models are evaluated across diverse population subsets.

This would allow for a more accurate assessment of the models’

utility in predicting perfusion maps and TOF-MRA. Incorporating

this data will help validate the robustness of the model when

applied to a broader clinical setting, particularly in diseases like

Alzheimer’s and dementia, where both age and sex significantly

influence disease presentation and progression.

Additionally, while the primary focus of this review is on the

synthesis of neuroimaging data, it is important to acknowledge

that the quality of the original MRI scans can influence the

outcomes of synthetic image generation. As with most MRI studies,

factors such as image resolution, field strength, and magnetic

field homogeneities (or impurities) can significantly impact the

quality of the input data. High-resolution scans with consistent field

strength generally provide better input for AI models, leading to

more accurate synthetic images. However, the studies reviewed did

not specifically address the influence of these parameters on image

synthesis outcomes. Future research may benefit from exploring

how variations in scan quality affect the performance and accuracy

of AI models, particularly in generating complex images like TOF-

MRA and perfusion MRI.

4.5 Input data

The diversity of input data types used across the studies

highlights the flexibility of generative models, but also points

to the potential advantages of using commonly acquired images

like T1-w, T2-w, and FLAIR sequences. These modalities, as

seen in studies by Huang et al. (2019), Fujita et al. (2020)

and Li et al. (2021), are widely available and easily acquirable.

They already provide detailed anatomical information, making

them highly valuable for generating synthetic images. The use of

these commonly acquired sequences allows for image-to-image

translation without the need for specialized or contrast-enhanced

scans, potentially making synthetic images more accessible across

diverse clinical and research settings. By leveraging these widely

used modalities, researchers could generate synthetic images,

enabling retrospective studies on previously unexplored datasets

in neurovascular diseases and dementia. While the initial results

are promising, further research is needed to fully validate the

effectiveness of these synthetic images in real-world applications,

such as artery segmentation and Alzheimer’s disease diagnosis.

4.6 Verification, validation, and evaluation

The synthetic perfusion studies we reviewed used different

methods to verify, validate, and evaluate their results. After training

a machine learning model, it is necessary to verify its coherence,

then validate its performance. The best models are tested using

validation metrics on a separate dataset than the one used for

training. Most of the time verification and validation use the same

metrics such as RMSE, FID, SSIM, (P)SNR, and MAE for the

field of image synthesis. Evaluation, on the other hand, refers to

additional tasks for which the synthesized images bring value, such

as vessels or infarct core segmentation, visual assessment, and CBF

computation. Table 3 describes the methods used by researchers in

the selected studies.

We found discrepancies between projects. Most papers (n =

9) used conventional validation metrics, such as MAE, SSIM,

SNR, and FID, but two only used evaluation metrics such as

infarct core segmentation. The inconsistency between studies

renders comparison between results difficult. Only SSIM (n =

4), FID (n = 3), PSNR (n = 3), and MAE (n = 2) had cross-

over utilization between papers, with FID only being used by the

Kossen team. For the evaluation, segmentation of either vessel or

infarct core/penumbra (n = 5), visual assessment by experts (n =

4) and CBF computation (n = 1) were the main tasks performed

after image generation. Additionally, two papers did not mention

splitting the data into training and test sets to get the most accurate

results. A good design of image synthesis model should include

train/validation/test data, make use of conventional metrics for

verification and validation, and be evaluated on a complex task to

have the most robust and accurate results.

4.7 Limitations

While systematic, this study limited its search to four databases

and repositories (PubMed, arXiv, medRxiv, and bioRxiv). This

created bias toward English-speaking researchers, which will likely

cause this review to be incomplete. Another consideration was

the exclusion of super-resolution papers. Indeed, many different

studies generated higher resolution TOF-MRA and perfusion from

lower-resolution images using machine learning (Wicaksono et al.,

2023; Cui et al., 2022). These methods, although integrating images

from other modalities such as T1-weighted scans, are usually

trained on single images to enhance the resolution of the given

image (Shaham et al., 2019). As such, the trained model is not

usually generalizable to other images. In that way, it does not fit

the definition of image synthesis we used for this review, which

specified the use of reusable model.

4.8 Conclusion

In this review, we explored the use of deep learning models for

the synthesis of TOF-MRA and perfusionMRI images, highlighting

the advancements and potential applications in the study of

neurovascular health. Our findings suggest that these image

synthesis models offer a promising alternative to direct imaging

methods, potentially enabling large-scale retrospective analyses and

faster coacquisition in new studies and time sensitive interventions,

such as stroke disease. Indeed, in most articles reviewed the

synthetic images seemed sufficiently accurate to be successfully

used to perform higher-value tasks, such as segmenting vessels

or infarct cores, and diagnosing dementia. However, the need

for comprehensive demographic data, the consideration of model

generalizability across diverse populations, and the verification of

other sources of bias in the training populations remain critical

challenges. Moreover, novel deep learning architectures, such as
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Transformer, may be better suited at generating synthetic data.

Hence, additional studies are necessary to evaluate the viability of

TOF-MRA synthesis from commonly acquired data. By addressing

these challenges, generated imaging could become a vital tool in

advancing our understanding of neurovascular contributions to

dementia and other neurological conditions.
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