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Introduction: White matter hyperintensities (WMHs) and cerebral microbleeds

are widespread among aging population and linked with cognitive deficits in

mild cognitive impairment (MCI), vascular MCI (V-MCI), and Alzheimer’s disease

without (AD) or with a vascular component (V-AD). In this study, we aimed to

investigate the association between brain age, which reflects global brain health,

and cerebrovascular lesion load in the context of pathological aging in diverse

forms of clinically-defined neurodegenerative conditions.

Methods: We computed brain-predicted age di�erence (brain-PAD: predicted

brain age minus chronological age) in the Comprehensive Assessment of

Neurodegeneration and Dementia cohort of the Canadian Consortium on

Neurodegeneration in Aging including 70 cognitively intact elderly (CIE), 173

MCI, 88 V-MCI, 50 AD, and 47 V-AD using T1-weighted magnetic resonance

imaging (MRI) scans. We used a well-established automated methodology that

leveraged fluid attenuated inversion recovery MRIs for precise quantification

of WMH burden. Additionally, cerebral microbleeds were detected utilizing a

validated segmentation tool based on the ResNet50 network, utilizing routine

T1-weighted, T2-weighted, and T2∗ MRI scans.

Results: The mean brain-PAD in the CIE cohort was around zero, whereas the

four categories showed a significantly higher mean brain-PAD compared to CIE,

except MCI group. A notable association trend between brain-PAD and WMH

loads was observed in aging and across the spectrum of cognitive impairment

due to AD, but not between brain-PAD and microbleed loads.

Discussion: WMHs were associated with faster brain aging and should be

considered as a risk factor which imperils brain health in aging and exacerbate

brain abnormalities in the context of neurodegeneration of presumed AD origin.

Our findings underscore the significance of novel research endeavors aimed

at elucidating the etiology, prevention, and treatment of WMH in the area of

brain aging.

KEYWORDS

brain age estimation, anatomical MRI, Alzheimer’s disease, cerebral microbleeds,

vascular dementia, white matter hyperintensities, machine learning
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Highlights

• We assessed the association between brain-PAD and

cerebrovascular lesion loads in aging and AD.

• There were noticeably links between brain-PAD and

WMH loads.

• The structure of the aging brain is associated with WMHs.

• WMH needs to be taken into account as a risk factor that

increases brain age in aging and AD.

1 Introduction

Assessing brain health status using machine learning models

is a topic of increasing interest, with a number of useful

applications being proposed such as monitoring brain aging and

quantifying the impact of neurodegeneration (Mishra et al., 2021).

A recent addition consists in predicting a “brain age” metric

as an indicator of cerebral health (Franke and Gaser, 2019;

Mishra et al., 2021; Sone and Beheshti, 2022), whereby observable

characteristics from neuroimaging—e.g., cortical thickness as

measured on magnetic resonance imaging (MRI)—are used as

dependent variables in an estimation framework of a group

of individual’s chronological age (Pardoe and Kuzniecky, 2018).

This allows the generation of a brain age estimate for any

new individual based on similar characteristics, with any

discrepancy between chronological and predicted brain ages

being seen as a departure from the norm defined by the initial

training set.

In the area of Alzheimer’s disease (AD), the brain age

paradigm has been used to uncover its association with traditional

neuropsychological screening tools (Beheshti et al., 2018), predict

the conversion of mild cognitive impairment (MCI) to probable

AD (Gaser et al., 2013), and study the trajectory of metabolism

along the cognitive impairment spectrum (Beheshti et al., 2021).

In fact, cortical thickness-based brain age has been shown to be

a stronger predictor of cognitive impairment than chronological

age (Habes et al., 2021). However, these previous studies have

only focused on the spectrum of dementia from probable AD.

Clinical-pathological studies have shown however that, while

being the most frequent pathology, the incidence of “pure” AD

is low (around 6% of individuals with a major neurocognitive

disorder) (Boyle et al., 2017a). In fact, more than three-

quarters of individuals exhibit two or more pathologies at

death, the most prevalent combination being AD and vascular

pathology (Boyle et al., 2017b). Rather than the exception, mixed

presentations are therefore the norm and should be studied

together whenever possible.

The clinical diagnostic of vascular MCI (V-MCI) and mixed

vascular-AD dementia (V-AD) relies on a series of clinical

criteria (see Section 2.2.2) as well as on the presence of

cerebrovascular lesions on computer tomography or MRI scans,

such as microbleeds and white matter hyperintensities (WMH).

The latter appear on T2-weighted and fluid attenuated inversion

recovery (FLAIR) scans and are typically seen in the aging

population (Dadar et al., 2021a). The prevalence of WMH is 10–

20% for people in their 60 s, reaching 100% in people over the age

of 90 (Smith et al., 2017). In the aging population, WMHs can

contribute to a higher rate of brain atrophy in beyond-normal brain

aging, particularly in regions related to AD (Habes et al., 2016), such

as the medial temporal lobe, insular lobe, and temporal lobe (Cao

et al., 2022).

WMHs are often caused by small vessel disease, with some

being associated with small subcortical infarcts. The manifestation

ofWMHs has been associated with a broad spectrum of histological

alterations, including demyelination and axonal loss, diminished

glial density and atrophy, endothelial and immune activation,

ischemic damage, hypoxia and hypoperfusion, and, critical to this

work, cortical thinning and cerebral atrophy (Seo et al., 2012a,b).

WMH are reported to arise from incomplete infarction, indicating

a prolonged reduction in blood flow in deep brain regions due to

conditions such as arteriolosclerosis, lipohyalinosis, and fibrinoid

necrosis affecting small brain arterioles and arteries (Merino, 2019).

This reduced blood flow would lead to changes in oxygen levels,

disrupts the brain’s ability to regulate blood flow, and triggering

the activation of genes that promote inflammation. As a result,

the blood-brain barrier would become compromised, allowing

inflammatory proteins to enter vessel walls and brain tissue. These

series of events ultimately would lead to the breakdown of myelin,

damage to axons, reduced glial cell density, vacuolation, and

cortical atrophy (Rosenberg et al., 2016; Merino, 2019).

Recent studies have revealed a pervasive presence of WMH

among patients with diverse neurodegenerative disorders,

encompassing conditions such as MCI and AD; those with an

associated vascular component, V-MCI and V-AD; cognitively

intact elderly with Parkinson’s disease; cognitively impaired

Parkinson’s disease; frontotemporal dementia; Lewy body

dementia; and mixed dementias (Dadar et al., 2021a). Remarkably,

In the context of AD, it has been shown that a heavy burden of

WMH can lead to an elevated risk of dementia due to AD and

a faster progression from intact cognition to MCI (Soldan et al.,

2020). Likewise, a similar narrative unfolds regarding the burden

of microbleeds, wherein their presence can have a detrimental

effect on cognitive functioning and can make individuals more

vulnerable to dementia (Greenberg et al., 2009; Puy et al., 2021).

In this study, we aimed to explore brain aging in various

populations along both spectra of cognition and cerebrovascular

disease, as evidenced by the presence of a cerebrovascular lesion

load that includes both WMHs and microbleeds. We also analyzed

individuals with varying levels of cerebrovascular lesion load to

determine the impact of these lesions on overall brain health.

In view of the relevant literature, we hypothesized that (1)

vascular cohorts (i.e., V-MCI and V-AD) would experience a

notably accelerated brain aging process compared to non-vascular

cohorts (i.e., MCI and AD), and (2) the presence of cerebrovascular

lesions would be associated with an elevated brain age not only in

individuals with AD, but also in cognitively healthy older adults.

To this end, we estimated cortical morphometric-based brain

age in a large group of participants from the Comprehensive

Assessment of Neurodegeneration and Dementia (COMPASS-ND)

study that included cognitively intact elderly (CIE), individuals

with MCI and probable AD, but also participants with V-MCI and

V-AD, with specific attention to the associations between brain age

and cerebrovascular lesions.
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2 Material and methods

2.1 Ethical agreement

Ethical agreements were obtained at all respective sites. Written

informed consent was obtained from all participants.

2.2 Participants

2.2.1 Training set
The data used to train the brain age estimate model

were obtained from CIE participants enrolled in the Open

Access Series of Imaging Studies (OASIS), Alzheimer’s Disease

Neuroimaging Initiative (ADNI), Banner Alzheimer’s Institute

(BAI), and Alzheimer’s Disease Repository Without Borders

(ARWIBO) studies. All CIE participants used in the training

set were free from any indications of cognitive impairment or

neurological disorders as per the criteria outlined in the databases.

ADNI (adni.loni.usc.edu) was launched in 2003 as a public-

private partnership led by Principal Investigator Michael W.

Weiner, MD. The primary goal of ADNI has been to test whether

serial MRI, positron emission tomography, other biological

markers, and clinical and neuropsychological assessment can be

combined to measure the progression of MCI and early AD.

ADNI was carried out with the goal of recruiting 800 adults aged

from 55 to 90 years and consists of approximately 200 cognitively

normal patients, 400 patients with MCI, and 200 patients

with AD.

2.2.2 Test set
The data on our test set participants were collected in

the Canada-wide multi-center, prospective, longitudinal

COMPASS-ND cohort study of the Canadian Consortium

for Neurodegeneration and Aging (CCNA; https://ccna-ccnv.ca/

compass-nd-study/) (Chertkow et al., 2019), a national initiative

to catalyze research on dementia. The overall study design and

methods have been published previously (Chertkow et al., 2019).

The study is registered on clinicaltrials.gov (NCT03402919).

COMPASS-ND includes deeply phenotyped participants

with various forms of dementia and mild memory loss or

concerns, along with CIE. Clinical diagnoses were determined by

participating clinicians based on longitudinal clinical, screening,

and MRI findings (i.e., diagnosis reappraisal was performed using

information from recruitment assessment, screening visit, clinical

visit with physician input, and MRI). In particular, criteria for

V-MCI were derived from consensus criteria from the American

Heart Association (Gorelick et al., 2011) and International Society

for Vascular Cognitive and Behavioral Disorders (Sachdev et al.,

2014). V-MCI participants were required to be age ≥60, have MCI

according to National Institute on Aging-Alzheimer’s Association

criteria (Albert et al., 2011), not have a prior history of clinical

stroke, and to have evidence of cerebrovascular disease on brain

MRI defined as two or more supratentorial infarcts (i.e., excluding

brainstem or cerebellar infarcts) or beginning confluent or

confluent WMH. Criteria for mixed dementia were adapted from

National Institute on Aging-Alzheimer’s Association criteria for

dementia due to AD (McKhann et al., 2011) and required that a

non-AD cause of dementia should additionally be present.

This cohort included COMPASS-ND participants for whom

T1-weighted, T2-weighted, T2∗, and FLAIRMRI were obtained. Of

note, these data were completely independent from the data used

for training the brain age algorithm.

2.3 Image acquisition and processing

The acquisition of COMPASS-ND MRIs was done according

to the Canadian Dementia Imaging Protocol (CDIP; https://

www.cdip-pcid.ca) (Duchesne et al., 2019). T1-weighted images

were used to extract cortical thickness measurements from which

brain age was derived. To this end, we utilized the FreeSurfer

version 6.0 segmentation software (http://surfer.nmr.mgh.harvard.

edu) and the Desikan-Killiany-Touville atlas (Klein and Tourville,

2012) to extract neocortical measurements (i.e., surface, volume

and thickness extracted from aparc.DKTatlas files). Each brain

segmentation was visually inspected through at least 20 evenly

distributed coronal sections. This procedure was applied to both

training and test sets.

WMH load was extracted from T2w-FLAIR images from the

COMPASS-ND study. We used a previously validated technique

which segments WMHs in native FLAIR space and generates

total WMH loads (Dadar et al., 2017), publicly available at:

http://nist.mni.mcgill.ca/white-matter-hyperintensities/. For each

participant, WMH load was quantified as the volume of voxels that

have been categorized as WMH in the standard space, adjusted

for head size. The quality of WMH processing and segmentation

was visually assessed for quality by one expert (M.D.), resulting in

the exclusion of nine cases from the total of 976. A logarithmic

transformation was implemented on WMH volumes to normalize

their distribution.

The identification of cerebral microbleeds was accomplished

using a validated segmentation tool that works based on the

ResNet50 network and routine T1-weighted, T2-weighted, and

T2∗ MRI scans, as described in (Dadar et al., 2022b). Visual

assessment of the quality of T1, T2, and T2∗ MRI scans was

conducted by the CCNA neuroimaging team prior to applying

our cerebral microbleed segmentation tool. In every participant,

the total number of cerebral microbleeds was extracted and then

log-transformed to normalize the overall distribution. Due to their

missing T2∗-weightedMRI, twenty-two participants were excluded

from cerebral microbleed analysis: five with CIE, seven with MCI,

five with AD, four with V-MCI, and one with V-AD.

2.4 Brain age estimation model

A standard linear support vector regression algorithm

conducted in MATLAB (i.e., “fitrsvm” function, kernel: linear)

was used to estimate brain age. Chronological age was considered

the dependent variable, and anatomical measurements extracted

from FreeSurfer segmentation along with sex and total intracranial

volumewere the independent variables, in total n= 188 features per

individual. Our brain age prediction model was based on cortical
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TABLE 1 Clinical demographics, WMH load, Microbleed count, and brain-PAD by diagnosis.

CIE (N = 70) MCI (N = 173) AD (N = 50) V-MCI (N = 88) V-AD (N = 47) P

Female (%) 78% 45% 36% 34% 49% < 0.0001

Real age (yrs) 69.8± 6.6 71.8± 6.6 73.9± 8.2 76.1± 5.5 76.7± 6.3 <0.0001

MoCa 27.7± 1.55 23.61± 3.12 18.68± 3.72 23.15± 3.22 17.78± 3.30 <0.0001

WMH load† 0.61± 0.5a 0.63± 0.36c 0.79± 0.37 1.97± 1.16f 2.16± 1.38f <0.0001

WMH load†† 0.61± 0.4a 0.55± 0.33c 0.62± 0.38 1.73± 1.09f 1.89± 1.37f <0.0001

Microbleed count† 21.52± 14.24b 23.78± 14.06d 22.06± 13.14e 27.12± 18.96f 32.67± 31.50e 0.01

Microbleed count†† 21.52± 13.98b 22.03± 14.53d 20.33± 13.52e 25.98± 18.55f 31.90± 30.55e 0.005

Brain-PAD (yrs)† −0.52± 4.75 1.89± 5.5 7.22± 7.33 3.97± 5.43 7.64± 5.95 <0.0001

Brain-PAD (yrs)†† −0.52± 4.44 0.70± 6.03 5.86± 8.02 2.95± 5.81 7.02± 6.06 <0.0001

CIE, cognitively intact elderly; AD, Alzheimer’s disease; MoCA,Montreal Cognitive Assessment; MCI, mild cognitive impairment; V-AD, vascular Alzheimer’s disease. All variables are presented

based on the mean± standard deviation. P, the results of an ANOVA for continuous variables and a Chi-square test for categorical variables between groups.
†Raw data.
††Sex- and age-adjusted data by referencing to the CIE group.
a Data missing in two participants.
b Data missing in five participants.
c Data missing in thirteen participants.
d Data missing in seven participants.
e Data missing in four participants.
f Data missing in three participants.

mean thickness, volume, and surface measurements, omitting any

white matter related features. We used the ComBat technique

implemented in MATLAB to harmonize data from different

scanners (Fortin et al., 2018). First, we assessed the accuracy of the

prediction model on the training data set (N = 1,627, mean age =

67.75± 9.53 years, 56% females) through a 10-fold cross-validation

strategy. The prediction accuracy was measured on the basis of

the coefficient of determination (R2) between chronological and

estimated age, the mean absolute error (MAE), and root mean

square error (RMSE). The brain-PAD (i.e., predicted brain age

minus real age) was also calculated. Bias adjustment was applied

to remove the age-dependency on the predicted values (Beheshti

et al., 2019) (https://github.com/medicslab/Bias_Correction). Next,

the final prediction model was developed with the entire training

set (N = 1,627). Of note, a positive brain-PAD (strictly speaking,

cortical brain-PAD) stands for older-appearing cortices (i.e.,

estimated age > chronological age), whereas a negative brain-PAD

value stands for younger-appearing cortices (i.e., estimated age <

chronological age).

2.5 Statistical analysis

The brain age prediction model was applied to COMPASS-

ND participants. As the test groups had different age and sex

distributions, we regressed out the effects of age and sex from brain-

PAD,WMH, and cerebral microbleed values by referencing the CIE

group (N = 70) as follows:

Variableadjusted subject = Variableraw subject − β1(Agesubject −

AgeCIE)− β2(Sexsubject − SexCIE) (1)

Where β1 and β2 stand for the slopes of the linear regression

lines between age and the variable of interest, and between sex and

the variable of interest, respectively, in the CIE group. Additionally,

AgeCIE and SexCIE represent the mean age and mean sex for all

CIEs, respectively.

Themean adjusted brain-PAD andWMHs for each group (CIE,

MCI, AD, V-MCI, V-AD) were examined using an analysis of

covariance (ANOVA). The p-values were adjusted using Bonferroni

correction. Pearson correlation tests were utilized to assess the

associations between adjusted brain-PAD and adjusted WMH, as

well as between adjusted brain-PAD and adjusted microbleed loads.

For all statistical tests, P < 0.05 was considered as significant.

3 Results

3.1 Demographics

The training set was composed of n = 1,627 CIE (mean

age ± sd: 67.7 ± 9.5, age range: 50–94, 915 females). The

test set was composed of 70 CIE, 173 MCI, 50 V-MCI, 88

AD, and 47 V-AD participants. Table 1 shows demographics for

our different groups. Of note, mean age was different across

diagnostic groups.

3.2 Brain age estimation performance on
training set

Our prediction model showed a desirable performance on the

training set (N = 1,627) followed by 10-fold cross-validation (R2 =

0.77, MAE= 4.2 years, RMSE= 5.4 years, mean brain-PAD= 0±

4.8 years, Figure 1A).
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FIGURE 1

Scatterplot displaying the relationship between chronological age (x-axis) and estimated brain age (y-axis). (A) within the training dataset (N = 1,627)

using the outcomes of 10-fold cross-validation, (B) within the CIE group. The dashed line (red) represents the regression line.

FIGURE 2

Boxplots depicting the adjusted brain-PAD values among di�erent cohorts. CIE, cognitively intact elderly; MCI, mild cognitive impairment; AD,

Alzheimer’s dementia; V-MCI, vascular MCI (V-MCI); (AD), V-AD, vascular AD. Pairwise comparisons were conducted through ANOVA test with the

p-value adjusted using Bonferroni correction. *P < 0.05, **P < 0.001, ***P < 0.0001. The adjusted brain-PAD values were obtained by regressing out

the e�ects of age and sex from the raw brain-PAD values, referencing the CIE group.

3.3 Brain age estimation on the test set

The prediction performance on the CIE group was: R2 =

0.55, MAE = 5.2 years, RMSE = 6.5 years (Figure 1B). As per

the initial aim of this study, we computed brain-PAD among

five categories of participants. The mean brain-PAD values are

shown in Table 1 and Figure 2. There was a significant difference in

adjusted brain-PAD values [F(4,423) = 18, P < 0.001, ANOVA test]

among groups. All categories of patients exhibited a significantly

higher mean adjusted brain-PAD than the CIE group (P <

0.001), except for the MCI cohort (P = 0.68). The V-AD

cohort had the highest adjusted brain-PAD. Post-hoc pairwise
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FIGURE 3

Boxplots depicting the adjusted WMH loads among di�erent cohorts. CIE, cognitively intact elderly; MCI, mild cognitive impairment; AD, Alzheimer’s

dementia; V-MCI, vascular MCI (V-MCI); (AD), V-AD, vascular AD. Pairwise comparisons were conducted through ANOVA test with the p-value

adjusted using Bonferroni correction. *P < 0.05, **P < 0.001, ***P < 0.0001. The adjusted WMH loads were obtained by regressing out the e�ects of

age and sex from the raw WMH loads, referencing the CIE group.

group comparison based on the ANOVA test showed statistically

significant differences (P < 0.05) in terms of adjusted brain-PAD

between pair groups, except for CIE vs. MCI and V-AD vs. AD

(P > 0.05).

3.4 WMH loads

Table 1 summarizes adjusted WMH loads by diagnostic

category, whereas Figure 3 shows respective boxplots as well

as pairwise comparisons. As could be expected, there was a

significant difference in WMH loads [F(4,402) = 58, P < 0.001,

ANOVA test] between groups. Unsurprisingly, both V-MCI and

V-AD showed a significantly higher WMH load compared to

non-vascular groups (i.e., CIE, MCI, and AD) in terms of

adjusted WMH loads by ANOVA pairwise comparison (P <

0.001). However, there were no pairwise differences between

CIE vs. MCI, CIE vs. AD, MCI vs. AD, and V-MCI vs. V-AD

(P > 0.05).

3.5 Microbleed counts

The adjusted microbleed counts are presented in Table 1

according to diagnostic category. Figure 4 illustrates the

corresponding boxplots and pairwise comparisons. There

was a significant difference [F(4,400) = 4, P = 0.005, ANOVA

test] between groups in terms of adjusted microbleed counts.

Based on the results of ANOVA pairwise comparison, a notable

differentiation was observed between CIE vs. V-AD (P = 0.028),

MCI vs. V-AD (P = 0.011), and AD vs. V-AD (P = 0.021) with

regards to adjusted microbleed counts. Conversely, the remaining

pair comparisons did not yield significant outcomes (P > 0.05).

3.6 Association between brain-PAD and
WMH

Figure 5 shows the association between brain-PAD and WMH

loads in the five categories of participants. Brain-PAD and adjusted

WMH loads demonstrated a significant and positive correlation

in the MCI cohort as well as all cohorts combined (r = 0.24, P

< 0.001), while in other cohorts this association was found to be

marginally insignificant (P > 0.05).

3.7 Association between brain-PAD and
microbleed counts

Figure 6 illustrates the correlation between brain-PAD and the

number of microbleeds across the five participant groups. There

was no statistically significant correlation observed between brain-

PAD and microbleed counts in all cohorts.

4 Discussion

The primary objectives of this study were 2-fold. First,

we sought to assess the impact of cerebrovascular lesion

burdens, including WMHs and microbleeds, on brain cortical

age and secondly, the relationship between brain-PAD and

cerebrovascular lesion loads, both across the aging/cognitive
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FIGURE 4

Boxplots showing the adjusted microbleed counts in di�erent cohorts. CIE, cognitively intact elderly; MCI, mild cognitive impairment; AD,

Alzheimer’s dementia; V-MCI, vascular MCI (V-MCI); (AD), V-AD, vascular AD. Pairwise comparisons were conducted through ANOVA test with the

p-value adjusted using Bonferroni correction. *P < 0.05, **P < 0.001, ***P < 0.0001. The adjusted microbleed counts were obtained by regressing

out the e�ects of age and sex from the raw microbleed counts, referencing the CIE group.

FIGURE 5

The association between adjusted brain-PAD values and adjusted whole-brain WMH loads in each cohort, as well as in all cohorts. The correlation

analysis was conducted using a Pearson correlation test. The brain-PAD values and WMH loads were corrected for age and sex by referencing to the

CIE group.

impairment continuum associated with AD. Our results in

summary showed that all clinical groups had significantly increased

brain-PAD values, except for MCI, with the V-AD group

demonstrating the highest mean adjusted brain-PAD of 7.02± 6.06

years (Figure 2). Further, our study found a mean adjusted brain-

PAD of 5.86 ± 8.02 years in individuals with AD, which aligns
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FIGURE 6

The association between adjusted brain-PAD values and adjusted microbleed counts in each cohort, as well as in all cohorts. The correlation analysis

was conducted using a Pearson correlation test. The brain-PAD values and microbleed counts were corrected for age and sex by referencing to the

CIE group.

with previous research reporting a similar increase of +5 years in

brain-PAD among AD patients (Beheshti et al., 2018). However,

we observed a lower adjusted mean brain-PAD in our MCI cohort

(i.e., 0.70 ± 6.03 years; Table 1) compared to the existing literature

(Beheshti et al., 2018). This discrepancy could potentially be

explained by the fact that unlike prior studies (Beheshti et al., 2018),

we distinguished V-MCI patients from those with MCI, which may

suggest more serious MCI cases. To the best of our knowledge, this

is the first study which explored brain age among V-MCI and V-

AD participants as well, in the same cohort and using a similar

imaging protocol.

4.1 Impact in cognitively impaired cohorts

Our first hypothesis was that vascular cohorts (V-MCI, V-AD)

would experience a significantly accelerated brain aging process

compared to non-vascular cohorts (MCI, AD). We observed a

significantly higher adjusted brain-PAD in V-MCI thanMCI (mean

difference= 2.24 years, P= 0.04, ANOVA; Figure 2). However, this

difference was not statistically significant between AD and V-AD

although V-AD showed a higher brain-PAD (mean difference =

1.11 years, P> 0.05, ANOVA; Figure 2). These findings suggest that

individuals with vascular conditions may experience accelerated

brain aging, particularly in the early stages of AD, compared to

those without vascular conditions. Further studies of brain age

estimation in larger samples are required to confirm this finding.

All participant categories showed a significant WMH load on

T2w-FLAIR images (Figure 3). As expected, WMH load in vascular

cohorts (i.e., V-MCI, V-AD) were significantly higher than non-

vascular cohorts (i.e., CIE, MCI and AD; Figure 3). This finding

is in line with other studies which investigated WMH in MCI and

AD (Tosto et al., 2014; Desmarais et al., 2021). However, we did

not observe a significant difference between V-MCI and V-AD in

terms of WMH loads (P > 0.05, ANOVA; Figure 3), suggesting

that the functional impact from WMH increases due to different

processes than simply through an increase in extent, number, or

size of lesions.

Our results revealed a statistically significant and positive

correlation (r = 0.24, P < 0.001) between brain-PAD and WMH

loads when all groups were combined, suggesting that there is

an actual relationship between these two variables rather than

one caused by chance. To determine whether the significant

correlation between brain-PAD and WMH loads is driven by the

MCI cohort (which had a larger sample size), we excluded MCI

from the combined groups (N = 247). Despite this exclusion,

the correlation between brain-PAD and WMH loads remained

statistically significant (r = 0.19, P = 0.002), indicating that this

correlation is not solely due to the MCI group. This relationship

between WMH and brain-PAD is supported by other evidence

that WMH leads to cortical thinning, and therefore may explain

changes in cognitive status even though there is a plateau in WMH

evolution, as noted above in the V-MCI and V-AD group.

However, when we tested the correlation between brain-PAD

and WMH loads within each group, only the MCI cohort showed
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a significant association between the two variables (r = 0.24, P <

0.001), whereas the other cohorts did not (P > 0.09). The possible

explanation is that the sample size within each cohort, except for

the MCI cohort, was relatively small compared to the total sample

size of all subjects.

We also hypothesized that WMH loads are associated with

increasing brain-PAD in the context of AD. With a significant

correlation in the MCI cohort (Figure 5), this hypothesis was

confirmed only among patients in the early stages of AD. It

is noteworthy that, even though a P-value of 0.14–0.31 is not

statistically significant, it could still be of clinical or practical

importance. The lack of significant findings in other AD cohorts

can be attributed to the limited number of participants in

these groups. Similarly, additional research with larger sample

sizes is required to validate our discovery concerning the

connection between brain-PAD and WMH in AD across various

clinical categories.

4.2 Impact in cognitively intact elderly

Based on the literature (Habes et al., 2016), our second

hypothesis was that a heavy WMH load can increase brain

age in cognitively healthy older adults. We observed a positive

relationship between brain-PAD and WMH in the CIE cohort,

however, it did not reach a statistically significant level (r =

0.21, P = 0.09; Figure 5), thus partially negating our initial

hypothesis. However, this statistical result is close enough to

warrant consideration and might suggest a trend or relationship

between the two variables in the CIE cohort, which could be

further investigated or validated with more data. A positive

association between brain-PAD and WMH in the CIE cohort is

in agreement with other studies documenting how a high WMH

burden coincides with accelerated brain aging and gray matter

atrophy (Habes et al., 2016). Besides, it has been elucidated that

the preference of WMH loads among healthy older adults could be

associated with impairments in various cognitive domains, such as

verbal fluency (Dadar et al., 2022b), learning, memory (Habes et al.,

2016), and executive function (Lampe et al., 2019). Taken together,

this finding would suggest that WMH should be considered as a

potential risk factor for accelerated brain aging among cognitively

healthy older adults.

4.3 Impact of microbleeds

Consistent with expectations, all categorical cohorts exhibited a

notable presence of microbleeds (Table 1), particularly in vascular

cohorts (i.e., V-MCI and V-AD). The highest adjusted microbleed

count was observed in the V-AD cohort (31.90± 30.55), which was

significantly higher than that of other cohorts, except for V-MCI

(Figure 4). These results highlight the influence of cardiovascular

risk factors (e.g., hypertension, total and high-density lipoprotein

cholesterol levels, atrial fibrillation, the use of lipid-lowering

medications, smoking habits, diabetes, elevated body mass index,

and antithrombotic use) on the prevalence of microbleeds in AD

patients. Importantly, an elevated number of cerebral microbleeds,

particularly in specific brain regions has been shown to correlate

with a higher likelihood of experiencing cognitive deterioration and

developing dementia (Akoudad et al., 2016). However, insignificant

associations between brain-PAD and microbleed counts were

detected in all cohorts (Figure 6).

4.4 Strengths and limitations

Evidence has shown that younger AD patients tend to exhibit

higher levels of brain-PAD compared to older individuals with

AD a higher brain-PAD than those who are older (Beheshti et al.,

2018, 2021). In our study, we observed differences in the average

age among our test groups (Table 1). To account for potential

confounding effects from varying age and sex distributions across

groups, we conducted regression analyses to remove the influence

of age and sex on brain-PAD, WMH, and cerebral microbleed

values, using the CIE group (N = 70) as the reference point

(Equation 1). Given that the CIE group had the youngest age and

the highest percentage of female participants (Table 1), adjusting

based on this group may introduce bias into our findings and

conclusions. To address this concern, we repeated all statistical

analyses by controlling for the impact of age and sex on brain-

PAD, WMH, and cerebral microbleed values using data from all

participants (Supplementary material).

In the test groups, the analysis showed similar significant

results for adjusted brain-PAD, except the comparison between

the MCI and V-MCI groups, which was not significant

(Supplementary Figure S1). For adjusted WMH loads, similar

results were found overall (Supplementary Figure S2), but no

significant differences were seen between groups regarding

adjusted microbleed counts and pairwise comparisons

(Supplementary Figure S3). The association between adjusted

brain-PAD and the number of microbleeds, as well as between

adjusted brain-PAD and WMH loads, showed similar statistical

results. However, the association between adjusted brain-

PAD and WMH loads in the AD cohorts was significant

(Supplementary Figure S4). The fact that the links between WMH

and brain-PAD persist after correcting for age and sex suggests that

the relationship between these two features is not solely determined

by variations in age and sex across groups. There are certainly

a few confounders that could explain these associations that

were not explored in this study (e.g., cardiovascular risk factors,

genetics, amyloid and tau positivity). However, this may also be

a consequence of potential coupled temporal dynamics between

WMH and gray matter degeneration (Dadar et al., 2022a; Garnier-

Crussard et al., 2023). While we accounted for the impact of age

and sex in our statistical analysis, it remains vital to acknowledge

and address this point to prevent biases in interpreting the results,

especially when comparing different clinical groups.

We highlight the fact that our brain age prediction model

was created using data from multiple sites and scanners (Section

2.2), and then applied to the independent test datasets. This

fact demonstrates the generalizability of our findings, indicating

the capacity of our predictive model to perform on new data

from the same population, even if it was not included in

the original training phase. In MRI pre-processing stage, we

employed a validated software, specifically FreeSurfer, renowned
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for its suitability in multi-center and multi-scanner studies (Dadar

et al., 2020). Moreover, in order to reduce any potential impact

of various scanner manufacturers on FreeSurfer measurements,

we incorporated a validated harmonization technique known as

ComBat (Fortin et al., 2018; Torbati et al., 2021). To ensure the

separation of brain features extracted by FreeSurfer from WMH

(Dadar et al., 2021b), only cortical brain features were used in our

brain age prediction model.

5 Conclusion

This study aimed to explore how cerebrovascular lesion

loads affect brain health in in the context of aging and various

forms of AD, as well as the connection between brain-PAD

and cerebrovascular lesion loads. Our findings indicated that the

presence of cerebrovascular lesion loads could hasten brain aging

in AD patients. Additionally, our results demonstrated a possible

link between brain-PAD and WMH loads, indicating a strong

association between WMHs and accelerated brain aging, resulting

in an older-appearing brain. Although some of the clinical cohorts

used in this study did not show statistically significant associations,

the clinical relevance of the observed trend could be noteworthy.

Conversely, there was no significant correlation observed between

brain-PAD and microbleed loads. Taken together, it can be inferred

that the presence of WMH loads has the potential to significantly

accelerate brain aging not only in the context of AD but also among

cognitively healthy older adults, while the impact of microbleed

loads may not be as significant.

In spite of the fact that these links may differ based on the

diagnosis, these findings indicate the importance of treatment and

prevention strategies for vascular risk factors (e.g., lifestyle changes,

anti-hypertensive medications, lipid-lowering treatments, blood

sugar management, and exercise), which might be able to slow

down the progression of cerebrovascular lesions and delay the effect

on cortical thickness. Future research studies may aim to assess the

efficiency of different WMH treatments and prevention strategies

in the area of brain aging.
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