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Alzheimer’s disease (AD) is a�ecting a growing number of individuals. As a

result, there is a pressing need for accurate and early diagnosis methods.

This study aims to achieve this goal by developing an optimal data analysis

strategy to enhance computational diagnosis. Although various modalities of

AD diagnostic data are collected, past research on computational methods

of AD diagnosis has mainly focused on using single-modal inputs. We

hypothesize that integrating, or “fusing,” various data modalities as inputs to

prediction models could enhance diagnostic accuracy by o�ering a more

comprehensive view of an individual’s health profile. However, a potential

challenge arises as this fusion of multiple modalities may result in significantly

higher dimensional data. We hypothesize that employing suitable dimensionality

reduction methods across heterogeneous modalities would not only help

diagnosis models extract latent information but also enhance accuracy.

Therefore, it is imperative to identify optimal strategies for both data fusion and

dimensionality reduction. In this paper, we have conducted a comprehensive

comparison of over 80 statistical machine learning methods, considering various

classifiers, dimensionality reduction techniques, and data fusion strategies to

assess our hypotheses. Specifically, we have explored three primary strategies:

(1) Simple data fusion, which involves straightforward concatenation (fusion) of

datasets before inputting them into a classifier; (2) Early data fusion, in which

datasets are concatenated first, and then a dimensionality reduction technique

is applied before feeding the resulting data into a classifier; and (3) Intermediate

data fusion, in which dimensionality reduction methods are applied individually

to each dataset before concatenating them to construct a classifier. For

dimensionality reduction, we have explored several commonly-used techniques

such as principal component analysis (PCA), autoencoder (AE), and LASSO.

Additionally, we have implemented a new dimensionality-reduction method

called the supervised encoder (SE), which involves slight modifications to

standard deep neural networks. Our results show that SE substantially improves

prediction accuracy compared to PCA, AE, and LASSO, especially in combination

with intermediate fusion for multiclass diagnosis prediction.
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Alzheimer’s disease, multimodal fusion, dimensionality reduction, diagnosis prediction,
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurological disorder

and the most common cause of dementia among older adults. The

prevalence of AD is expected to surge to 13 million Americans

by 2050, with millions more affected worldwide (Alzheimer’s

Association, 2023). With an increasing clinical load of older adults

at risk of AD, one major bottleneck is accurate and timely diagnosis

of AD using readily accessible data (Knopman et al., 2021), which

has resulted in underdiagnosis of the condition (Connolly et al.,

2011; De Levante Raphael, 2022). This is partly due to the severe

shortfall of geriatricians and expert clinicians, who are critical

to providing early diagnosis and care for older adults in the

United States (Alzheimer’s Association, 2023). As fluid biomarkers,

including cerebrospinal fluid (CSF) and plasma assays, are being

introduced for screening of AD (Jack et al., 2018), and with the

recent draft of the “NIA-AA Revised Criteria for Diagnosis and

Staging of Alzheimer’s Disease” being made available (Andrews et

al., 2023), the field of AD research has moved toward embracing

more biologically-driven definitions of disease. Given the increased

focus on AD biomarkers and the availability of large-scale datasets

for AD research, the field needs to urgently understand how to

best integrate distinct data modalities to assist in making early and

accurate AD diagnosis.

Past work in the area of AD diagnosis using large-scale

datasets and computational tools has been divided in their use of

multimodal data. Some studies have primarily relied on single-

modal inputs, commonly structural MRI. For instance, Lazli (2018)

implemented a support vector machine enhanced with fuzzy c-

means to perform binary classification (HC vs. AD-dementia)

using only MRI images, achieving a 75% accuracy. Korolev (2017)

compared several 3D convolutional neural networks (CNN) for

classification of HC vs AD-dementia using only MRI scans,

achieving the best accuracy with ResNet at 80%. While these

studies showcase the potential of statistical machine learning

methods in AD diagnosis, their scope is constrained by lack of data

integration across modalities. Other studies have indicated that

integrating diagnostic data across multiple modalities may enhance

computational methods of AD detection by allowing for a more

holistic understanding of an individual’s health profile (Kohannim,

2010). Some of these studies have introduced various techniques

to integrate or “fuse” multiple modalities (Suk et al., 2014). Many

of these studies have focused on fusing neuroimaging modalities

in prediction AD status, including using MRI and PET scans (Shi

et al., 2017; Punjabi et al., 2019; Song et al., 2021).

More broadly, different fusion methodologies have been

introduced in machine learning, with applications to multi-

omics (Chaudhary et al., 2018) and medical outcomes prediction

(Ding et al., 2022). Three main strategies for fusion have been

explored, including early fusion, intermediate fusion, and late

fusion (Stahlschmidt et al., 2022). These strategies can be viewed

as combining data sources at the signal-level (early), feature-

level (intermediate), or decision-level (late) across models (Meng

et al., 2020). In the field of AD prediction, a few studies have

explored each strategy (Qiu et al., 2018, 2022; Lee et al., 2019), with

more focus placed upon early and intermediate fusion methods

(Huang et al., 2020). Late fusion typically ignores interactions

across modalities and relies heavily on decision-level differences

between models trained on different modalities, which is a major

drawback in AD prediction, as diagnosis is never made based upon

considering each source of information in isolation. In intermediate

fusion pipelines especially, applying dimensionality reduction (DR)

for each data modality plays a central role in extracting useful

features for prediction. With the rise of different fusion strategies, it

remains unclear what the most optimal method of data integration

is. Furthermore, among studies that apply data fusion in the area

of AD research, no exploration has been made to systematically

determine how well different DR methods perform in the context

of data fusion.

In this study, we introduce a novel DR method, the supervised

encoder (SE), that aims to optimize prediction performance in a

data fusion pipeline for AD diagnosis prediction.We systematically

compare a representative variety of existing DRmethods, popularly

used in the field, with commonly used data fusion strategies to

determine how our SE method performs. We first hypothesize

that applying multiple modalities of diagnostic data rather than

single modalities would enable statistical machine learning models

to predict AD diagnosis with higher accuracy. Secondly, and

more importantly, we hypothesize that applying DR methods,

particularly the SE, would enable predictions models to extract

more useful latent information and improve accuracy. In the realm

of AD diagnosis prediction, we still cannot confidently determine

the optimal data integration method a priori when presented with

multimodal data. We aim to provide a framework for answering

this question in this study.

In predicting AD diagnosis, including cognitively unimpaired

(healthy control, HC), mild cognitive impairment (MCI), and

dementia due to AD, we focus on using clinical and structural

MRI data modalities. While other neuroimaging modalities,

including FDG-PET, have been widely used in research studies

and are sensitive to important aspects of AD pathology (Knopman

et al., 2021), we prioritized using modalities with high levels

of data availability to both obtain a more inclusive dataset

and reflect the data modalities accessible to older adults in the

American healthcare system. More accessible data sources have

been previously demonstrated to be highly useful for AD status

prediction and progression forecasting (Ren et al., 2023). However,

there has been limited exploration of optimal data fusion strategies

outside of neuroimaging modalities, particularly concerning the

prediction of clinical AD diagnosis. Investigating optimal fusion

methods will lead to improved disease prediction and enhance the

utility of diverse types of multimodal biomarkers for AD diagnosis

(Kohannim, 2010).

The results of this study will provide a road map for designing

improved strategies to predict AD by effectively integrating

diverse sources of information. By understanding how to best

integrate distinct types of biological and clinical data to predict

AD status, our findings will enable other researchers to better

develop multimodal data pipelines that leverage the most relevant

information from each source of information to make informed,

accurate diagnosis predictions. In light of fluid biomarkers that will

be used for AD screening in the near future, these methodological

advances will be crucial for determining how to best integrate

novel biomarkers in future studies. Furthermore, these insights
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will offer a deeper and more comprehensive understanding of

the multimodal factors associated with AD and contribute to our

knowledge of relevant risk factors.

2 Materials and methods

2.1 NACC dataset and modalities

We obtained data from the National Alzheimer’s Coordinating

Center (NACC), which included information from older adults

with or at risk of developing Alzheimer’s (Beekly et al., 2004;

Weintraub et al., 2009). The dataset comprised of three data

modalities:

• Uniform Data Set (UDS): Contains clinical information,

behavioral survey responses, neuropsychological testing

results, and additional diagnostic information (Morris et al.,

2006; Besser et al., 2018).

• Structural MRI: Includes preprocessed volumetric, cortical

thickness, and white matter hyperintensity values from the

IDeA Lab (Director: Charles DeCarli, MD; University of

California, Davis) following protocols from the Alzheimer’s

Disease Neuroimaging Initiative.

• CSF biomarkers: Provides protein assay information from

lumbar punctures, including Aβ42, P-tau181, and T-tau levels.

Please see the Supplementary material for more information.

NACC standardizes data collected across multiple Alzheimer’s

Disease Research Centers (ADRCs), which are located at major

academic and research institutions in the United States and have

specific research and recruitment focuses that serve to advance

dementia research. This study uses data from 46 ADRCs. Some

ADRCs focus on recruiting under represented populations in

dementia research to improve the generalizability of findings from

this data. The dataset consists of UDS visits from September

2005 to March 2023. Each visit is associated with a clinical

diagnosis of HC, MCI due to AD, or dementia due to AD. For

cognitively impaired individuals, we selected for subjects with

primary or contributing etiology of AD using clinican judgement.

We also focused our analysis on subjects over the age of 65,

which isolates the population of older adults most at risk of

developing AD (Knopman et al., 2021). We subsequently conduct

binary classification (HC vs. any level of impairment, MCI or

dementia due to AD) and multiclass classification (HC vs. MCI

vs. dementia) of the clinical diagnoses. The sample sizes for

each modality are 19,381 for UDS, 1,653 for MRI, and 1,628

for CSF.

2.2 Data preprocessing

To handle missing data, we applied different approaches

for each data modality. When subjects had multiple clinical

visits, we selected the baseline visit for analysis. For the

UDS modality, we excluded features with over 10 percent

missing data and removed incomplete records. The remaining

dataset contained 19,381 patient records, each with 90 clinical

features. For the MRI modality, we dropped incomplete

records, resulting in 1,628 subjects with scan records, each

containing 157 imaging features. While we initially considered

including the CSF modality for data integration, only a

very small sample of subjects had all three modalities of

data (UDS, MRI, CSF) collected. Because of this, we only

conducted single-modal analyses on CSF data. All CSF

modality related methods and results are reported in the

Supplementary material.

To create models accepting multimodal input, we merged

the UDS and MRI datasets, which included 1,419 subjects.

Subjects included in the merged datasets had at least one

UDS visit and an MRI scan within 18 months of that

visit. Summary demographic information for subjects in the

merged UDS and MRI dataset are presented in Table 1. We

report comparisons of each feature in Table 1 across the

diagnostic groups, with significant differences in age, sex,

education level, and ethnicity, and the Mini-Mental State Exam

(MMSE).

2.3 Classifiers

We identified two prediction tasks to evaluate in our analysis:

binary and multiclass classification. Binary classification between

HC and cognitively impaired subjects (MCI or dementia due

to AD) is a relatively easy task and serves as a benchmark for

assessing data fusion strategies and the more difficult multiclass

problem. For binary classification, we apply logistic regression, an

interpretable and commonly used method. For the multiclass task,

we apply a random forest (Breiman, 2001) and a feed-forward

neural network to distinguish between HC, MCI, and dementia

due to AD. In our analysis, we refer to models based on logistic

regression as binary classification models, while models that utilize

either Random Forest or Neural Networks are called multiclass

classification models. Because multiclass classification is a more

challenging task, we report performance of both random forest and

neural network models to better understand the performance of

the DR and fusion strategies of interest. All the analysis is coded

in Python 3.10 and utilizes the scikit-learn package version 1.2.1

(Pedregosa et al., 2011).

2.4 Model comparison

The datasets were split into 75% training and 25% testing sets

for model development and evaluation, respectively. To ensure

that our reported findings were not due to having a specific train-

test split, we repeated the training and testing split randomly 50

times and report the aggregated results on the test set. This allowed

us to report the mean test set performance and 95% confidence

intervals to evaluate if differences between various classification

results reached statistical significance with p < 0.05. Additional

details on the features included in the analyses can be found in the

Supplementary material.
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TABLE 1 Summary demographic information of the study subjects for each diagnosis category.

Diagnosis

Variable N Overall, N = 1,419a HC, N = 898a MCI, N = 273a AD, N = 248a p-valueb

Age 1,419 72 (65, 79) 70 (64, 77) 75 (70, 81) 75 (69, 80) < 0.001

Sex 1,419 < 0.001

Female 813 (57%) 592 (66%) 114 (42%) 107 (43%)

Male 606 (43%) 306 (34%) 159 (58%) 141 (57%)

Education 1,419 16 (13, 18) 16 (14, 18) 16 (12, 18) 16 (12, 18) 0.030

Race 1,419 0.254

White 1,192 (84%) 741 (83%) 232 (85%) 219 (88%)

African-American 151 (11%) 106 (12%) 26 (9.5%) 19 (7.7%)

Other 76 (5.4%) 51 (5.7%) 15 (5.5%) 10 (4.0%)

Ethnicity 1,419 0.007

Non-Hispanic 1,295 (91%) 812 (90%) 262 (96%) 221 (89%)

Hispanic 124 (8.7%) 86 (9.6%) 11 (4.0%) 27 (11%)

MMSE 1,200 29.0 (27.0, 30.0) 30.0 (29.0, 30.0) 28.0 (26.0, 29.0) 24.0 (20.0, 26.0) < 0.001

Unknown 219 160 30 29

aMedian (IQR) or frequency (%).
bKruskal-Wallis rank sum test; Pearson’s Chi-squared test.

2.5 Data fusion strategies

In this study, we aim to find an optimum combination of

data fusion and DR. Specifically, we have explored three primary

strategies: (1) Simple data fusion, which involves straightforward

concatenation of datasets before inputting them into a classifier; (2)

Early data fusion, in which features are concatenated first, then

a DR technique is applied before feeding the resulting data into a

classifier; and (3) Intermediate data fusion, in which DR methods

are applied individually to each data modality before concatenating

them to construct a classifier. We did not include late data fusion

due to its lack of popularity in the AD literature (Huang et al., 2020).

2.6 Dimensionality reduction techniques

Because of the large variety of data considered within multiple

diagnostic modalities, DR techniques have become an essential

component of data fusion pipelines. DR methods aim to reduce

the feature space while retaining the most critical information.

It does this by finding a lower-dimensional representation of the

data that captures the essential information. This can be done

by projecting the original data onto a lower-dimensional space,

resulting in a reduced set of derived variables obtained from the

original measurements. Typically, these new derived variables can

capture most of the information present in the original data (Van

Der Maaten et al., 2009). Past work on multimodal neuroimaging

fusion has demonstrated the usefulness of DR, either as a separate

step in the pipeline or as a part of the classifier used (Punjabi

et al., 2019). Feature selection is a special type of DR that involves

choosing a subset of the original features based on their relevance

to the task at hand, effectively discarding less important variables

(Zebari et al., 2020). By doing so, we retain the interpretability

of the variables, which is advantageous in understanding feature

importance for disease prediction.

For DR, we compare several unsupervised and supervised

alternatives. More specifically, we use Principal Component

Analysis (PCA, Hotelling, 1933), Least Absolute Shrinkage

and Selection Operator (LASSO, Tibshirani, 1996), Denoising

Autoencoder, (AE, Rumelhart et al., 1986; Kumar et al., 2014), and

Supervised Encoder (SE, Shahbaba et al., 2022). These methods

were chosen due to their popularity of use in the literature,

representation of the different supervised and unsupervised

methods, and varying levels of complexity in capturing nonlinear

interactions across features.

2.6.1 PCA
This is a well-established linear and unsupervised DR

technique widely employed in various domains. It aims to project

high-dimensional data into a lower-dimensional subspace by

accounting for maximum variance along orthogonal dimensions.

This is achieved by finding orthogonal vectors called principal

components (Hotelling, 1933). The first principal component

explains the most variance in the data, the second one explains the

second-most, and so on. This is shown visually in Figure 1A on a

toy example of a two-dimensional feature space. Mathematically,

the first principal component is obtained as follows:

Maximize: Var(Xw1) subject to ‖w1‖2 = 1 (1)

In Equation 1, X represents the standardized input matrix, with

amean of zero and a variance of one. In our study,X comprises a set
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FIGURE 1

Overview of dimensionality reduction methods. (A) Principal component analysis (PCA), an unsupervised feature extraction method. (B) Autoencoder

(AE) architecture for latent feature extraction. Conceptually, the AE can be interpreted as a nonlinear PCA. (C) LASSO, which applies a penalty term to

identify the most useful features (with nonzero coe�cients) in a supervised prediction problem. (D) Supervised encoder (SE) based on a deep neural

network, with the latent features extracted from the bottleneck prior to the output layer. The SE extends the benefits of a supervised approach, like

the LASSO, by finding more complex and nonlinear latent features.

of p variables used for predicting AD. The vector w1 is the weight

(also called loadings), and Var(Xw1) is the variance of the projected

data (also called scores). The second principal component, w2,

is orthogonal to w1 and provides scores, Var(Xw2), with the

second highest variance. The subsequent principal components

re obtained in a similar way to Equation 1 for maximizing the

variance along each orthogonal dimension. After finding all the

principal components, we limit our analysis to the first q ≪

p scores, Xw1,Xw2, . . . ,Xwq, which are treated as new derived

variables capturing most of the information provided by the

original variables. We chose the optimal number of components

based on using scree plots to visualize the added value of each

additional component. This value, often referred to as the “knee”

of the plot, often included the top eight principal components for

each pipeline.

2.6.2 Denoising autoencoder
The AE (Rumelhart et al., 1986) is another unsupervised DR

technique and can be considered as a nonlinear alternative to PCA.

Figure 1B shows the architecture of a standard AE, which consists

of two main components: an encoder and a decoder. The encoder

compresses the input data into a lower-dimensional representation,

often referred to as a bottleneck or latent space, while the decoder

reconstructs the original input from this representation. Here,

we use a variation of AE, called denoising AE (Kumar et al.,

2014), which is designed for learning robust representations of

data by introducing noise to the input and training the network

to reconstruct the clean data. By training the AE to reconstruct

the original, uncorrupted input from a corrupted version, it

learns to capture the essential information while filtering out the

noise. This makes denoising AEs particularly useful for extracting

relevant features from noisy datasets, such as those encountered in

medical research. This technique has been used in neuroimaging

fusion and may be useful for clinical data fusion as well (see

Shi et al., 2017). Here, we tuned the AE architecture in initial

exploratory analyses on the training data and chose to implement

to a five-layer AE (two layers for the encoder and decoder,

respectively) with four nodes in the bottleneck layer. Adding more

layers to the AE did not substantially change our final results.

Details regarding the architecture of the AE are included the

Supplementary material.
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2.6.3 LASSO
This is a linear regression technique used for feature selection

through regularization to avoid overfitting (Tibshirani, 1996).

LASSO adds a penalty term to the linear regression loss function,

which encourages some regression coefficients to be exactly zero,

effectively performing supervised DR. This is shown visually in

Figure 1C on a toy example of a p-dimensional feature space in

which some features have been dropped after the selection process,

indicated by a coefficient of zero. LASSO aims to minimize the

following objective function:

Minimize:
1

2n
‖y− Xw‖22 + λ‖w‖1 (2)

where y is the target variable, X is the feature matrix, w is the

coefficient vector, ‖ · ‖2 is the L2-norm, and ‖ · ‖1 is the L1-norm.

In Equation 2, λ controls the strength of the penalty, influencing

the degree of sparsity in the coefficients, which we tuned on our

training data.

2.6.4 Supervised encoder
As shown in Figure 1D, this is a modified version of the

standard supervised feed-forward neural network designed for DR

(Shahbaba et al., 2022). In this case, the last hidden layer (i.e., the

last layer connected to the output layer) is designed as a bottleneck

with a smaller number of nodes. After training the network in

the usual way, the values of these nodes in the bottleneck are

extracted as a low-dimensional representation of the original data.

We hypothesize that this method, which has not been previously

explored in AD prediction, may improve upon existing methods

in multimodal fusion. We designed the SE architecture to be

comparable to the AE architecture, with two layers prior to the

code, which contained 10 nodes. This allowed us to compare the

relative performance of the SE to the AE. Details regarding the

architecture of the SE are included the Supplementary material.

2.7 Pipelines

We evaluated six overarching analysis pipelines, each utilizing

a different type modality input, in which a specific fusion method

was applied if the pipelines included multimodal data (Figure 2).

Pipelines a-c are “baseline models” that use single-modal input.

Pipelines d-f are “fusion” models that use multimodal input

consisting of both UDS and MRI data.

Pipeline a, named “UDS,” involves models using UDS input.

We designed 12 such models. The 12 models are derived from

the possible combinations of the four DR methods and the three

classification methods. Four of the 12 models are binary, i.e., based

on logistic regression. Eight models are multiclass, using either

random forest or neural network to perform diagnosis.

Pipeline b, named “MRI,” consists of models using MRI input.

Similar to pipeline, we designed 12 models.

Pipeline c, named “CSF,” involves models using CSF input. Due

to the low dimensionality of the dataset (3 features), no DR was

performed. See Supplementary material for more information.

FIGURE 2

Pipelines. Pipelines (a–c) are models with di�erent types of

single-modal input. Pipelines (d–f) are models utilizing di�erent

forms of multimodal data fusion.

Pipeline d, named “Simple Data Fusion,” consists of models

designed to apply multimodal input to one of the three

classification strategies without DR. Thus, there were three models

designed for this case.

Pipeline e, named “Early Data Fusion,” consists of models

designed to use multimodal input concatenated prior to use in

a composite model with a specific DR technique and a classifier.

Similar to pipeline a, there are 12 models created for pipeline e.

Pipeline f, named “Intermediate Data Fusion,” consists of

models designed to apply a DR technique individually to UDS and

MRI before passing the resulting dataset to a classifier. As before,

there were 12 models for pipeline f.

2.8 Voting ensemble models

To perform comparisons between different pipelines each

consisting of multiple models, we have created voting ensemble

models. These models produce an output from the “majority

vote” of multiple models. Two ensemble models were created per

pipeline: one for binary classificationmodels, and one formulticlass

classification models. Thus, a total of 12 ensemble models were

created. We compare the performance of these ensemble models
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with the individual models across all pipelines to determine the

optimal DR and fusion strategy.

3 Results

Models using a single modality of data achieved the best

classification results when using SE or PCA for DF. Table 2 shows

the results obtained when various DR methods are applied to

classifiers built using a single modality. We compared different

models by assessing if there was any overlap of the 95% confidence

intervals of accuracy rates evaluated on the test set data, with non-

overlapping intervals indicating significantly different classification

performance at a p-value of 0.05. The SE method provides the best

overall results for UDS data processing, significantly outperforming

other methods. Of note, LASSO performed similarly to SE using the

neural network classifier (p ≥ 0.05). For MRI feature processing,

PCA performed the best overall, but its performance was often

on par with that of models using LASSO and SE, as indicated

by overlapping confidence intervals. Models using AE as the DR

method often resulted in the lowest accuracy value compared to

results from models with other DR methods. Note that no DR

method was used for the CSF data since there were only three

variables in the dataset (see Supplementary material).

For multimodal datasets, we observed that models using SE

typically ranked as either the top model or in second place

compared to other DR methods. The SE models performed

significantly better than all other models using different DR

methods in the intermediate fusion pipeline and outperformed

all other models except for LASSO in the early fusion pipeline

(p < 0.05). Pipelines using LASSO for early fusion performed

significantly better than those with SE (p< 0.05), but this difference

in performance was relatively modest. Overall, SE-based models

achieved the highest classification performance and significantly

outperformed other methods (p < 0.05, Table 3).

We then compared different data fusion strategies using various

DR techniques. As indicated by the top ranked models in Figure 3,

the best results were obtained using the intermediate fusion strategy

in combination with the SE method (left: binary classification,

right: multiclass classification). The complete results are reported

in Table 3. For binary classification, this combination provides

91.6% accuracy rate. The corresponding accuracy rate for the

multiclass task is 86.7% using a neural network classifier and 86.4%

using a random forest classifier. The drop in performance when

comparing intermediate fusion with SE to the next best model

is significant and supports the notion that this pipeline is the

most optimal data integration method (p < 0.05). Additionally,

the difference in performance between the top model using SE

and the second ranking models using other DR methods for the

intermediate fusion pipeline is much greater than the gaps between

top and second ranking models across DR methods for other

fusion pipelines. This indicates that the high level of accuracy using

intermediate fusion with SE is a more substantial improvement in

performance compared to other fusion and DR methods.

To further test our hypotheses about the advantage of

multimodal input in AD prediction, we also compared model

accuracy rates from UDS and MRI pipelines against accuracy

TABLE 2 Baseline models with single-modal input.

UDS

Binary Multiclass

Logistic reg. Random forest Neural network

PCA 0.843 (0.841,

0.844)

0.780 (0.778,

0.781)

0.784 (0.783, 0.786)

AE 0.754 (0.744,

0.763)

0.700 (0.688,

0.711)

0.731 (0.722, 0.740)

LASSO 0.862 (0.861,

0.864)

0.804 (0.802,

0.805)

0.806 (0.805, 0.808)

SE 0.880 (0.879,

0.882)

0.810 (0.808,

0.811)

0.809 (0.808, 0.811)

MRI

Binary Multiclass

Logistic reg. Random forest Neural network

PCA 0.793 (0.788,

0.797)

0.689 (0.682,

0.695)

0.704 (0.698, 0.709)

AE 0.700 (0.691,

0.710)

0.620 (0.612,

0.628)

0.652 (0.645, 0.658)

LASSO 0.785 (0.780,

0.791)

0.691 (0.686,

0.697)

0.698 (0.692, 0.704)

SE 0.781 (0.776,

0.786)

0.683 (0.677,

0.688)

0.673 (0.666, 0.679)

Test set classification accuracy values are reported for baseline models with single-modal

input using various DR techniques. Mean values (95% confidence interval) are from 50

random testing splits. Bold values indicate the best performing DR method for each classifier.

rates from pipelines involving data fusion using the Voting

Ensemble approach (Table 4). As indicated by the classification

performance, not every data fusion strategy is superior to

single-modal models. However, the top ranked model always

comes from a multimodal pipeline with an appropriate data

fusion strategy. Intermediate fusion remains the best approach

when utilizing an ensemble of models pipeline, replicating our

findings from comparing different fusion methods. Overall,

intermediate fusion ensemble models performed the best out of

all pipelines, achieving 89.5% binary classification accuracy and

84.1% multiclass classification accuracy. We observe that the

simple data fusion pipeline’s multiclass ensemble model achieves

an similar accuracy of 81.6% as the early fusion’s multiclass

model (p ≥ 0.05). However, the early fusion’s single models’ and

ensemble model’s results are much better than the results from

the simple data fusion pipeline (Table 3). Intermediate fusion

ensemble models significantly outperform simple data fusion’s

binary classification model (Table 2) and multiclass ensemble

model (Table 4).

To compare across all the pipelines presented, we ranked the

highest ten classification accuracy rates achieved by any model in

the study. For the binary classification task, which distinguishes

between cognitively unimpaired and impaired individuals (MCI

or dementia), we observed that multimodal models performed the

best, including the top three models and seven out of the top

ten models overall (Figure 4, left). This was especially evident for

the more difficult multiclass classification task (HC vs. MCI vs.
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dementia). Here, the top nine ranking models out of the top ten

models overall for multiclass classification all used multimodal

inputs (Figure 4, right). Focusing on the binary classification

tasks, we observed that the drop in accuracy values after the

top ranked model is much more substantial, indicating that the

TABLE 3 Comparison of fusion methods.

Simple data fusion

Binary Multiclass

Logistic reg. Random forest Neural network

No DR 0.799 (0.791,

0.807)

0.831 (0.825,

0.837)

0.795 (0.789, 0.800)

Early data fusion

Binary Multiclass

Logistic reg. Random forest Neural network

PCA 0.850 (0.846,

0.855)

0.767 (0.761,

0.772)

0.782 (0.777, 0.787)

AE 0.798 (0.792,

0.805)

0.737 (0.731,

0.743)

0.760 (0.754, 0.766)

LASSO 0.876 (0.872,

0.881)

0.834 (0.828,

0.839)

0.818 (0.813, 0.824)

SE 0.863 (0.858,

0.868)

0.794 (0.787,

0.800)

0.786 (0.779, 0.794)

Intermediate data fusion

Binary Multiclass

Logistic reg. Random forest Neural network

PCA 0.871 (0.867,

0.875)

0.803 (0.797,

0.808)

0.800 (0.795, 0.805)

AE 0.760 (0.750,

0.769)

0.729 (0.718,

0.739)

0.721 (0.712, 0.731)

LASSO 0.877 (0.873,

0.882)

0.819 (0.813,

0.824)

0.809 (0.803, 0.814)

SE 0.916 (0.912,

0.920)

0.864 (0.861,

0.868)

0.867 (0.862, 0.872)

Test set accuracy values are reported for each different fusion strategy using multimodal

inputs from UDS and MRI data. Mean values (95% confidence interval) are from 50 random

testing splits. Bold values indicate the best performing DR method for each classifier.

use of intermediate fusion helps boost performance noticeably.

In contrast, the most prominent finding for the multiclass results

is the high performance of intermediate fusion models utilize

SE, which was the methodology employed by the top three

ranked models.

4 Discussion

Our results support the hypothesis that combining modalities

as input to statistical models can yield substantially higher accuracy

using the right fusion strategy. Additionally, our results support the

hypothesis that proper use of DR can lead to optimal data fusion

strategies for predicting AD diagnoses. Most notably, multimodal

models utilizing the SE to perform intermediate fusion achieved

the highest accuracy rates, significantly outperforming all other

methods (p < 0.05). Models built with the SE-transformed features

achieve 91.6% accuracy with binary logistic regression, 86.4%

accuracy in multiclass random forest, and 86.7% accuracy with

multiclass neural network. These results also outperform existing

deep learning pipelines for AD prediction that integrate MRI and

clinical modalities from NACC data using alternative strategies

(Qiu et al., 2020), strongly suggesting that applying the SE to

TABLE 4 Comparison of ensemble models.

Voting ensemble

Modality Binary Multiclass

UDS 0.868 (0.866, 0.869) 0.812 (0.810, 0.814)

MRI 0.800 (0.795, 0.805) 0.713 (0.707, 0.719)

Simple data fusion — 0.816 (0.811, 0.821)

Early data fusion 0.882 (0.878, 0.887) 0.816 (0.811, 0.822)

Intermediate data fusion 0.895 (0.891, 0.899) 0.841 (0.835, 0.846)

12 ensemble models were created, 2 per pipeline. The multiclass ensemble model produced

diagnoses based on a majority vote of all multiclass models within that pipeline. The binary

ensemble model performed similarly, combining all binary models that applied different DR

methods in the pipeline. The simple fusion pipeline for binary classification only included one

model, which did not qualify it for building an ensemble model. Mean values (95% confidence

interval) are from 50 random testing splits. Bold values indicate the best performing fusion

strategy for each classifier.

FIGURE 3

Comparing di�erent fusion methods. We compare the top ranked fusion pipelines for binary (left) and multiclass (right) classification across DR

methods. Intermediate fusion with SE consistently ranked as the top model in both classification tasks. All binary classification tasks used logistic

regression as the classifier, and the multiclass models are labeled with the classifier used (RF, random forest; NN, neural network).
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FIGURE 4

Comparison across all models evaluated. We report the top ten models for binary (left) and multiclass (right) classification across fusion and DR

methods. Ensemble models results are indicated by hashed bars, and the remaining results are from single-model pipelines. Intermediate fusion with

SE consistently ranked as the top model. Models using single-modal CSF data did not rank among the top 10 models for either classification task. All

binary classification tasks used logistic regression as the classifier, and the multiclass models are labeled with the classifier used (RF, random forest;

NN, neural network).

perform intermediate fusionmay be an optimal data fusion strategy

for AD prediction. The next best single-modal input models,

built with UDS, achieved 88.0% for binary classification and only

81.0% for multiclass classification. This indicates the strength of

implementing intermediate fusion with SE, especially for more

challenging multiclass prediction tasks. These accuracy values were

higher than those of models built with single-modal MRI and CSF

input features (see Supplementary material).

In comparing single modality and multimodal dataset results,

it is clear that combining multiple sources of information does not

always lead to better results. Thus, it is especially important to select

the appropriate feature processing pipeline (considering DR and

fusion methods) to achieve the optimal classification performance

using multimodal data. For example, using just the UDS data could

lead to accuracy rates as high as 88.0% for the binary classification

task and 81.0% for the multiclass task. While using an appropriate

fusion strategy (i.e., intermediate fusion with SE) could increase

these accuracy rates to 91.6% and 86.7% respectively, less optimal

strategies such as simple fusion could lead to substantially worse

results. This may be due to the fact that sometimes a new source of

information (such as MRI) might introduce more noise to the data

and mask informative signals provided by the existing data (in this

case UDS).

We observed that intermediate fusion significantly

outperformed early fusion in many of the pipelines across

our experiments. Compared to early fusion, the intermediate

fusion ensemble models achieved significantly higher accuracy

values in multiclass and binary classification tasks when utilizing

SE and PCA methods (p < 0.05). The difference does not reach

significance for most models using LASSO and some models

using AE (p ≥ 0.05). The most prominent boost in performance

was observed in using SE with intermediate fusion. This suggests

that combining multimodal data later on (i.e., after DR) is more

advantageous than combining earlier in the classification pipeline

when utilizing the SE method. We reason that this is because

intermediate fusion combines various sources of information

after removing noisy information from each modality first. In

doing so, this effectively strengthens useful signals from each data

source, avoids masking diagnostically meaningful information

due to noise introduced from other (possibly weaker) data

sources, and allows the classifier to better learn the underlying

patterns from each input modality. These results support the

notion that future work in utilizing multimodal data for AD

prediction should strongly consider applying intermediate

fusion or similar strategies for data integration to obtain better

prediction results. However, as evident in the performance of

models using AE for feature extraction, simply applying a single

DR method with a fusion strategy does not always guarantee

an improvement in performance compared to simple fusion.

This is likely due to the unsupervised nature of AE, which

compresses features into a latent representation that can be

prone to include noisy data. This then makes the prediction

task more challenging, which explains the observed drop in

performance.

More broadly, we found that applying DR methods, regardless

of fusion methodology, yielded more accurate prediction results.

We observed that none of the simple fusion classification pipelines,

which do not implement DR, yielded higher prediction accuracy

values than the best performing single-modal models, using UDS

data only, that implement DR methods in their pipeline (Tables 2,

3). Additionally, a vast majority of the multimodal models that

apply DR methods, especially with a intermediate fusion strategy,

perform better than the simple fusion models, which do not use

DR methods. Specifically, six binary classification models with DR

significantly outperformed simple data fusion (p < 0.05) and four

multiclass classificationmodels withDR significantly outperformed

simple data fusion (p< 0.05). The latter models were heavily driven

by supervised DR methods, indicating that for the UDS and MRI

feature space, using a supervised DRmethod can significantly boost

prediction performance. In comparing early fusion to intermediate

fusion, we observed that six intermediate fusion models performed

better than their early fusion counterparts and only three early

fusion models performed better than their intermediate fusion

counterparts across all classification pipelines (p < 0.05). This

supports our hypothesis that multimodal input models generally

perform better whenwe apply DRmethods and intermediate fusion

tends to achieve better classification performance than the other

fusion strategies.
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The benefit of applying DR methods has been previously

reported across different fields, including in predicting drug-target

interactions and cancer status (Quinlan et al., 2015; Ezzat et al.,

2017; Kabir et al., 2023). While combining DR methods with

various classificationmodels do not guarantee improved prediction

performance, the vast majority of past work support the exploration

of DR methods in the modeling pipeline to determine if specific

DR methods may improve predictive accuracy. In the realm of AD

prediction, Shi et al. (2017) have shown that using a denoising

AE with neuroimaging data has the potential to greatly improve

predictive performance. Using clinical data, Ren et al. (2023) have

also shown that DR methods, including PCA and LASSO, are

useful for identifying relevant, important features for improving

classification performance. We extend upon those findings in this

study by including both clinical and survey data in addition to

neuroimaging features. We also compared a variety of other DR

methods to determine the optimal method for predicting AD

status using a large cohort from NACC. To our knowledge, this is

the first work to systematically compare data integration and DR

methodology using NACC data on such a large scale, with over a

sample size of over 19,000 from the UDS modality.

For a majority of the tasks we examined, both binary

and multiclass, the best performing DR method was the SE.

Unsurprisingly, since the SE optimizes latent representations of

the input features that optimize for classification performance,

using SE-transformed features based on the training set tended

to yield significantly better classification results on the test set.

However, when we examine results from early fusion (Table 3),

we observed that LASSO was the best performing DR method

across all classification tasks and classifiers. We hypothesize that

this may be due to the inherent differences between early fusion

and other fusion methods. Because all features are concatenated

prior to DR in early fusion, the DR method has a greater burden

to identify relevant features that contribute most to optimal

prediction. When constructing the SE model, the number of

nodes in the code (latent representation) of the models inherently

limits the dimensionality of the information used for subsequent

classification. While this is beneficial in intermediate fusion,

because each modality is considered separately to maximize signal

to noise of the input features, this bottleneck becomes more

limiting in early fusion due to potentially confounding signal and

noise across modalities when learning the latent representations.

As a result, the DR method has less capability to discern useful

features from each modality and instead becomes a bottleneck

for passing useful information to the classifier. On the other

hand, LASSO has the strengths of being able to penalize the

model from selecting features that do not carry additionally

useful information for AD prediction, making it a powerful

tool for removing noisy features regardless of the modalities

considered.

We also observed that PCA was competitive with LASSO

and SE for single modality models using MRI data. Due to

the inherent noise introduced by the correlated and interrelated

volumetric and cortical thickness values derived from a T1-

weighted MRI scan used for these features, we hypothesize that

PCA provides a more stringent method for distinguishing the

top features due to its orthogonality requirements. This can

serve to address the high levels of multicollinearity amongst

features that make the high dimensional feature space difficult

to navigate when attempting to reduce the dimensionality of the

input features. Given this, we also observe that LASSO performs

similarly to PCA (overlapping confidence intervals) for MRI-

only models, due to its shared ability to penalize the model to

reduce multicollinearity. In contrast, while the SE is able to find

a compressed representation of the feature space, it does not

employ the same penalization strategy of LASSO or orthogonal

constraints of PCA to achieve the the same results. Thus, the SE

lags slightly behind for the binary classification task and when

using an neural network for multiclass classification withMRI-only

models.

Using our model, we inferred the most significant risk factors

of AD from features selected from the top performing intermediate

fusion SE model using a neural network. We used permutation

feature importance to obtain the top ranked UDS andMRI features

from the model:

• UDS: TAXES, STOVE, REMDATES, TRAVEL, MEMPROB,

APASEV

• MRI: HIPPOVOL, THIRVENT, LENTM, LINFTEMM,

LROSMFM, LSUPFRM, RCMF, RENTM, RPARCENM,

RPERCAL

The selectedUDS features chiefly involve behavioral symptoms,

such as having difficulty with performing everyday tasks. These

include managing taxes (TAXES), using a stove or heating

appliance for preparing drinks or cooking (STOVE), traveling

in or out of the neighborhood (TRAVEL), and remembering

key events (REMDATES). Other important UDS features include

subsets of the Geriatric Depression Scale (self report of having

more memory problems than most, MEMPROB) and the

Neuropsychiatric Inventory Questionnaire (reports of apathy or

indifference, APASEV). These important features corroborate our

understanding of the interplay between functional and behavioral

changes and neuropsychiatric symptoms along the Alzheimer’s

continuum (Masters et al., 2015; You et al., 2015). However, due

to the limited range and specificity of the clinical diagnosis for

capturing all potential causes of cognitive and behavioral changes,

we should also note that changes in these features are not unique to

AD pathology (Ismail et al., 2016).

Among the selected MRI features, the hippocampus

(HIPPOVOL) and ventricular (THIRVENT) volumes appear

to be most significant, which aligns with existing literature (Deweer

et al., 1995; Devanand et al., 2007). Furthermore, left brain volumes

seem to be of greater importance than right brain as they were

ranked higher in feature importance according to our model.

These left brain features included the thickness of the inferior

temporal (LINFTEMM), rostral middle frontal (LROSMFM), and

superior frontal cortex (LSUPFRM). Some of these regions have

been previously identified in being significantly different between

individuals with MCI and with dementia (Singh et al., 2006). The

significant right brain features include the caudal middle frontal

gray matter volume (RCMF) and thickness of the paracentral

cortex (RPARCENM) and pericalcarine cortex gray matter volume

(RPERCAL). Many of these regional cortical thickness values have
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been previously implicated in successful aging (Dominguez et al.,

2021). Additionally, other top features include entorhinal cortical

thickness values (LENTM, RENTM), which have been heavily

studied in AD-related changes and implicated as one of the early

markers of decline (Killiany et al., 2002; Velayudhan et al., 2013).

These findings suggest that behavior and left brain features should

be of particular importance when analyzing features that are useful

for AD diagnosis prediction. However, interpreting these feature

importance values must be done in the context of the NACC

dataset used in this study and more work must be conducted to

assess if the intermediate SE pipeline focuses on similar features in

other datasets.

We also further analyzed if there were significant differences

in model performance across each demographic group highlighted

in Table 1. Demographic trends indicate that, in our dataset, the

subjects with cognitive impairment are, on average, older and tend

to be male and of Hispanic ethnicity. Using the results from the top

model, with intermediate fusion, SE, and a neural network classifier,

we computed the number of corrected predicted subjects in the

test set stratified by demographic feature category. We conducted

Chi-squared tests for each demographic variable, including age

(grouped by decade), sex, education level (grouped as 0–12, 12–

16, and 16 or more years of education), race, and ethnicity, and

found no significant differences in prediction results across each

feature (p ≥ 0.05). This indicates that our findings are not driven

by demographic differences in the dataset or biased to the majority

group within each demographic feature.

Our assessment of multimodal model performance has the

limitation of being unable to consider CSF data in the multimodal

model. Firstly, DR algorithms often did not select CSF features as

significant in a pool of UDS, MRI, and CSF features. Secondly, the

number of patients who have gone through both a UDS assessment

and MRI screening within a reasonable timeframe, in addition

to having CSF data collection, was too low to create a dataset

for evaluating multimodal models that included CSF data. In the

future, we may attempt to resolve these two issues by using other

databases or by weighing the CSF features more heavily in the

DR procedure. Our analyses were also limited by access to other

key modalities in the AD field, such as PET scans and plasma

biomarkers, which would greatly strengthen future work in this

area. Plasma biomarkers, in particular, should be incorporated

into future work investigating multimodal fusion in order to

improve screening and early diagnosis using widely accessible

data modalities. With additional modalities, more DR methods

should also be explored in future studies, such as independent

component analysis and linear discriminant analysis, to determine

if certain DR methods are preferentially useful for particular data

sources. We should also note that the target labels used to train the

models come from clinical diagnosis, which may not always align

with the underlying neuropathology observed postmortem (Beach

et al., 2012). Due to this, the prediction accuracy results should

be considered only in the context of predicting clinical judgments.

Future work should also include comparisons with late fusion,

which combines decision-level results from classifiers trained on

different data modalities, as an additional strategy, which was not

explored here due to its relative lack of use in the AD prediction

literature. Additionally, it is difficult to generalize the results of our

study to all older adults at risk of AD. The data is not representative

of the broader American population due to its reliance on voluntary

participation and a skewed demographic profile, with predominant

representation of White individuals and patients with high levels

of education. Future work in this area should seek to incorporate

more diverse data sources and samples.

The results from this study demonstrate that computational

models for AD diagnosis can be substantially enhanced with

appropriate data fusion and DR methods. From our systematic

comparison of various pipelines to combine different forms of

diagnostic data, including clinical information and MRI scans,

we present a comprehensive look at optimal multimodal data

integration methods for AD prediction. This work serves as a

foundation for designing improved computational strategies to

predict AD by effectively integrating multimodal information.

Due to limited exploration in the literature on optimal data

integration methods that extend beyond neuroimaging modalities,

these results are useful to many researchers in the AD field.

DR plays a significant role in increasing accuracy of disease

prediction tasks, particularly in pipelines using the SE method.

This has the largest impact on improving accuracy results when

applied in a multimodal data setting and for multiclass prediction,

which are the more challenging and meaningful data integration

tasks. We recommend researchers to explore intermediate fusion

using various DR methods, including the SE we present here.

Our findings on the effectiveness of using multimodal input, the

best performing methods of DR, and the optimal data fusion

strategy offer valuable insights in the development of more robust

computational methods for diagnosing Alzheimer’s.
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