
TYPE Original Research

PUBLISHED 24 November 2023

DOI 10.3389/frdem.2023.1271680

OPEN ACCESS

EDITED BY

Mohammad H. Mahoor,

University of Denver, United States

REVIEWED BY

Farida Far Poor,

University of Denver, United States

Giuseppe Carenini,

University of British Columbia, Canada

*CORRESPONDENCE

Honghuang Lin

honghuang.lin@umassmed.edu

†Data used in preparation of this article were

obtained from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). As such, the investigators

within the ADNI contributed to the design and

implementation of ADNI and/or provided data

but did not participate in analysis or writing of

this report. A complete listing of ADNI

investigators can be found at: http://adni.loni.

usc.edu/wp-content/uploads/how_to_apply/

ADNI_Acknowledgement_List.pdf

RECEIVED 02 August 2023

ACCEPTED 03 November 2023

PUBLISHED 24 November 2023

CITATION

Ding H, Wang B, Hamel AP, Melkonyan M,

Ang TFA, Au R and Lin H (2023) Prediction of

progression from mild cognitive impairment to

Alzheimer’s disease with longitudinal and

multimodal data. Front. Dement. 2:1271680.

doi: 10.3389/frdem.2023.1271680

COPYRIGHT

© 2023 Ding, Wang, Hamel, Melkonyan, Ang,

Au and Lin. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Prediction of progression from
mild cognitive impairment to
Alzheimer’s disease with
longitudinal and multimodal data

Huitong Ding1,2, Biqi Wang3, Alexander P. Hamel3,

Mark Melkonyan3, Ting F. A. Ang1,2,4, for the Alzheimer’s Disease

Neuroimaging Initiative†, Rhoda Au1,2,4,5,6 and Honghuang Lin3*

1Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of

Medicine, Boston, MA, United States, 2The Framingham Heart Study, Boston University Chobanian &

Avedisian School of Medicine, Boston, MA, United States, 3Department of Medicine, University of

Massachusetts Chan Medical School, Worcester, MA, United States, 4Slone Epidemiology Center, Boston

University Chobanian & Avedisian School of Medicine, Boston, MA, United States, 5Department of

Epidemiology, Boston University School of Public Health, Boston, MA, United States, 6Departments of

Neurology and Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA,

United States

Introduction: Accurate prediction of the progression from mild cognitive

impairment (MCI) to Alzheimer’s disease (AD) within a certain time frame is crucial

for appropriate therapeutic interventions. However, it is challenging to capture the

dynamic changes in cognitive and functional abilities over time, resulting in limited

predictive performance. Our study aimed to investigate whether incorporating

longitudinal multimodal data with advanced analytical methods could improve the

capability to predict the risk of progressing to AD.

Methods: This study included participants from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI), a large-scale multi-center longitudinal study.

Three data modalities, including demographic variables, neuropsychological tests,

and neuroimagingmeasures were considered. A Long Short-TermMemory (LSTM)

model using data collected at five-time points (baseline, 6, 12, 18, and 24-month)

was developed to predict the risk of progression from MCI to AD within 2 years

from the index exam (the exam at 24-month). In contrast, a random forest model

was developed to predict the risk of progression just based on the data collected

at the index exam.

Results: The study included 347 participants with MCI at 24-month (age: mean

75, SD 7 years; 39.8% women) from ADNI, of whom 77 converted to AD over a 2-

year follow-up period. The longitudinal LSTM model showed superior prediction

performance of MCI-to-AD progression (AUC 0.93 ± 0.06) compared to the

random forest model (AUC 0.90± 0.09). A similar pattern was also observed across

di�erent age groups.

Discussion: Our study suggests that the incorporation of longitudinal data can

provide better predictive performance for 2-year MCI-to-AD progression risk

than relying solely on cross-sectional data. Therefore, repeated or multiple times

routine health surveillance of MCI patients are essential in the early detection and

intervention of AD.

KEYWORDS

MCI-to-AD progression, longitudinal data, multimodal data, machine learning, prediction

Frontiers inDementia 01 frontiersin.org

https://www.frontiersin.org/journals/dementia
https://www.frontiersin.org/journals/dementia#editorial-board
https://www.frontiersin.org/journals/dementia#editorial-board
https://www.frontiersin.org/journals/dementia#editorial-board
https://www.frontiersin.org/journals/dementia#editorial-board
https://doi.org/10.3389/frdem.2023.1271680
http://crossmark.crossref.org/dialog/?doi=10.3389/frdem.2023.1271680&domain=pdf&date_stamp=2023-11-24
mailto:honghuang.lin@umassmed.edu
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.3389/frdem.2023.1271680
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frdem.2023.1271680/full
https://www.frontiersin.org/journals/dementia
https://www.frontiersin.org


Ding et al. 10.3389/frdem.2023.1271680

1 Introduction

Mild cognitive impairment (MCI) is a syndrome characterized

by cognitive decline, but not to the extent that it significantly affects

a person’s daily activities (Werner and Korczyn, 2008). MCI is

considered an intermediate and dynamic stage between normal

aging and dementia (Mielke et al., 2014). Individuals diagnosed

with MCI are at an increased risk of developing Alzheimer’s disease

(AD) (Albert et al., 2011), with a progression rate of 10–15% per

year (Petersen et al., 1999). The American Academy of Neurology

acknowledges the significance of individuals with MCI as a clinical

population that needs to be identified and monitored (Petersen

et al., 2001). However, MCI is a very heterogeneous disease and

many patients might not progress for many years (Jack Jr et al.,

2013). Therefore, identifying MCI patients, who are at risk of rapid

progression to AD, is a crucial step in initiating timely interventions

to prevent or slow down the AD onset.

Emerging research has utilized a variety of cross-sectional

data to predict the progression from MCI to AD (Ye et al.,

2012; Wee et al., 2013; Li et al., 2016). However, these models

may be insufficient to capture the dynamic changes in cognitive

and functional abilities that occur over time in individuals

with MCI, which can limit their accuracy in predicting MCI

to AD progression. Neuropsychological (NP) tests and brain

magnetic resonance imaging (MRI) measures are two primary

clinical indices of neurodegeneration. Studies have shown that

these indicators exhibit longitudinal changes that are helpful in

diagnosing dementia (Fox and Schott, 2004; Nation et al., 2019).

Therefore, it would be interesting to harness data collected at

multiple time points to predict the risk of progression from MCI

to AD.

Longitudinal clinical exams can be challenging to analyze due to

the heterogeneity of AD progression. Traditional methods of risk

prediction, such as random forest models, have limited capacity

to capture complex temporal patterns and dependencies across

multiple time points. These methods usually rely on aggregating

the data across different time points, which may result in a

loss of important information reflecting the fluidity of disease

expression. Prior research utilizing longitudinal data to predict

MCI to AD progression has shown constrained predictive efficacy

(Misra et al., 2009; Er and Goularas, 2020). Recent advances in

deep learning networks, such as the Long Short-Term Memory

(LSTM) models, provide a promising solution to better capture

the temporal dynamics of longitudinal data. The ease of data

acquisition also plays a pivotal role in developing longitudinal

models. For instance, positron emission tomography (PET) data

collection incurs relatively high costs and poses challenges in

obtaining longitudinal data. Consequently, models relying on PET

data may not be directly applicable in more general populations

(Zhang et al., 2012).

Using longitudinal data collected from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI), the objectives of this study

were to determine whether: (a) incorporating data at multiple

time points could improve the predictive performance of MCI

to AD progression than single time point prediction; (b)

clinical manifestations (NP tests), neuroimaging biomarkers (MRI

measures), and well-documented demographic risk factors (age,

sex, education) capture complementary information and can

improve the prediction of MCI-to-AD progression.

2 Materials and methods

2.1 Study population

Data used in the preparation of this article were obtained

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (adni.loni.usc.edu). The ADNI was launched in 2003 as

a public-private partnership, led by Principal Investigator Michael

W. Weiner, MD (Carrillo et al., 2012). The primary goal of ADNI

has been to test whether serial MRI, positron emission tomography,

other biological markers, and clinical and neuropsychological

assessment can be combined to measure the progression of MCI

and early AD.

The ADNI Participants had repeated clinical examinations,

including a neuropsychological assessment and MRI scan,

approximately every 6 months. The study utilized several measures

including subjective memory concern, the Logical Memory Test

(LMT), Mini-Mental State Exam (MMSE), Clinical Dementia

Rating scale (CDR), and the National Institute of Neurological

and Communicative Disorders and Stroke and the Alzheimer’s

Disease and Related Disorders Association Alzheimer’s Criteria

(NINCDS-ADRDA) to diagnose MCI and AD. More details on

ADNI’s diagnostic criteria and methods can be found in General

Procedures Manual on the ADNI website1. For participants with

missing diagnosis at a specific exam, we interpolated the diagnosis

by the status from the immediate prior and follow up exams if

the diagnosis was consistent. For example, if the diagnoses at the

immediate prior exam and the follow up exam were both MCI, the

diagnosis for the current exam was assumed as MCI.

This study utilized the ADNI-Merge dataset (IDA, 2023), which

was downloaded in May 2023 for the current analysis. The ADNI

Merge dataset combines data from the ADNI-1, ADNI-GO, and

ADNI-2 studies, accumulating to over 2,400 participants. We

included only participants who were non-AD (cognitively intact or

MCI) at the baseline examination (n = 2,016). We then restricted

to participants who had corresponding NP tests and MRI measures

collected at five time points (baseline, 6, 12, 18, and 24-month)

and were diagnosed with MCI at 24-month (n = 553). The index

exam is defined as the exam at 24-month, and the outcome is

defined as the progression from MCI to AD before 48-month. The

participants who either reverted to normal cognitive status (n= 19)

or cannot determine the cognitive status at the 48-month follow-up

examination (n = 187) were excluded. The remaining participants

who converted to AD (MCI converts, MCI-C for short) or remain

MCI (MCI non-converters, MCI-NC for short) at 48-month were

included as the final samples (n= 347) (Figure 1). The study design

adhered to the TRIPOD (Transparent Reporting of a multivariable

prediction model for Individual Prognosis Or Diagnosis) statement

(Collins et al., 2015).

1 https://adni.loni.usc.edu/
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FIGURE 1

Sample selection diagram of this study.

2.2 Neuropsychological assessment

Details of the neuropsychological assessment in ADNI have

been previously described (Aisen et al., 2010). In this study,

we included 15 NP tests such as the functional assessment

questionnaire (FAQ) (Pfeffer et al., 1982); the sum of boxes of

the clinical dementia rating (CDR-SB) (Morris, 1993); Alzheimer’s

Disease Assessment Scale-Cognitive Subscale 11 (ADAS-cog 11),

Subscale 13 (ADAS-cog 13), and Delayed Word Recall (ADAS-

Q4) (Rosen et al., 1984); Mini-Mental State Examination (MMSE)

(Folstein et al., 1975); Montreal Cognitive Assessment (MoCA)

(Nasreddine et al., 2005); logical memory delayed recall total

(LDELTOTAL) score (Wechsler, 1987); the Modified Preclinical

Alzheimer Cognitive Composite with Trail Making Test B

(mPACC-trailsB) and Digit Symbol Substitution (mPACC-digit)

(Donohue et al., 2014); Trail Making Test B (Trails B) (Tombaugh,

2004); and different summary scores derived from raw Rey

Auditory Verbal Learning Test (RAVLT) scores (Schmidt, 1996),

including RAVLT Immediate [the sum of scores from 5 first trials

(Trials 1 to 5)], RAVLT Learning (the score of Trial 5 minus the

score of Trial 1), RAVLT Forgetting (the score of Trial 5 minus

score of the delayed recall) and RAVLT Percent Forgetting (RAVLT

Forgetting divided by the score of Trial 5).

2.3 MRI data

The MRI protocol adopted by the ADNI has been previously

described (Jack Jr et al., 2008). In summary, the study utilized

T1-weighted images acquired from ADNI-approved 3 T scanners,

which were cross-sectionally processed using the 2010 Desikan-

Killiany atlas with FreeSurfer image analysis suite, version 5.1. The

image processing procedures involve several steps, such as motion

correction and averaging of multiple volumetric T1 weighted

images (Reuter et al., 2010), as well as removal of non-brain

tissue using a hybrid watershed/surface deformation procedure

(Ségonne et al., 2004). More detailed technical information about

these procedures is available in a prior publication (Valerio et al.,

2021). TheMRImeasures included in this study were hippocampus

volume, entorhinal cortex volume, middle temporal gyrus volume,

fusiform volume, ventricle volume, whole brain volume, and

intracranial volume. To account for differences in head size, all

MRI measures were normalized by calculating the percentage of

these volumes over the intracranial volume. This correction factor

allowed for comparisons across participants with varying head

sizes, ensuring that the MRI measures were adjusted for individual

variations in brain size.

2.4 Machine learning models

This study developed a LSTM model from multimodal data

collected at five time points (baseline, 6, 12, 18, and 24-month)

to predict 2-year risk of progression from MCI to AD (Figure 2).

LSTM is a type of recurrent neural network that is well-suited to

modeling sequential data (Yu et al., 2019). The proposed model

consisted of two input layers including an LSTM layer (dynamic

layer) and a fully connected dense layer with a rectified linear unit

Frontiers inDementia 03 frontiersin.org

https://doi.org/10.3389/frdem.2023.1271680
https://www.frontiersin.org/journals/dementia
https://www.frontiersin.org


Ding et al. 10.3389/frdem.2023.1271680

FIGURE 2

The framework of the LSTM model.

(ReLU) activation function (static layer). Dynamic features (MRI

measures and NP tests) collected from five clinical exams were used

as the input for the LSTM layer, while the input for the dense layer

was static features including demographic information such as age,

sex, and education. The output of the LSTM and dense layers were

concatenated and passed through a fully connected softmax layer

with two output units. We implemented Bayesian optimization

(Snoek et al., 2012) to search for the best hyperparameters for the

LSTM model. The hyperparameters optimized were learning rate,

dropout rate, recurrent dropout rate, number of units in the LSTM

layer, and number of units in the dense layer for static variables.

The hyperparameter search space was specified with lower and

upper bounds for each hyperparameter, including learning rate

(0.0001, 0.02), dropout rate (0.05, 0.5), recurrent dropout rate

(0.05, 0.5), number of units in the dynamic layer (2, 20), and

number of units in the static layer (2, 5). The optimization was

performed using two separate 10-fold cross-validation procedures

for hyperparameter selection and model performance evaluation.

The objective function being optimized was the average area under

the receiver operating characteristic (ROC) curve (AUC) across all

folds. In each fold, the AdamW optimizer (Loshchilov and Hutter,

2017) was used and the model was trained for a fixed number of

epochs with early stopping to prevent overfitting. We further built

the model based on the selected best hyperparameters and evaluate

its 2-year risk prediction performance.

Random forest, a decision-tree based approach, have gained

popularity in the medical field due to their ability to identify

complex interactions and nonlinearities of predictor effects (Rigatti,

2017). Given its versatility and performance, we built a random

forest model with data collected at the 24-month time point for

comparison in this study (Supplementary Figure 1). The model

consisted of 100 decision trees. During training, each tree was built

using a random subset of the data and considered a subset of

features at each node. The predictions of individual trees were then

aggregated to generate more accurate and reliable predictions.

2.5 Statistical analyses

All continuous variables (i.e., NP test scores andMRImeasures)

were normalized to have a mean of zero and standard deviation

of one. Differences in characteristics between MCI-C and MCI-

NC were compared using the Wilcoxon Rank-Sum test for

continuous variables and Fisher’s exact test for categorical variables.

Statistical significance was considered for P-values < 0.05. In

the analysis, variables with missing values comprising more than

50% were excluded. Multiple imputations using the chained

equations (MICE) method (Azur et al., 2011) was used to impute

the remaining features with missing values. We performed the

DeLong test to examine whether there is a significant difference

of performance between the LSTM model and the random

forest model.

We constructed two single modality LSTMmodels using either

NP tests or MRI measures to examine the improvement in 2-

year progression risk prediction performance with multimodal

data. In these models, the structure of the LSTM model was

modified by removing the static layer, leaving only the dynamic

layer, while keeping the other hyperparameters and optimization

methods unchanged.

We further conducted a sensitivity analysis to test the stability

of the predictive power of the LSTM model with longitudinal and

multimodal data by restricting the analysis to participants whowere

65 years or older (n= 307, 75MCI-C) or 70 years or older (n= 256,

68 MCI-C) at 24-month.

3 Results

3.1 Cohort descriptive

This study included 347 ADNI participants (mean age 75 ±

7 years old and 39.8% women) at the index exam (24-month).

Their clinical characteristics are presented in Table 1. Participants

were followed up for 2 years since the index exam (equivalent

to 48-months since the baseline exam), during which 77 (22.2%)

were converted to AD. In comparison with those who remained

as MCI, patients who progressed to AD were generally older and

had lower NP test performance at the index exam. There was no

significant difference between the two groups in terms of sex or

education. Apart from the ventricle volume, the volumes of all other

brain regions were found to be smaller in MCI converters than in

MCI non-converters.

3.2 Predictive performance of LSTM and
random forest models

As shown in Figure 3, the LSTM model, which incorporates

longitudinal data (baseline, 6, 12, 18, and 24-month), achieved a
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TABLE 1 Clinical characteristics of the study participants at index exam

(24-month).

Variable MCI-C
(n = 77)

MCI-NC
(n = 270)

P-
value

Demographics

Age (years), mean

± SD

76.3± 6.5 74.2± 7.4 0.034

Women, n (%) 33(42.9%) 105(38.9%) 0.620

Years of education,

mean± SD

15.9± 2.7 16.0± 2.7 0.808

NP tests, mean ± SD

FAQ 6.88± 5.45 2.01± 3.02 <0.001

CDR-SB 2.64± 1.17 1.23± 0.88 <0.001

ADAS-cog 11 13.45± 5.18 7.96± 3.71 <0.001

ADAS-cog 13 21.74± 7.09 12.90± 5.73 <0.001

ADAS-Q4 7.31± 2.28 4.31± 2.40 <0.001

MMSE 26.21± 2.01 28.19± 1.91 <0.001

MoCA 21.72± 2.85 24.48± 3.06 <0.001

LDELTOTAL 3.59± 3.95 9.43± 4.81 <0.001

mPACC-trailsB −8.83± 3.62 −3.13± 3.81 <0.001

mPACC-digit −9.45± 3.97 −3.53± 4.48 <0.001

Trails B 121.18± 70.40 93.89± 42.93 0.002

RAVLT Immediate 28.75± 8.31 38.34± 11.15 <0.001

RAVLT Learning 2.99± 2.55 4.68± 2.81 <0.001

RAVLT Forgetting 5.39± 2.09 4.51± 2.83 0.003

RAVLT Percent

Forgetting

82.97± 24.92 52.89± 33.36 <0.001

MRI measures, mean ± SD

Hippocampal

volume (%)

0.39± 0.07 0.47± 0.09 <0.001

Entorhinal cortex

volume (%)

0.19± 0.04 0.25± 0.05 <0.001

Middle temporal

gyrus volume (%)

1.17± 0.13 1.35± 0.16 <0.001

Fusiform volume

(%)

1.05± 0.18 1.21± 0.18 <0.001

Ventricle volume

(%)

2.95± 1.35 2.49± 1.30 0.018

Whole brain

volume (%)

64.69± 4.55 69.00± 6.25 <0.001

significantly higher mean AUC (0.93 ± 0.06) than the random

forest model based on the data collected at a single time point

(24-month) (0.90 ± 0.09) (DeLong test P = 0.039). Additionally,

we constructed two random forest models using the data collected

across the same five time points (baseline, 6, 12, 18, and 24-

month): one using the mean of the data which achieved an AUC

of 0.87 ± 0.10, and another using all data which achieved an AUC

of 0.89 ± 0.10. This indicates that multimodal data collected at

each individual exam provide complementary information for the

prediction of MCI-to-AD progression.

FIGURE 3

The ROC curves of LSTM and random forest models for predicting

2-year risk of progression from MCI to AD using three data

modalities. The blue line represents the LSTM model (baseline, 6, 12,

18, and 24-month), which showed the best performance (AUC

0.93). The red line represents the random forest model with single

time point data (24-month) (AUC 0.90).

Figure 4 displays the prediction results of the LSTM and

random forest models, using single modalities to predict 2-year

risk of progression. The LSTM model utilizing longitudinal data

reached the best performance, comparing to an AUC of 0.86 when

usingMRImeasures. The performance of the random forestmodels

using MRI measures had an AUC of 0.85. In terms of NP tests, the

LSTMmodel outperformed the random forest model, achieving an

AUC of 0.89 compared to 0.87.

We further performed the sensitivity analysis by restricting

study participants across different age groups. The random forest

models built on a single time point reached the AUC of 0.89

and 0.87 for participants aged above 65 and 70, respectively. The

random forest model using the mean of longitudinal data showed

the performance with the AUC of 0.87 and 0.85 for participants

aged above 65 and 70, respectively. The LSTMmodels continued to

exhibit the best performance for participants aged above 65 (AUC

0.92) and 70 (AUC 0.90) years old (Supplementary Figure 2).

4 Discussion

The progression from MCI to AD is heterogeneous. This study

utilized the longitudinal multimodal data from the ADNI and

built an LSTM model to predict the 2-year progression risk with

an AUC of 0.93. Our results confirmed that incorporating data

from multiple time points improved the predictive performance

compared to using a single data point across different age-

restricted groups.

Timely detection of the progression of MCI to AD is crucial as

it enables early interventions such as lifestyle changes, medication,

and cognitive training to be implemented, which could potentially

delay the onset or slow the progression to AD. As an example,

a 2-year delay in the onset of AD could lead to an estimated

decrease of approximately 22.8 million cases worldwide by the year
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FIGURE 4

The ROC curves of LSTM and random forest models with single modalities for predicting 2-year risk of progression from MCI to AD.

2050 (Brookmeyer et al., 2007; Chuang et al., 2016), underscoring

the significant impact even a relatively small delay in disease

onset could have on the global burden of AD. Several prior

studies have employed cross-sectional data to predict MCI to AD

progression using various biomarkers. For instance, MRI measures

of hippocampal and entorhinal cortex atrophy have been utilized

in the prediction models (Devanand et al., 2007), as well as

cerebrospinal fluid biomarkers (Llano et al., 2019). However, as

MCI is a heterogeneous syndrome characterized by differences in

cognitive profile and clinical progression, predicting the outcome

for patients with MCI remains a challenging task.

The life-course perspective emphasizes that health and disease

are shaped by a combination of genetic, environmental, and social

factors across an individual’s lifespan (Kuh and Shlomo, 2014). In

recent years, the understanding of AD has shifted toward a gradual

accumulation of pathological changes leading to clinical decline,

with dementia being the end stage of this process. Studies have

suggested that certain factors in midlife, such as LDL cholesterol

level (Iwagami et al., 2021), hypertension (Kennelly et al., 2009),

and obesity (Pedditizi et al., 2016), are associated with an increased

risk of developing AD. Long hierarchical preclinical trajectory

of cognitive function decline in dementia were also observed

(Verlinden et al., 2016). Multiple MRI measures in midlife were

associated with the risk of developing dementia in later life (Debette

et al., 2009). These findings are suggestive of a prolonged subclinical

phase before the onset of dementia. In this context, the integration

of longitudinal clinical exam data from multiple time points allows

for a more comprehensive understanding of disease progression.

Using past clinical exam data collected from multiple time points

is advantageous over relying on a single exam because a single

clinical exam may not capture dynamic changes in cognitive and

functional abilities.

This study employed LSTM to recognize longitudinal patterns

of disease progression that may not be apparent using traditional

statistical methods. This feature makes LSTM an appealing method

to improve our understanding of disease progression, ultimately

leading to better patient outcomes. The model remained stable

when restricted to different age groups. In contrast, the random

forest models based on a single time point data had relatively large

fluctuations in the prediction performance. Our results suggest

that accurate dementia prediction becomes more challenging for

older populations, especially when using only cross-sectional data.

This difficulty arises primarily from the higher prevalence of age-

related comorbidities among older individuals, including cognitive

decline associated with natural aging. Consequently, distinguishing

between early-stage dementia and normal age-related cognitive

changes becomes more challenging in this population (Belleville

et al., 2017).

The primary clinical indices of neurodegeneration, NP tests

and MRI biomarkers each predict risk of progression from MCI to

AD, but the combinations of these measures substantially improve

prediction performance. Using NP tests for the diagnosis of AD

and MCI can be circular, as these conditions are diagnosed based

on the severity of cognitive dysfunction. However, the severity of

cognitive impairment in MCI can vary widely, and the more severe

the impairment, the greater the likelihood of decline to dementia.

This is consistent with the findings of our study, which showed that

using only NP tests achieved better predictive performance than

using only MRI. MRI measures are more likely to be influenced by

other factors unrelated to cognitive decline such as atrophy due to

aging (Schott et al., 2005). The improved predictive performance

from combined use of these measures argues strongly for their

inclusion in the clinical investigation of suspected AD.

The present study has several limitations. First, our proposed

method relies on longitudinal data and thus requires each subject to

have the corresponding modality data across multiple time points.

Future research should explore models that can handle uneven

exam intervals. Additionally, our study only included longitudinal

data collected from five time points within the 2-year period. It

would be valuable to further extend the study to include longer

follow-up time. Furthermore, our findings are based on a relatively

small sample size. Future studies with larger sample sizes should be

considered to validate the results. In terms of clinical applicability,

the implementation of the model in a clinical setting may present
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challenges due to its reliance on advanced analytical methods and

complex algorithms. Proper interpretation of the model’s findings

would require specialized knowledge and skills.

In summary, by incorporating longitudinal multimodal data,

our LSTM model achieved superior performance in predicting

progression from MCI to AD compared to using data collected

at a single time point. This demonstrates that a longitudinal and

comprehensive assessment of cognitive and functional decline can

serve as a valuable data resource in improving the predictive

capability of disease progression. Future utilization of life course

information will further improve the prediction capability for MCI

to AD progression.
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