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Hearing loss is an important risk factor for the development of dementia,

particularly Alzheimer’s disease (AD). Mid-life hearing loss increases the risk of

developing dementia by double any other single factor. However, given this

strong connection between hearing loss and AD, the mechanisms responsible

for this link are still unknown. Data from observational studies relating hearing

loss and cognitive impairment, measured with standardized questionnaires, has

shown a strong relationship between them. Similar findings have emerged from

animal studies, showing that the induction of hearing loss via prolonged loud

sound exposure or ear canal blocking, can impair cognitive abilities. Interestingly,

patients with age-related hearing impairment exhibit increased phosphorylated

tau in the cerebrospinal fluid, but no such relationship has been identified for

amyloid-β. In addition, hearing loss predisposes to social isolation precipitating

the development of dementia through a supposed reduction in cognitive load

and processing requirements. Given this link between hearing loss and dementia,

the question arises whether the restoration of hearing might mitigate against

the onset or progress of AD. Indeed, there is a growing body of research that

suggests that those who wear hearing aids for age-related hearing problems

maintain better cognitive function over time than those who do not. These are

compelling findings, as they suggest the use of hearing aids has the potential to

be a cost-e�ective treatment for those with hearing loss both prior (for those at

high risk for AD) and after the development of symptoms. This review aims to

summarize the current theories that relate hearing loss and cognitive decline,

present the key findings of animal studies, observational studies and summarize

the gaps and limitations that need to be addressed in this topic. Through this, we

suggest directions for future studies to tackle the lack of adequately randomized

control trials in the field. This omission is responsible for the inability to provide a

conclusive verdict on whether to use hearing interventions to target hearing-loss

related cognitive decline.
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1. Introduction

Dementia poses a global burden—a 2022 report estimated that in 2019, 55 million
people were living with a diagnosis of dementia (Gauthier et al., 2022). Future
projections suggest that dementia will continue to increase in prevalence, approaching
140 million individuals by 2050 (Gauthier et al., 2022). To slow this exponential
growth, novel interventions, either improving management of those already diagnosed,
or via the prevention of those at an increased risk of developing it, are imperative.
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Logically, risk factors for impaired cognition precede those
for dementia, due to its clinical progression. Notably, age is
distinguished as an important risk factor—the natural aging process
leads to an inherent risk of cognitive decline, independent of
dementia. Indeed, aging itself is simultaneously associated with
a 70% increased incidence of dementia (Juan and Adlard, 2019).
In addition, it is well established that loneliness and social
isolation are contributing factors in poor cognitive performance,
and are associated with an increased rate of decline (Cacioppo
and Hawkley, 2009; Dominguez et al., 2021). Further to this,
research has shown that individuals categorized as socially isolated
have a 50% increased relative risk of developing dementia (Evans
et al., 2018; Dominguez et al., 2021). Interestingly, a recent
Lancet review (Livingston et al., 2020) focusing on various
modifiable risk factors for the development of dementia, showed
the importance of risk reduction, suggesting that modifying
such risk factors has the potential to reduce the likelihood
of dementia by 40% (LaPlume et al., 2022). Among different
risks factors, including traumatic brain injury, hypertension,
depression, and diabetes mellitus, the review highlights hearing
loss (HL) as one of the potential factors that, when excluded,
reduced the risk of dementia by 8%. Mild, moderate or severe
HL particularly in the middle-life (specified as between the
ages of 45 and 65) has been associated with an increase
of 2, 3 and 5 times respectively in the risk of reduced
cognition and dementia (Lin et al., 2011; Livingston et al., 2020).
Furthermore, observational studies suggest that the severity of
hearing impairment (HI) is associated with a risk of accelerated
cognitive decline (LaPlume et al., 2022), and one report even
demonstrated that the dementia risk increased linearly with the
severity of baseline HL (1.27 per 10 dB loss) (Ford et al., 2018).
However, limitations remain regarding confounding factors, which
may influence the generalizability of these findings (Ford et al.,
2018).

In this review, we explore HL as a risk factor for the
development of cognitive impairment and dementia, focusing
on molecular mechanisms. Through this, we summarize
the research surrounding clinical manifestations of HL in
dementia, proposed mechanisms to this relationship, and
the role of interventions, including the use of hearing
aid (HA) devices to minimize the effects of HL in the
progression of cognitive impairment to dementia. We
highlight the importance of further understanding the
relationships between the proposed mechanisms and cognitive
impairment, with the eventual aim of providing effective novel
interventions to mitigate the risk of HL in the development
of dementia.

2. Causes of hearing loss and their link
to dementia

Hearing loss affects currently 466 million people Worldwide
(World Health Organisation, 2021). Individuals suffering from
disabling HL account for over 5% of the global population (World
Health Organisation, 2021) and it is predicted that by 2050,
nearly 1 in every 10 people will require hearing rehabilitation.
Causative factors of hearing loss include genetic factors, ear

infections, cerumen impaction (impacted ear wax), trauma to the
ear or head, loud noise/loud sounds (NHL), ototoxic medicines
and others.

HL mechanisms implicated in dementia predominantly
surround sensorineural hearing changes, in which there is
dysfunction of the cochlea. Most often, it is seen as age-related
hearing loss (ARHL) or presbycusis, which affects around
40% of individuals over the age of 65 (Gates and Mills, 2005).
Causes of HL including presbycusis, noise-induced hearing
loss (NIHL) and ototoxicity, all precipitate permanent HL, and
subsequently, result in limited management options (Lee and
Bance, 2019).

ARHL is highly polygenic, with over 100 genes known to
underlie human non-syndromic hearing impairment (Lewis et al.,
2018; Van Camp and Smith, 2023), and of these many genes,
possibly each makes small contributions to create an estimated
heritability of 36–70% (Nagtegaal, 2019). Most cases of genetic
deafness imply alterations of the cochlea, the auditory sensory
organ; for instance, the OTOF gene encodes the protein otoferlin,
which allows synaptic vesicles to fuse to the plasma membrane in
the ribbon synapse. Thus, mutations in this gene can lead to a
deficiency in exocytosis in the inner hair cells, which interrupts
auditory signal transmission and can cause prelingual deafness
(Vona et al., 2020). However, some forms of genetic hearing
loss can involve failures in the central auditory system. Genome
wide association studies (GWAS) that have focused on the genes
associated with ARHL, although showing some overlap, do not
show strong agreement with one another (Nagtegaal, 2019; Wells
et al., 2019; Liu et al., 2021; Lewis et al., 2022). When considering
a genetic relationship between hearing loss and AD, no GWAS
have found a direct causal link between ARHL and AD. However,
a recent study using UK biobank data (Brenowitz et al., 2020)
demonstrated that a genetic risk for AD also influences speech-
in-noise hearing. In addition, in another report (Mitchell et al.,
2020), individuals with higher polygenic risk score (PRS) for AD
were more likely to experience hearing difficulty than those with
lower PRS.

Sudden sensorineural hearing loss (SSHL) has also been
identified as a risk factor for the development of dementia. This
form of HL is characterized as an otological emergency, defined
by HL of at least 30 dB over 72 h, affecting at least three different
auditory frequencies, often with a viral, vascular, or autoimmune
etiology (Lee and Bance, 2019). In a retrospective cohort study
comparing the incidence of dementia in individuals with and
without a previous diagnosis of SSHL, it was established that
the occurrence of SSHL was associated with a 1.39 times higher
likelihood in the incidence of all-cause dementia (Tai et al.,
2021).

However, specifically within presbycusis, a variety of other
mechanisms have also been implicated, including metabolic
factors (for instance, mitochondrial dysfunction), oxidative stress
(including changes in reactive oxygen species and Superoxide
dismutase deficiency), neurotransmitter imbalance (GABA
deficiency), among others (Jafari et al., 2021) (Figure 1).
Further insight into the underlying mechanisms and how
these different classes of ARHL may herald dementia,
is not yet completely understood (Bowl and Dawson,
2019).
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FIGURE 1

Di�erent types of age-related hearing impairment, including atrophy of the stria vascularis, hair cell loss and primary cochlear neuron degeneration

(Quaranta et al., 2015; Fortunato et al., 2016). Specific changes seen in stria vascularis include age-related morphological changes such as numerous

cytoplasmic vacuoles, enlargement of intracellular spaces and irregularity of mitochondria and its constituents, most notably disorganization of

cristae (Lyu et al., 2020). These changes have been shown to be precipitated by oxidative damage and downregulation of TMEM16A, a

calcium-activated chloride channel (Spicer and Schulte, 2005; Zhou et al., 2019). Cochlear disease or trauma have been shown to give rise to hair

cell loss, with potential causative factors including continuous industrial noise exposure, reactive oxygen species and Superoxide dismutase (SOD1)

deficiency (McFadden et al., 1999a,b, 2001; Emmerich et al., 2000; Huang et al., 2000; Vlajkovic and Thorne, 2021). Primary neural degeneration via

disconnecting of auditory neurones from their hair cell targets during aging has been shown to trigger the loss of hair cells (Viana et al., 2015; Wu

et al., 2019). Studies have identified that loss of GABA in the central nucleus of the inferior colliculus and the build-up of reactive oxygen species has

led to neural presbycusis (Caspary et al., 1990, 2013; Huang et al., 2000). Made using BioRender software. CAP, central auditory processing; ROS,

reactive oxygen species.

3. Current understanding of the
association between dementia and
hearing loss

Poorer scores on the Mini Mental State Examination (MMSE)
have been shown to strongly correlate with deficits in audiological
testing (Quaranta et al., 2015; Golub et al., 2019; Saji, 2021;
Mohammed et al., 2022; Huang et al., 2023). This link is
supported by the demonstration of a relationship between HL
and MRI brain atrophy (Jafari et al., 2021). Despite a recent
study suggesting otherwise (Marinelli et al., 2022), meta-analyses
pooling observational studies have further strengthened evidence
of an association between ARHL and cognitive decline (Loughrey
et al., 2017; Mamo et al., 2018; Liang et al., 2021). Similar
correlations between age-associated hearing loss and cognitive
decline have been reported in mice (Dong et al., 2018). However,
this observational data should be interpreted with caution, as there
is a subsequent inability to draw causal links. Additionally, potential

confounders that are often seen in the elderly, such as nutritional
issues, visual impairment, vascular risk factors, frailty, bad physical
health, depression, and other mental illnesses, could contribute to
the trend seen (Hirose et al., 2014; Gill et al., 2020). Among those,
the weakening of the vascular system is an interesting link, since
it is involved in both deafness and neurodegeneration. Vascular
networks of the cochlea (Kurata et al., 2016; Nyberg et al., 2019) and
the auditory cortex might be impaired in genetic forms of hearing
loss, although neural activity by itself can also affect the remodeling
of the vascular system (Lacoste et al., 2014; Whiteus et al., 2014).

Interestingly, central auditory pathway disorder in the studied
cohorts correlated more with cognitive changes than non-central
HL. Why this occurs is not completely understood, but it is
hypothesized that the dementia-related neurodegeneration and
healthy aging could affect auditory areas of the brain, and
lead to subsequent HI (Bidelman et al., 2014; Johnson et al.,
2021). Age-related hearing problems are common among people
with dementia and are associated with poor cognitive function
and reduced quality of life (Maharani et al., 2018a), suggesting
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that sensory markers could be useful to detect and target
cognitive aging.

Contrastingly, there could be an indirect mechanism, as HI
predisposes individuals to social isolation and subsequent dementia
risk (Sardone et al., 2020). Both dementia and HL present
highly heterogeneous conditions, and therefore the investigation of
various subtypes within each could be valuable to help further the
field of research exploring their interrelationship. Different forms
of both dementia and hearing loss may have different trajectories
and studies to elucidate this would allow more effective treatments,
as shown in frailty (Segaux et al., 2019).

Mirroring human studies, investigations with animal models
of AD, including 5XFAD, APP/PS1 and 3XTg transgenic mice
have demonstrated both significant HL and degeneration of spiral
ganglion cells in the cochlea (Wang and Wu, 2015, 2021; O’Leary
et al., 2017; Liu et al., 2020; Weible et al., 2020). Additionally,
5XFAD mice subjected to surgical deafness through tympanic
membrane resection i.e., conductive hearing loss (CHL), showed
greater cognitive impairment than those with no HI (Kim et al.,
2020). This could imply a reciprocal relationship—that AD can lead
to auditory deficits and auditory deficits can influence cognition.
Whether these AD models can be applied to dementia generally, is
not yet known.

4. Mechanisms underlying hearing
loss, cognitive function, and AD
pathology in animal models

Animal models attempting to elucidate the relationship
between dementia and HL center around rodents with induced
hearing deficits. Two main paradigms are currently utilized to
induce these deficits. Most common methods applied expose
rodents to high-volume background noise for several days,
inducing permanent trauma (Wang and Wu, 2015; Zhuang et al.,
2020; Kurioka et al., 2021a; Li et al., 2021; Paciello et al.,
2021), or by the bilateral cochlear ablation. Alternatively, HI
is mechanically modeled through insertion of a silicone mold
into the ear canal, followed by permanent suturing to close
the canal (Paciello et al., 2021). Additionally, administration of
ototoxic substances such as furosemide and kanamycin can be
employed to induce sensorineural HL, but this is not used often
(Shen et al., 2021). These methods inflict physical trauma and
stress and subsequently, could influence cognition via mechanisms
independent of HI, confounding results. Following HL induction,
mice undergo acoustic brainstem response testing, a quantitative
method of measuring inner ear and hearing pathway responses
to sound (Zhuang et al., 2020; Li et al., 2021). Animal studies
more specifically looking at brain region histology conduct further
posthumous histology of the animal brain (Li et al., 2021).

One of the key mechanisms explored through animal models
and human cases is how, following HL, subsequent decline in
hippocampal neurogenesis can lead to cognitive deterioration
(Kurioka et al., 2021b). The hippocampus, primarily involved in
memory and auditory information processing, is one of the key
areas affected in dementia. Interestingly, studies in a rat model
with hearing loss and/or Aβ administration demonstrated that
the group with lower cognitive abilities was the one with both

amyloid-beta (Aβ) and SSHL (Chang et al., 2019). In this report,
it was demonstrated a significant decrease in hippocampal synaptic
proteins in the Aβ-deaf group, implying that HL influences synaptic
plasticity, and that there must be a connection between the central
auditory cortex and the hippocampus (Chang et al., 2019).

Another potential link between hearing loss and cognitive
impairment in animals implies changes in neuroinflammatory
markers. Two animal model studies examining NIHL
demonstrated alterations in microglia and the presence of
irregularly shaped somas when compared to the control mice
(Zhuang et al., 2020; Li et al., 2021). Similar results were reported
in a conductive hearing loss (CHL) animal model, showing
morphological microglial changes specifically in the dentate gyrus
and subgranular zone (Kurioka et al., 2021b). Therefore, it appears
that microglial activation does occur following HL and could cause
a consequent impairment of hippocampal neurogenesis. However,
recent studies seem to contradict these findings, showing that
there is no correlation between spatial learning ability and the level
of hearing loss or altered microglial density in the hippocampus
following noise exposure in rats, suggesting that other mechanisms
are involved in the hippocampal-dependent cognitive dysfunction
due to noise exposure (Patel et al., 2022). Besides changes in glial
cell activation, other studies implementing hearing loss by the
use of toxins in mouse models of neurodegeneration have shown
increases in inflammatory cytokines such as IL-1β and TNF-α (Ren
et al., 2011; Shen et al., 2021).

There are also evidences from human and preclinical studies
that AD pathological hallmarks, including hyperphosphorylated
Tau (p-Tau) and Aβ, could be affected by HL. A recent report in
C57Bl6 in mice exposed to noise induced hearing loss have shown
reduced cognition and p-tau and lipofuscin in the hippocampus
(Park et al., 2018). Another study in rats also demonstrated
that chronic noise exposure (CNE) was associated with tau
hyperphosphorylation in the hippocampus and the prefrontal
cortex (Cui et al., 2012). In agreement with this, human studies have
associated ARHL with higher CSF levels (and accelerated rates of
elevation) of p-Tau, but have demonstrated no association between
ARHL and the levels of Aβ42 in CSF (Xu et al., 2019; Sarant et al.,
2022). In line with this, a cross-sectional cohort study utilizing
positron emission tomography scans to investigate the presence of
Aβ, also found no association between HL and Aβ load (Sarant
et al., 2022). In contrast, studies in rats have shown that chronic
exposure to noise resulted in increased generation of endogenous
Aβ levels in hippocampus (Cui et al., 2015).

In line with reports showing alterations in hippocampal
function, HL has been involved in changes on neurotransmitter
expression as well. ARHL mouse models have shown changes
in NMDA receptor expression within the hippocampus, which
can take place after 4 months of natural HL (Cui et al.,
2009). Additionally, GABAa and GABAb receptors were altered
during this time period. The change in these neurotransmitter
receptors is implicated in hippocampal synaptic plasticity, affecting
hippocampal learning, and resulting in cognitive decline (Guo et al.,
2021).

An emerging hypothesis links social memory impairment and
HL—partially due to limitations of social interaction faced by
those with a HI (Beckmann et al., 2020). A study using a mouse
model of congenital deafness with OTOF gene knockout, attempted
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to investigate this through eliminating hearing input from the
cochlea to the brain, resulting in decreased social memory. If this
hypothesis is correct, it would help explain why associated brain
regions’ functionality, for example, the hippocampus, is affected
following HL (Glick and Sharma, 2020). Furthermore, there is the
possibility of a compensatory mechanism, whereby the brain may
offset certain neural networks to promote better hearing. In line
with this, a human MRI study of HI individuals demonstrated
that auditory brain regions displayed an increase in activity, whilst
other areas showed a consequential decrease (Rigters et al., 2017).
Therefore, this could indicate that this activity decrease is linked to
the reduction in cognitive function seen in HL.

5. Clinical interventions and their
limitations

As discussed, observational studies have established an
association between HI and an increased risk of accelerated
cognitive decline. The emphasis placed on HL as a modifiable risk
factor for dementia (LaPlume et al., 2022) has led to the reasonable
hypothesis that audibility restoration could potentially alleviate
cognitive decline, by counteracting the postulated mechanisms
which underlie this process and by reducing social isolation,
loneliness, and depressed mood (Jiang et al., 2023). It is
hypothesized that hearing restoration, may reverse cognitive
changes of cortical reallocation of sensory processing patterns,
leading to consequent cognitive gains (Glick and Sharma, 2020).

In two short-term rodent studies modeling CHL through
use of ear plugs, significant cochlear degeneration (Kurioka
et al., 2021b) and changes in the neurotransmitter expression
within auditory neurons (Kurioka et al., 2020) was demonstrated
following reduced auditory inputs. Interestingly, removal of the
ear plugs led to recovery of almost all these anatomical changes,
suggesting that similar treatment with either HAs or cochlear
implantation in humans could reverse such changes, and perhaps
cognitive processing.

Overall, many observational, prospective and retrospective
cohort, cross-sectional and longitudinal studies have linked HA use
to lower rates of cognitive decline (Maharani et al., 2018b; Glick
and Sharma, 2020; Cuoco et al., 2021; Fernandes and Mastroianni
Kirsztajn, 2021; Sugiura et al., 2021, 2022; Bucholc et al., 2022;
Dillard et al., 2022; Vella Azzopardi et al., 2023) and dementia
(Maharani et al., 2018b; Mahmoudi et al., 2019; Byun et al., 2022;
Dillard et al., 2022; Naylor et al., 2022). Recent data from the
UK biobank support these findings, showing no increased risk of
dementia in people with hearing loss using hearing aids (Jiang et al.,
2023). Strikingly, one of the studies demonstrated that the diagnosis
of dementia is associated with a 54% subsequent reduction in HA
usage compared to those without dementia (Naylor et al., 2022).
The importance is thus placed on not only increasing HA usage
amongst older individuals at higher risk of both HL and dementia,
but also working to maximize adherence in this community.

On the other hand, two prospective longitudinal studies found
no statistical significance between cognitive scores pre- and post-
HA fittings (Sarant et al., 2020; Kawade et al., 2022). Furthermore,
the only double-blind, randomized controlled trial evaluating the

cognitive benefit of HAs in patients with AD also found no
statistically significant relationship (Nguyen et al., 2017). There is
a clear lack of consensus of the current evidence, but this could be
explained by the various limitations and differences across all the
study designs.

Generally, studies investigating cognition pre- vs. post-
cochlear implantation reported either no change (Sonnet et al.,
2017; Kramer et al., 2018; Sarant et al., 2019), an improvement
(Jayakody et al., 2017; Claes et al., 2018; Mosnier et al., 2018; Völter
et al., 2021, 2022a,b; Calvino et al., 2022), or a mixed picture across
the various subtests (Sorrentino et al., 2020; Huber et al., 2021).
Cochlear implantation is one phase of a complex rehabilitation
process involving multiple appointments and training programmes
following surgery (British Cochlear Implant Group, 2023). These
all pose opportunities for increased engagement in cognitive
stimulation, known to reduce risk of cognitive decline.Whether the
cognitive improvement seen across these studies is due to restored
hearing itself or a confounding influence of rehabilitation, would be
difficult to determine (Völter et al., 2022b).

Much of the heterogeneity across both the hearing aids and
cochlear implantation literature exists due to the variety of tests
used to measure cognitive function. Some papers choose to use
standardized screening tests like the MMSE (Sonnet et al., 2017;
Sorrentino et al., 2020; Herzog et al., 2022; Vella Azzopardi
et al., 2023), or the MoCA (Cuoco et al., 2021; Fernandes and
Mastroianni Kirsztajn, 2021) as an assessment of global cognitive
function, whilst other studies focus on assessing subdomains of
cognition through use of investigations like the ALAcog (Sarant
et al., 2019; Völter et al., 2021; Calvino et al., 2022), ADAScog
(Nguyen et al., 2017), Cogstate (Sarant et al., 2019, 2020), RBANS-
H (Claes et al., 2018; Brewster et al., 2020; Calvino et al., 2022)
and various other subtests (Jayakody et al., 2017; Mosnier et al.,
2018; Füllgrabe, 2020; Kurioka et al., 2020). Using tests like the
MMSE, which utilize auditory assessments, leaves HI individuals
at a direct disadvantage. Cognition prior to rehabilitation could be
underestimated, and treatment may simply allow the participant
to perform better due to increased ability to understand the
task presented (Füllgrabe, 2020). A ceiling effect is also observed
through use of MMSE (Sonnet et al., 2017)—those with a
normal cognition pre-intervention are unable to show any further
improvement. The introduction of a standardized neurocognitive
battery, which assesses all necessary subdomains and is adapted
for the HI, needs to be implemented to allow comparison across
the literature.

Further sources of heterogeneity across results could be due
to the varying durations of studies. Undoubtedly, measures of
cognitive function are susceptible to time due to the cognitive
decline observed with aging. Some studies examined cognitive
outcomes over longer periods, ranging from 3.5 to 18 years
(Maharani et al., 2018b; Naylor et al., 2022; Sugiura et al., 2022),
whilst others observed significantly shorter periods; for example,
one report (Glick and Sharma, 2020) studied participants over
6 months, whilst another (Fernandes and Mastroianni Kirsztajn,
2021) over only 12 weeks. Shorter trials should be interpreted with
additional caution—interventions may not have significant time
to influence a change, nor do they consider the normal cognitive
decline represented over time.
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6. Conclusions

Overall, a clear trend between HL and dementia is
demonstrated across the literature. However, evidence is
largely composed of observational studies and there remains
a lack of interventional studies relating HL to dementia. This
is due to a clinical dilemma- that it would be unethical to deny
treatment to those with HL, especially when considering the
ramifications of untreated HL, not just in relation to dementia.
The introduction of open label trials, recruiting from surgical
candidates for cochlear implantation, could circumvent this.
These trials could build on previous limitations by including
a standardized neurocognitive battery. Furthermore, despite a
multitude of animal models demonstrating potential underlying
mechanisms linking HI and cognitive decline, further research,
particularly with longer follow-up periods and invasive recording
technology is required to help interrogate the mechanisms
of action.

Uncertainties also remain in the implementation of HAs
and CIs as interventions against cognitive decline. As a
result, algorithms and guidelines may need to be synthesized
from future interventional studies to best improve patient
outcomes. There should be a focus on maximizing early HL
diagnoses and swift implementation of auditory treatment
to mitigate the risks of cognitive decline. Models calculating
dementia risk would allow the stratification of the geriatric
population and perhaps help clinicians decide risk and
subsequent necessary auditory treatment. Additionally,
technology such as smart phone connected HAs could target
the current limitations encompassing HA usage in those
with dementia.
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