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Introduction: Polygenic risk scores (PRSs) have great clinical potential for

detecting late-onset diseases such as Alzheimer’s disease (AD), allowing the

identification of those most at risk years before the symptoms present. Although

many studies use various and complicated machine learning algorithms to

determine the best discriminatory values for PRSs, few studies look at the

commonality of the Single Nucleotide Polymorphisms (SNPs) utilized in these

models.

Methods: This investigation focussed on identifying SNPs that tag blocks of

linkage disequilibrium across the genome, allowing for a generalized PRS model

across cohorts and genotyping panels. PRS modeling was conducted on five

AD development cohorts, with the best discriminatory models exploring for a

commonality of linkage disequilibrium clumps. Clumps that contributed to the

discrimination of cases from controls that occurred in multiple cohorts were

used to create a generalized model of PRS, which was then tested in the five

development cohorts and three further AD cohorts.

Results: The model developed provided a discriminability accuracy average of

over 70% in multiple AD cohorts and included variants of several well-known AD

risk genes.

Discussion: A key element of devising a polygenic risk score that can be used in

the clinical setting is one that has consistency in the SNPs that are used to calculate

the score; this study demonstrates that using a model based on commonality of

association findings rather than meta-analyses may prove useful.
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Introduction

The investigation of genetic predisposition to complex disease via polygenic risk scores

(PRS) has increased in recent years (Plomin and von Stumm, 2022), and its popularity

is guided by its long-term promise of clinical utility for early diagnosis and personalized

therapeutic intervention, leading to disease prevention. Meanwhile, PRSs have the potential

to further basic research by identifying causal variants, leading to novel drug development,

the stratification of samples for clinical exploration, and therapeutic intervention trials

involving targets who are most likely to respond.

Briefly, PRS analyses utilize large-scale genome-wide association study (GWAS)

summary data (base data set) to score genotypes present in the target data set, i.e., an
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independent cohort of case and control samples, producing a single

risk score for each individual for the disease under investigation.

PRSs are calculated as a sum of the number of “effect” alleles

present, weighted by their effect size (provided by the GWAS

summary statistics), and are then tested for their correlation with

the disease phenotype and the ability to discriminate the cases

from controls using the area-under-the-curve (AUC) statistic from

the receiver operating characteristic (ROC) curve. The selection

of SNPs to be included in the PRS is normally determined by a

significance threshold in the summary statistics, incorporating all

SNPs with GWAS p-values below that cut-off (Purcell et al., 2009;

Euesden et al., 2015).

However, this type of analysis has not been without its criticism,

and the methodology is still being developed from its original and

simplest form of taking significant GWAS SNPs and summing

them by their weighted effect sizes (Purcell et al., 2009) to the

more complex machine learning algorithms being explored (Baker

and Escott-Price, 2020). A crucial caveat to the development

of a clinically relevant PRS is the lack of translation of PRS

models across datasets, with initial discriminability estimates failing

to be maintained on additional independent cohorts (Janssens,

2019; Baker and Escott-Price, 2020). This is due to the lack

of commonality of SNPs between cohorts not only because

of differences in the SNP content on genotyping platforms

but also potentially because of differences in allele frequencies

between cases and controls in different cohorts, which governs

the discriminability and is, therefore, subject to the same nuances

as gene association studies (Nakaoka and Inoue, 2009; Shi et al.,

2016). The lack of consistency in SNP content can be overcome

by imputing data to fill in missing genotypes between cohorts or

increase the coverage of SNPs between the target and base data

sets. However, there are concerns about imputation accuracy and

its effect on the subsequent analysis for SNPs with low minor

allele frequencies, low levels of linkage disequilibrium, and those

that may have gone through recent and dramatic allele frequency

changes (Aleknonyte-Resch et al., 2021; Ali et al., 2022). The

International Genomics of Alzheimer’s Project (IGAP) Stage 1

(IGAP_S1) GWAS summary statistics (Lambert et al., 2013) are

often used as a base data set for PRS studies in Alzheimer’s disease

(AD), consisting ofmore than 7million imputed genotypes. During

the imputation and phasing of genetic data, some genotypes are

lost in the process, for example, the rs9271192 (HLA-DRB5) SNP,

which was one of the GWAS hits from the Lambert et al. (2013)

study but was absent from the summary statistics, presumably

having been lost in the imputation process. Furthermore, the focus

in PRS studies is often on the ability to accurately identify cases

from controls, with the extent of SNP commonality between the

models developed across studies still to be fully explored to identify

a consistent set of SNPs that could be used for clinical purposes.

Further commentary suggests that the traditional

pruning/clumping of SNPs, selecting those that are the most

significant (denoted as the “Index SNP”) within blocks of linkage

disequilibrium (LD), followed by the “thresholding” for SNP

inclusivity, falls short of explaining the heritability estimates and

could discard information that increases prediction accuracy

(Vilhjálmsson et al., 2015). Conversely, relaxing the thresholds to

include SNPs outside the GWAS significance threshold has yielded

the PRS models utilizing thousands of SNPs, yet whilst this has

provided greater discriminability (Escott-Price et al., 2015), the

clinical utility of including such SNPs, often with negligible effect

sizes, is questionable; if they do not impact the biology of the

disease or suggest a druggable target, are they useful to include

(Janssens, 2019).

This investigation utilized the summary statistics from the

Lambert et al. (2013) study and a cross-cohort methodology

for SNP selection for PRS model generation in AD (see the

Data Availability section for details of the cohorts used). The

incorporation of SNPs into the PRS model is traditionally

determined by their significance in the summary statistics base data

set; however, the discrimination of cases and controls rests with

the allele frequency difference of the selected SNPs in the target

data set. Incorporating SNPs with large allele frequency differences

between the cases and controls in the target data set will lead to

more divergent PRSs between these two groups and, consequently,

a more accurate prediction model. In contrast to the traditional

thresholding method, in this study, SNPs were selected based on

their consistent contribution to a highly discriminatory PRS model

across several cohorts. It was hypothesized that, by doing this,

SNPs that underlie the disease will be selected and improve the

translatability of the PRS model across different data sets. The

developed PRS models were then validated with three independent

AD cohorts, showing an average of more than 70% accuracy in

discriminability across all cohorts.

Methods

Data sets

Base data set
Summary statistics were obtained from the Lambert et al.

(2013) study. These summary statistics were generated from

imputation during the first stage of this study (IGAP_S1) by

conducting a meta-analysis of four GWAS samples of European

ancestry (n = 17,008 cases, n = 37,154 controls). This data set

was selected because of the number of SNPs in the summary

statistics and because of generating the number of samples that had

a diagnosis of AD.

PRS development data sets
Five genotyping data sets were utilized for this study; see the

Data Availability section for details on the cohorts. The data sets

used were the Brains for Dementia Research (BDR) cohort, as

described in a previous study by this group (Young et al., 2021),

and four cohorts previously utilized in large GWAS studies, which

are freely available for download: ADC7, NIA, ROSMAP and

TGEN data sets. ROSMAP data were obtained from the AMP-AD

Knowledge Portal via the Synapse Data Access System (https://

www.synapse.org/). The ADC7, NIA, and TGEN data sets were

downloaded from NIAGADS (https://www.niagads.org/). The data

sets that were selected had been genotyped on different platforms,

had varying sample sizes, and had APOE isoform/genotype data

(Supplementary material 5).

All data sets underwent quality control with PLINK v1.9

(Purcell et al., 2007), and SNPs with a minor allele frequency of

<1% were removed. In addition, genotype calls of <95% and those

deviating significantly from Hardy–Weinberg equilibrium (p <

Frontiers inDementia 02 frontiersin.org

https://doi.org/10.3389/frdem.2023.1120206
https://www.synapse.org/
https://www.synapse.org/
https://www.niagads.org/
https://www.frontiersin.org/journals/dementia
https://www.frontiersin.org


Brookes et al. 10.3389/frdem.2023.1120206

0.0001) in the control samples were also removed. Furthermore,

from the available information, non-Caucasian samples including

Hispanic samples from the ROSMAP data set were also removed.

Only samples with a definite or confirmed diagnosis of AD were

included. When the genotyping of APOE isoform SNPs (rs429358

& rs7412) was not included in the genotype data, the isoform

information in the accompanying clinical data files for each data

set was used to determine the likely SNP genotypes.

Validation data sets
Three validation data sets (MTC, WashU, and TARCC) were

also obtained from NIAGADS (https://www.niagads.org/), and

details on these cohorts can be found in the Data Availability

section. Samples from these data sets were included in this study

if diagnosed as AD or control and had APOE genotyping. Details

of the sample sizes and genotyping platforms used to generate their

data are available in Supplementary material 5.

Clumping and LD clump SNP assignment

The IGAP_S1 summary statistics were clumped using the

1000Genomes European data set in PLINK v1.9 (Purcell et al.,

2007), with the parameters –clump-p1 1, –clump-p2 1, –clump-

kb 250, and –clump-r2 0.8. These parameters were then used to

define the LD clumps across the base data set SNPs. The IGAP_S1

clumped output file consists of rows of clumped data, with the

most significant SNP of the clump denoted as the “Index” and all

other SNPs that reside within that clump in subsequent columns.

Traditionally, only these Index SNPs that are in common with the

target dataset are used in PRS modeling.

In this investigation, the following alternative steps were taken

to identify SNPs to be included in the PRS modeling (the R Script

is available on request):

1. The clump/LD blocks identified in the IGAP_S1 data were

numbered, and each SNP from the IGAP_S1 data that

resides in that clump was “tagged” with its corresponding

clump/LD number.

2. Clump Tag SNPs in the IGAP_S1 summary statistics were

matched by SNP ID with those in each development data set.

3. A single SNP representing each clump was selected for each

development data set.

4. Clumps that had representative SNPs across all five of the

development data sets were taken forward to create the

“Common Clump SNP set” for analysis.

5. The beta effect size scores and reference alleles were obtained

from the IGAP_S1 summary statistics for all SNPs identified

for the polygenic risk score algorithm, producing five sets of

SNPs to be used, one for each of the development cohorts.

Common clump SNP set quality control

SNPs representing each clump across the PRS development

data sets were investigated for large deviations in beta effect sizes

(obtained from the IGAP_S1 and used to generate the risk scores

in the target data sets). The SNPs tagged in each clump across the

data sets were examined for differences in beta effect direction and

those that displayed a standard deviation (SD) of±1 across the beta

effect size scores. Clumps with opposing directions of beta effects

or SD of > 0.5 were removed; this resulted in the removal of 1,067

clumps based on the differential direction of the beta values only.

No further clumps were removed based on the beta value SD of the

five SNPs representing the clump across the five PRS development

data sets; the maximum SD observed was 0.003. In addition, a total

of 42,684 clump-tagged SNPs were available for analysis per cohort.

Threshold modeling

SNPs from the base data set at each IGAP_S1 significance

threshold from 5 × 10−8 to 1, increasing at intervals of 10−6, were

used to generate the score file for the PRSmodeling using the –score

parameter in PLINK v1.9 (Purcell et al., 2007). Logistic regression

was carried out in R v4.0.3 (R Core team, 2021), followed by

calculating the AUC (accuracy of the model to discrimination case

from control) using the pROC package (Robin et al., 2011). The

results are presented in Supplementary material 5. R The scripts are

available upon request.

Perfect discrimination modeling

SNPs were recruited into the PRS model on an individual basis

based on the p-value of association (generated in PLINK –assoc

analysis) in the developmental data set and were used to generate

the score file for PRS modeling using the –score parameter in

PLINK v1.9 (Purcell et al., 2007). Logistic regression was carried

out in R v4.0.3 (R Core team, 2021), followed by calculating the

AUC using the pROC package (Robin et al., 2011). The results were

used to determine the effect that the addition of each SNP had

on the AUC (either increase or decrease) and labeled it with the

effect direction. The SNPs were then re-ordered by p-value and the

increase in AUC effect before undergoing single SNP addition PRS

modeling to generate perfect discrimination curves, that is, AUC=

1, where all samples above a certain risk score were cases and all the

samples that were below were controls.

Generation of absolutes

“Absolute” controls and cases were artificially generated to

represent the absolute minimum score (control) and the absolute

maximum score (case) that could be achieved for each SNP

model. This involved creating genotypes for individuals that were

homozygous for all the SNPs with effect allele beta scores with a

protective (minus) direction, and an individual with the opposing

genotypes. These “absolutes” were then subjected to risk scoring

using the generalized PRS model to create the minimum and

maximum scores that could possibly be achieved, which were then

used to calculate centile bins (100 bins) at equal intervals across

the entire range of possible scores. The application of risk scoring

helped determine the visualization of the true spread of possible
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scores and where the scores obtained from the data sets resided on

this full scale.

Results

Clumping was carried out on the IGAP_S1 summary statistics

with an r2 of ≥ .8 in PLINK v1.9 (Purcell et al., 2007). The

coverage of the genome was explored using the BDR cohort using

the traditional method of utilizing only the “Index” SNP and then

any SNP in the LD clump. The greater coverage of the LD clumps

of the IGAP_S1 data set was achieved by allowing any SNP that was

representative of an LD block into the PRS analysis rather than just

the Index SNP (Supplementary material 1). Previous A previous

study (Farrell and Brookes, 2022) suggests that additional SNPs

within the surrounding region of APOE isoform SNPs (rs429358

and rs7412) could possibly be independently contributing to the

AD phenotype, and therefore, the entire APOE region was retained

in this analysis.

In addition to the BDR data set, four additional AD

genotyping data sets (ADC7, NIA, ROSMAP, and TGEN) obtained

from the NIAGADS data repository were selected across a

range of genotyping platforms to develop the PRS model

(Supplementary Table 5). Each SNP from the cohort was “tagged”

with a clump number, and clumps that were covered by SNPs in

all five of the PRS developmental data sets were included in the

analysis (44,291 clumps). Cross-cohort SNPs for each clump were

explored for consistency in the reference allele, the direction of

effect, and the beta coefficient values. When the direction of effect

and the reference allele differed between the SNPs in the same

LD clump, the clump was removed. The beta coefficient values

were found to be very similar, with an average SD of 0.003 and

a maximum observed SD of 0.1 observed across the cohorts for

each LD clump. A total of 42,684 LD clumps uniquely tagged by

cohort-relevant SNPs were available for PRS model generation as

opposed to 33,679 SNPs in common across the cohorts, increasing

the coverage of the genome and commonality between data sets.

Traditional PRS modeling was applied to these data sets

for comparison, since this methodology mimics that of the

PRS software tool PRSice (Euesden et al., 2015), where SNPs

are recruited into the model based on the p-value threshold

in the base data set from 5 × 10−5 to 1 at an interval of

10−6. These SNP models were subjected to logistic regression,

and an AUC was generated from the R software package

pROC. The best PRS models were identified for each PRS

development cohort in terms of the most significant logistic

regression p-value and AUC (Supplementary material 2, Panel A,

and Supplementary material 5). The results were highly variable

between cohorts, with the best models utilizing between 18 and

41,216 SNPs and achieving an average discrimination accuracy of

0.76 (SD 0.138).

Perfect discrimination models were applied to the 42,684

LD clumps of each cohort. Briefly, SNPs tagged in each clump

were ordered by cohort significance values and incorporated

into the PRS model sequentially (Supplementary material 2,

Panel B). These SNPs were then reordered based on their

cohort significance and positive direction of effect on the AUC

(Supplementary material 2, Panel C). All SNPs contributing to the

point where perfect discrimination (AUC = 1) was first achieved

were taken from each cohort. Two thresholds of commonality

were set for testing: a lenient threshold requiring the LD clump to

contribute to perfect discrimination in two of the five cohorts and

a stringent threshold requiring the LD clump to contribute to the

perfect discrimination in three of the five cohorts.

The lenient threshold identified a 2207-LD-clump PRS model,

which, when applied to the development cohorts, yielded highly

significant correlations and discriminatory accuracies of over

90% in four of the cohorts. The ROSMAP cohort demonstrated

an accuracy of 53.82%, with the PRSs showing no significant

correlation with disease outcome (Table 1). When they were

applied to the lower discriminability estimates of the validation

cohorts, although each of these cohorts was missing several of the

LD clumps that contributed to the model, only a small number of

alternative SNPs tagging the LD clumps were identified (Table 1).

Using the stringent threshold, 149 LD clumps were identified

as contributing to at least three of the perfect discrimination

models, and although significant correlations were achieved, the

discriminability of this model was only ∼70% accurate in the

development cohorts, with ROSMAP again showing less accuracy

than the other data sets (Table 2). Even though some of the LD

clumps were missing, the validation cohorts demonstrated similar

accuracies in discrimination as the development cohorts.

The PRSs for “absolute” controls and cases were calculated and

used to create a centile plot of scores within each data set for each

model (Figures 1, 2).

The lenient model of 2,207 SNPs demonstrated a narrow range

of scores that fall within the 46th to 54th centiles. Furthermore,

there was an overlap of scores for cases and controls in the middle

ranges; however, in all data sets, we observed two distinct peaks

of scores, one for controls (48th−49th centile) and one for cases

(50th−51st centile), with a 2- to 3-percentile difference between

them. The ROSMAP data set has the smallest sample size and had

insufficient cases in the higher score ranges, leading to a more

predictive accuracy value. The stringent model of 149 SNPs created

a far more dynamic range of scores from the 34th to the 75th

centile; with this model, an interesting pattern of three distinct

normal distributions was observed: one in the lower range from

approximately the 38th to the 50th percentile, which consisted of

a higher number of control samples; one in the higher range from

the 64th to the 74th centile, consisting almost entirely of AD cases;

and a middle third peak ranging from the 52nd to the 62nd centile,

where there was an overlap of controls and cases but generally was

biased toward AD case individuals. This model also indicated that

the ROSMAP sample lacks AD cases with risk scores in the higher

ranges, accounting for the lack of discriminability.

The stringent model had the best coverage of LD blocks in the

replication samples, and therefore, the predictability of AD cases

being present in the highest ranges was explored. This range of

centiles suggests that more than 90% of individuals with scores

0.006 (63rd centile) or above will have AD, and this was supported

in two out of the three replications cohorts. From the MTC cohort,

96.6% of individuals who scored above this threshold were AD

cases. Similarly, in the TARCC cohort, 89.6% were AD cases. The

WashU cohort did not support this fact, for the majority of the

samples were controls for this score range; however, note that the
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TABLE 1 Results of the lenient PRS model, in the development cohorts and validation cohorts, indicating a high discriminability of the model in the

development cohorts but a significant drop in the validation cohorts.

Development SNP platform # SNPs from PD
contributing to PRS

model

Logistic regression
P-value

Area under the
curve

ADC7

N= 1462

HumanOmni Express 1761 4.32 x 10−85 0.9004

BDR

N= 520

NeuroChip 612 1.12 x 10−30 0.9259

NIA

N= 1,386

Human 610-quad 932 1.89 x 10−76 0.9463

ROSMAP

N= 240

Affymetrix6.0/IlluminaOmni

Quad

41 0.397 0.5382

TGEN

N= 1,510

Affymetrix 6.0 1,221 7.07 x 10−84 0.9357

Validation SNP Platform # SNPs available Logistic regression
P-value

Area under the
curve

MTC

N= 356

HumanOmni Express ADC7 Panel

2204 SNPs (7 alt)

2.75 x 10−8 0.6948

WashU

N= 131

HumanOmni Express ADC7 Panel

1862 SNPs (22 alt)

0.064 0.6288

TARCC

N= 491

Affymetrix 6.0 TGEN Panel

2070 SNPs (74 alt)

8.17 x 10−14 0.7062

The lenient model consists of SNPs tagging the 2207 LD clumps identified to be contributing to the perfect discrimination (PD) model in at least 2 of the development cohorts. In the top panel,

the results from the development cohorts indicate the number of LD clumps from that cohort that were found in at least one other cohort, note that there is no correlation between the number

of clumps identified in each cohort and the accuracy in the model. In the bottom panel, the results from the validation cohorts indicate the SNP panels used in the PRS and the number of

alternative (alt) SNPs that had to be found to substitute for SNPs missing in that cohort.

number of individuals in this range was approximately a third of

those in the other two replication cohorts.

A full table of the 2,207- and 149-model SNPs/LD

blocks and genes located in the vicinity can be found in

Supplementary material 3, 4. Supplementary material 5 shows a

summary table of the cohorts used and the PRS models created

in this study, in addition to the average AUC obtained across the

five data sets and when the ROSMAP data set was removed from

the mean.

Discussion

This investigation explored an alternative method for

developing a PRS model to predict AD, aiming to improve the

translatability of the model to other cohorts and identify areas

of the genome that may house actionable targets for therapeutic

intervention. Instead of modeling the data on single SNPs that

are common between the base and target data sets, it used SNPs

that tag linkage disequilibrium blocks that are common between

different cohorts to improve the coverage of the genome and

transferability to other cohorts. As an alternative to modeling the

SNP inclusion based on significance value in the base data set,

SNP inclusion was based on over-fitting the data to create perfect

discriminatory models for five cohorts and then identifying the

linkage disequilibrium blocks that repeatedly contribute to the

AUC = 1 across the development cohorts. Lenient and stringent

models were applied to both the cohorts they were developed on

and three additional independent cohorts to test replicability. In

all cases, the average AUC achieved in the validation cohorts was

lower than that in the development cohorts; however, the stringent

model demonstrated an average decrease in AUC of 0.05 compared

to an average decrease in AUC of 0.17 in the lenient model.

One of the main caveats for PRS analysis is the generalization

of the models developed to additional cohorts. Some authors

suggest that even more GWAS data than those used in this study

are required to accurately calculate the effect sizes of risk alleles;

conversely, the current GWAS results could be inflated, subject to

the “winner’s curse” (Shi et al., 2016) and the admixture of samples

from the pooling of multiple cohorts (Janssens, 2019).

Preliminary unpublished explorations of AUC results on a

single target dataset using a GWAS SNP model and effect sizes

from different GWAS summary statistics have demonstrated that

differences in the effect sizes of reference alleles do not alter

the accuracy of discriminating cases from controls. Furthermore,

the pattern of the AUCs obtained during the threshold modeling

process in this study (Supplementary material 2) would also

support the fact that, when effect sizes and SNP inclusion are

similar, different AUCs can be obtained, suggesting that it is the

allele frequency of the SNP in the target data set that determines

the discriminatory accuracy, which is similar to the nuisances of

gene association studies and significance. Therefore, an alternative

hypothesis would be to identify SNPs that consistently display allele

frequency differences that contribute to a more diverse risk score

between cases and controls for a generalized AD risk model.

This alternative method of incorporating SNPs individually

into the model based on their associated p-value within the target

data set and directional effect on the AUC provided a model

that perfectly separated the cases and controls. Importantly, when

this was applied across multiple data sets, the common SNPs/LD
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TABLE 2 Results of the stringent PRS model in the development cohorts and validation cohorts, indicating a more uniform discriminability of the model

consisting of SNPs tagging the 149 LD clumps identified to be contributing to the perfect discrimination (PD) model in 3 out of the 5 development

cohorts.

Development SNP platform # LD clumps
contributing to PD

model

Logistic regression
P-value

Area under the
curve

ADC7

N= 1462

HumanOmni express 137 1.19 x 10−44 0.7273

BDR

N= 520

NeuroChip 83 6.89 x 10−22 0.7911

NIA

N= 1386

Human610-quad 107 4.65 x 10−72 0.8259

ROSMAP

N= 240

Affymetrix6.0/IlluminaOmni

Quad

8 0.449 0.5477

TGEN

N= 1510

Affymetrix 6.0 116 1.43 x 10−54 0.7734

Validation SNP platform # SNPs available Logistic regression
P-value

Area under the
curve

MTC

N= 356

HumanOmni Express ADC7 Panel

149 SNPs (1 alt)

1.28 x 10−11 0.7294

WashU

N= 131

HumanOmni Express ADC7 Panel

127 SNPs (2 alt)

0.035 0.6150

TARCC

N= 491

Affymetrix 6.0 TGEN Panel

143 SNPs (6 alt)

8.32 x 10−13 0.7006

In Panel A, the results from the development cohorts, indicate the number of LD clumps from that cohort that were found in at least 2 other cohorts, note that there is no correlation between

the number of clumps identified in each cohort and the accuracy in the model. In Panel B, the results from the validation cohorts indicate the SNP panels used in the PRS and the number of

alternative (alt) SNPs that had to be found to substitute for SNPs missing in that cohort.

clumps that appeared in at least two datasets (lenient model)

provided amodel that offered better and consistent discriminability

across data sets (mean AUC = 0.8493, SD = 0.17) compared to

when the traditional method of selecting SNPs on significance

threshold models was used (mean AUC = 0.7621, SD = 0.14).

Applying the stringent model resulted in an average AUC in the

development cohort that was slightly less (mean AUC = 0.7331,

SD = 0.11) than that of the traditional method; however, while the

traditional method utilized vastly different SNPs in each model, the

stringent model utilized the same SNPs in each cohort.

The ROSMAP data set was the exception, performing not

as well as the other development cohorts in both models

(Supplementary material 5). The ROSMAP data set sample size

was the smallest of the development cohorts due to selecting only

samples that had a confirmed diagnosis of AD and removing

those classified as possible/probable cases of AD. Importantly, the

APOE isoform SNPs were not significantly associated with the

AD phenotype in this cohort (p > .05) and did not demonstrate

discriminability in the PRS consisting of only these two SNPs

(Supplementary material 5). AsAPOE is such a strong predictor for

an AD diagnosis, the absence of this effect may go some way in

explaining the lack of discriminability for this PRS compared to the

other cohorts when the rs429358 and rs7412 SNPs are included in

the model.

As shown in Supplementary material 3, 4, the genes located

in the vicinity of the SNPs/LD blocks used in the models are

those familiar in AD genetics, including not only established

GWAS-hits genes, such as APOE, TOMM40, CLU, EPHA-AS1,

PICALM, CD2AP, SLC24A4, andMSA4A6A, but also lesser known

gene associations from previous studies and those that overlap

with linkage peaks from early genetics investigations (Brookes

and Morgan, 2017), such as PACRG (Sirkis et al., 2016); LRAT

(Abraham et al., 2008), UNC5C (Jiao et al., 2014; Wetzel-Smith

et al., 2014); AKAP6 (Seshadri et al., 2010); DLG2 (Lawingco et al.,

2020; Prokopenko et al., 2022); and DAB1 and ARID1B (Harold

et al., 2009). It is also promising that some novel genes (UMAD1,

ABCAC1, SNX1, APP) found in a recent GWAS study with a very

large sample size were also identified in the 2207 model (Bellenguez

et al., 2022).

A large proportion of the SNPs in the model produced here

(81% and 74% for lenient and stringent models, respectively) had

IGAP_S1 p-values of above .05 and, therefore, may have been

omitted in traditional thresholding analysis. Furthermore, the beta

coefficient values of these SNPs are not minuscule (>0.0019 and

<-0.0012), suggesting that they might have observable biological

effects and could be therapeutic targets.

Being that the IGAP_S1 summary statistics used in this study

were already imputed, the further imputation of the genetic data of

the cohorts in this study would not be beneficial due to increased

variability that was observed in imputation in other data sets (Chen

et al., 2020). As an alternative measure, this investigation employed

clumping the base data set and selected SNPs within the target data

set to capture these LD blocks, taking the Index (most significant

SNP in the clumped base data set) when possible or an alternative

SNP in the same clump if the Index SNP was not present. This

allowed a greater coverage of the genome both within our initial

analyses of the BDR cohort and the cross-cohort analyses without

imputation. Interestingly, even though the validation cohorts were
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FIGURE 1

Bar chart for each cohort showing the numbers of cases (black) and controls (light gray) in each centile of the 2207 lenient model showing

two-distinct normal distribution curves for the PRS corresponding to the controls and cases for each dataset.
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FIGURE 2

Bar chart for each cohort showing the numbers of cases (black) and

controls (light gray) in each centile of the 149 stringent model. In

contrast to the lenient model with more LD blocks utilized, the 149

suggests three distinct normal distributions of scores; one at the

lower end of the scale made up predominantly of controls, a middle

range distribution of both cases and controls, and a high range peak

made up predominantly of cases.

selected for genotyping panels to match those in the developmental

cohorts, not all SNPs/LD clumps were present for analysis, possibly

due to those SNPs failing to genotype in that cohort or perhaps

being removed at quality control.

The additional target data sets utilized are a key limitation of

this study as they are not independent from the base data sets.

The IGAP study was a milestone collaborative investigation that

agglomerated multiple AD cohorts from around the world into a

single meta-analysis to elucidate our currently well-established AD

candidate genes (Lambert et al., 2013); however, this leaves few

data sets that are completely independent of this work. A previous

study (Escott-Price et al., 2017) also utilized a sample cohort that

was part of the IGAP study. In their analysis, they recalculated the

prediction accuracy based on the SNPs from the independent data

set and found that it produced a similar AUC. Therefore, given the

relatively small sample size of each of the cohorts utilized in this

study, it is likely that the AUCs presented are not greatly biased.

One caveat for the LD clump approach is that, due to some

alleles having effect sizes in the opposite direction, 1,067 clumps

were removed from the analysis as their inclusion may have

produced variation at the individual level, altering the risk “centile”

in which the individual may reside. The scoring algorithm for PRS

normally concerns the beta value of only the reference/effect allele;

however, to allow more parity, perhaps the effect sizes of both

alleles could be incorporated into this calculation, especially as the

opposing allele may not have a neutral effect as assumed in the

current scoring algorithm in PLINK.

Compared to other PRS investigations in AD, this investigation

opted for a higher r2 value of 0.8 for clumping and included

genetic variation surrounding the APOE gene. It is possible that the

additional SNPs are tagging the effects of the APOE isoform SNPs,

leading to inflated AUC values; however, what has been presented

in this article is consistent with previous studies (Harrison et al.,

2020; Leonenko et al., 2021). Regarding the APOE region, the LD

between SNPs is generally low, with only moderate (r2 < 0.56)

LD observed between SNPs in this region and the rs429358 and

rs7412 isoform SNPs (Young et al., 2021). Whilst the independent

association with and contribution of several SNPs to AD within

this area are supported by multiple studies (Huentelman et al.,

2010; Rao et al., 2018; Zhou et al., 2019), the extent to which the

isoform SNPs are influencing these observations is still an area

for investigation.

Furthermore, this study did not include environmental

predictors for AD. The inclusion of “non-genetic” variables into

PRS analyses is considered by some to be problematic, as they

may not be entirely independent of genetic influences already being

entered into the model. Quantitative genetics studies suggest that,

due to genetic–environment correlations, ∼25% of environmental

measures are heritable (Kendler and Baker, 2007). Female sex is

viewed as a risk factor for AD, and this is genetically controlled.

Therefore, to incorporate being female as a risk factor into the

analysis may have increased the prediction accuracy. Similarly,

longevity has also been found to have a genetic component

(Herskind et al., 1996), and thus, age at death was also omitted from

the model.

In conclusion, this study aimed to provide an alternative

to current PRS methods for developing a model that can be

applied across multiple cohorts genotyped on various platforms
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using informative SNPs common across data sets. This is still a

hypothetical model and requires further exploration, refinement,

and testing on additional data. The authors invite other fellow

researchers to test this model in their own cohorts, as additional

data sets will help identify additional common SNPs and refine

the model by removing false positives. When SNP or LD block

consistency is achieved across studies, the biological consequences

may then be identified and lead to the fulfillment of the clinical

utility the PRS aims to bring.
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