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Center for Alzheimer’s Research, Karolinska Institutet, Stockholm, Sweden

Background: Brain-derived neurotrophic factor levels are higher in those who

are physically active and lower in people with cognitive dysfunction. This study

investigated whether brain-derived neurotrophic factor mediated or modified the

association of sedentary time to MRI-estimated brain volumes in midlife.

Methods: Baseline (n = 612) and five-year follow-up (n = 418) data were drawn

from themulticenter Coronary Artery Risk Development in Young Adults Brain MRI

sub-study, including Black andWhite participants (aged 50.3 years, 51.6% females,

38.6% Black). Sedentary time (hours per day) was categorized into quartiles with

low≤ 4.3 (reference) and high> 8.4. Outcomes of the studywere total brain, white

matter, gray matter, hippocampal volumes, and white matter fractional anisotropy

at baseline and 5-year percent change from baseline. The study used general

linear regression models to examine the mediation and moderation e�ects of

brain-derived neurotrophic factor (natural log transformed) on the associations

of sedentary time to brain outcomes. The authors adjusted the regression model

for age, sex, race, intracranial volume, education, and vascular factors.

Results: Cross-sectionally, baseline participants with the highest sedentary time

had a lower total brain (−12.2 cc; 95%CI:−20.7,−3.7), graymatter (−7.8 cc; 95%CI:

−14.3,−1.3), and hippocampal volume (−0.2 cc; 95%CI:−0.3, 0.0) compared with

populations with the lowest sedentary time. The brain-derived neurotrophic factor

levels did not mediate the associations between brain measures and sedentary

time. Brain-derived neurotrophic factor was found to moderate associations of

sedentary time to total brain and white matter volume such that the brain volume

di�erence between high and low sedentary time decreased as brain-derived

neurotrophic factor levels increased. Longitudinally, higher baseline brain-derived

neurotrophic factor level was associated with less brain volume decline. The

longitudinal associations did not di�er by sedentary time, and brain-derived
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neurotrophic factor did notmediate ormoderate the association of sedentary time

to brain measure changes.

Conclusions: Higher brain-derived neurotrophic factor levels may bu�er the

negative e�ects of sedentary time on the brain.

KEYWORDS

sedentary time, brain volume, middle-aged, longitudinal, biomarkers

Introduction

Several studies suggest that high levels [e.g., >5 h per day or

3.0 metabolic equivalents (MET)] of physical activity (PA) are

associated with healthier brain structures and functions in middle-

aged (Chang et al., 2010; Hoang et al., 2016; Young et al., 2016)

and older persons (Burzynska et al., 2014; Barha et al., 2019). The

converse, sedentary behavior, such as television viewing or sitting

(e.g., >8 h per day or energy expenditure of 1.5 MET or less),

has been shown to be associated with lower brain volumes and

poorer cognitive function than an active lifestyle (Launer et al.,

2015; Hoang et al., 2016; Young et al., 2016).

Although an association between brain health and levels of PA

has been reported, there are few studies identifying intermediaries

(mediators) of this association, or factors that may change the

direction of the association (moderators) (Kramer, 2021). Brain-

Derived Neurotrophic Factor (BDNF) (Bekinschtein et al., 2007;

Raz et al., 2009; Brown et al., 2014; Shimada et al., 2014; Weinstein

et al., 2014) is a neurotrophic and neuroprotective protein that

maintains brain health (Shimada et al., 2014; Weinstein et al.,

2014; Li et al., 2020). Is BDNF a mediator or moderator? High

levels of PA are associated with relatively higher BDNF plasma

levels, which have a positive effect on brain structure and function

(Vaynman et al., 2004; Raz et al., 2009; Brown et al., 2014).

Likewise experimental studies have shown that blocking BDNF

signaling pathways could inhibit the benefits of high activity levels

on cognitive and hippocampal function in the memory domain

(Vaynman et al., 2004; Bekinschtein et al., 2007; Korol et al.,

2013). Additional evidence from genetic studies suggests levels

of BDNF secreted from virus-infected neurons are regulated by

the BDNF Val66 Met polymorphism and that higher levels of

PA were associated with larger regional brain volumes and better

cognitive function in Val/Val homozygotes than Met carriers and

there were smaller regional volumes in Met carriers than Val/Val

homozygotes (Egan et al., 2003; Brown et al., 2014; Takeuchi et al.,

2020). Sedentary behavior connotates low levels of activity. There

is variability of sedentary time (ST) in the population, and the

amount of ST spent by an individual is associated with chronic

disease independent of moderate to vigorous PA (Owen et al.,

2010). For example, sitting for more than 10 h per day vs. <5 h per

day was associated with an increased risk of CVD among middle-

aged women in the Women’s Health Initiative population (Young

et al., 2016).

Based on our previous finding of a relation between time spent

in sedentary behaviors and total brain volume (TBV) (Launer

et al., 2015), we investigated whether BDNF levels mediated (in

the pathway of ST and brain measures) or moderated (interaction

with ST) the ST—brain structure associations (Figure 1) in a cross-

sectional and longitudinal analysis.

Materials and methods

Study population

This study is based on Coronary Artery Risk Development in

Young Adults study (CARDIA), a community-based longitudinal

study of Black and White men and women aged 18–30 years at

baseline, who had been followed up for 30 years by the time of

this study and has previously been described in Friedman et al.

(1988). The CARDIA brain MRI sub-study was started in the 25th

year (Y25) of follow-up and repeated in the 30th year (Y30) of

follow-up (Launer et al., 2015). Briefly, the sub-study aimed to

characterize the morphology, pathology, physiology, and function

of the brain using MRI technology. Participants were enrolled at

the Y25 exam with the aim to achieve a balance of ethnicity/race

and sex from three of the four CARDIA field centers: Birmingham,

AL, Minneapolis, MN, and Oakland, CA. Each center recruited

to a target of approximately 200 individuals. Exclusion criteria

were contra-indication to MRI or a too large body size for the

MRI tube bore. Ethics approval was given by the institutional

review boards from each field center and coordinating center

(University of Alabama Birmingham, University of Minnesota,

and Kaiser Permanente Northern California), the MRI Reading

FIGURE 1

Hypothesis 1 (mediation) and Hypothesis 2 (moderation/interaction)

model, CARDIA Brain-MRI sub-study. (a) BDNF, brain-derived

neurotrophic factor; ST, sedentary time.
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Center (University of Pennsylvania) and the NIH Office of Human

Subjects Research Protection for the Intramural Research Program,

National Institute on Aging. All participants provided written

informed consent at each CARDIA exam, with a separate written

consent for participation in the brain MRI sub-study.

Assessment of brain structure

Brain MRI acquisition and processing information have been

previously reported (Launer et al., 2015). Each CARDIA clinic

site acquired brain MRI on 3-T MR scanners and transferred

MRI data to a central archive, the MRI Reading Center, located

at the University of Pennsylvania. We included the following in

our analysis: volumetric (cubic centimeters, cc) estimates of total

brain (TBV), gray matter (GMV), white matter (WMV), and

the hippocampus (HV). We also explored WM tissue integrity

measured by fractional anisotropy (WMFA) from diffusion tensor

imaging scans (Haight et al., 2018).

Assessment of main variables of interest

ST was estimated by average hours per day from self-reported

time spent (0, 15mins or less, 30mins, 1–5 h respectively, and 6 h or

more) in the following activities: sitting while watching television,

using the computer, doing non-computer paperwork, listening

to music, reading, or doing arts, using the phone, and riding

transportation. The details of the questionnaire can be found on

the CARDIA website (https://www.cardia.dopm.uab.edu/images/

more/pdf/Year25/CARDIA/Form91.pdf). We calculated the ST

per week by adding up the reported hours in specific activities

weighted by weekdays (5/7) and weekends (2/7). Plasma BDNF

levels (picograms/ml, pg/ml) from specimens collected at the Y25

exam were assayed using the Quantikine R© Human Free BDNF

Immunoassay. Free BDNF in plasma, which was not bound to other

proteins, receptors, or other factors, was measured by a 3.5-h solid

phase ELISA that possesses a detectable range of 125–40,000 pg/ml

at a 1:10 dilution.

Assessment of covariates

Based on prior studies, we included in our analysis

demographic factors (i.e., age, sex, and race) (Raz et al., 2009;

Liu et al., 2016; Brown et al., 2020), and total intracranial volume

(ICV), as a measure of head size (Driscoll et al., 2012).

We also included in our models, cardiovascular risk factors,

which have been shown to be associated with plasma BDNF levels,

and with brain volumes. High levels of vascular risk factors are

generally associated with brain atrophy (Launer et al., 2015; Cox

et al., 2019), while the relationship between vascular factors and

BDNF is inconsistent and may depend on age and sex (Pikula et al.,

2013; Jamal et al., 2015).

Other factors included in the models were: Education levels

(Chan et al., 2018); BMI (kg/m2) (Ho et al., 2011); tobacco use

(ever/never) (Pikula et al., 2013); presence of diabetes (based

on fasting glucose, glucose tolerance, hemoglobin A1c, and

medications) (American Diabetes Association, 2011), hypertension

(based on: ≥ 140/≥90 mmHg or on hypertensive medications)

(Chobanian et al., 2003), dyslipidemia (based on: triglycerides

≥ 150 mg/dl, HDL < 35 mg/dl if males; Triglycerides ≥

150 mg/dl, HDL < 45 mg/dl if females) (Gottesman et al.,

2017), and depression symptomology measured by the Center for

Epidemiologic Studies Depression Scale (Beekman et al., 1997).

Analytical sample

At the Y25 examination, 719 men and women participated in

the Brain MRI Sub-study, among whom 625 had plasma BDNF

data (Supplementary Figure 1). After excluding 13 persons with

missing values of ST data, there were 612 with complete data

for these analyses. Secondary longitudinal analyses included 418

(68.3%) participants who attended both the Y25 and Y30 MRI

exams and had complete data. There were 194 (31.7%) participants

who did not return for the secondMRI (Supplementary Table 1). In

general, the dropouts had a higher ST and BMI, andmore often had

diabetes, hypertension, dyslipidemia, hypertension, and smoked.

However, both the baseline BDNF and brain measures were similar

among the dropouts and attenders.

Statistical analyses

All brain measures were normally distributed and coded as

continuous variables. ST distributionwas right skewed. To compare

high ST with low ST, ST was categorized into quartiles with

the lower 25%ile at ≤4.3 h per day as the reference group. We

used natural log transformation for the distribution of plasma

BDNF levels to normalize the right-skew. Age was a continuous

variable. Binary variables included sex (female and male) and

race (White and Black) with males and Blacks as the reference

groups, respectively.

For descriptive analysis, we used ANCOVA and logistic

regression to compare continuous and categorical characteristics

at the Y25 exam across the ST quartiles, respectively. For Model

1, we included age, sex, race, and ICV as covariates. Model

2 (supplement) additionally included vascular risk factors, as

described above. To test for mediation effects of BDNF (Hypothesis

1), we used general linear regression to examine the associations

of ST to MRI outcomes, with and without BDNF in the model.

We tested whether levels of BDNF moderated the association of ST

to brain measures by entering an interaction term (Hypothesis 2),

BDNF by ST. Multicollinearity was checked between all predictor

variates with all correlation coefficients <0.6.

To verify and to expand this basic statistical approach, we

also conducted a formal mediation and moderation analyses using

the PROCESS model (Hayes, 2018). In these analyses, the direct

and indirect (mediation) effects of ST on brain outcomes were

estimated, with a test of the significance of BDNF as a mediator.

Similarly, the PROCESS analysis tests for moderation effects

(Hayes, 2018) by estimating coefficients of the model where brain

measures are dependent variables, ST an independent variable,
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TABLE 1 Characteristics of participants at the year 25, CARDIA brain-MRI sub-study.

Characteristics Total Sedentary time (hours per day), quartiles

≤4.3 4.3–5.9 5.9–8.4 >8.4

n 612 152 154 152 154

Age, mean (SD), years 50.3± 3.5 50.6± 3.5 50.4± 3.5 50.5± 3.5 49.8± 3.6

Sex no. (%)

Male 296 (48.4) 69 (45.4) 74 (48.1) 73 (48.0) 80 (52.0)

Female 316 (51.6) 83 (54.6) 80 (52.0) 79 (52.0) 74 (48.1)

Race no. (%)

Black 236 (38.6) 35 (23.0) 43 (27.9) 60 (39.5) 98 (63.6)

White 376 (61.4) 117 (77.0) 111 (72.1) 92 (60.5) 56 (36.4)

Education no. (%)

High school 131 (21.5) 22 (14.5) 30 (19.5) 29 (19.2) 50 (32.7)

College 356 (58.4) 92 (60.5) 84 (54.6) 94 (62.3) 86 (56.2)

Graduate 123 (20.2) 38 (25.0) 40 (26.0) 28 (18.5) 17 (11.1)

∗BMI, mean (SD), kg/m2 28.7± 5.7 26.6± 5.2 28.0± 5.0 30.1± 6.3 30.2± 5.4

∗Diabetes no. (%) 67 (11.0) 7 (4.6) 13 (8.4) 22 (14.5) 25 (16.2)

∗Dyslipidemia no. (%) 235 (38.5) 42 (27.6) 61 (39.6) 65 (43.1) 67 (43.5)

∗Hypertension no. (%) 198 (32.4) 29 (19.1) 33 (21.4) 64 (42.1) 72 (46.8)

∗Smoking no. (%) 240 (39.6) 48 (32.0) 55 (35.7) 65 (43.1) 72 (47.7)

Depression score, mean (SD) 8.6± 7.0 7.6± 6.7 8.5± 6.3 8.6± 7.5 9.6± 7.4

BDNF plasma, mean (SD), pg/ml 3,090.0± 3,045.7 2,934.0± 2,898.3 2,859.9± 2,333.2 3,113.5± 3,179.0 3,450.9± 3,623.4

Brain measures, % of ICV (SD)

TBV 85.1± 2.8 85.2± 2.3 85.1± 0.3 85.3± 2.9 84.8± 3.3

GMV 46.8± 2.2 46.8± 1.9 46.8± 2.2 46.9± 2.3 46.5± 2.7

WMV 38.3± 1.6 38.4± 1.5 38.3± 1.5 38.3± 1.7 38.3± 1.7

HV 0.6± 0.1 0.6± 0.0 0.6± 0.1 0.6± 0.1 0.6± 0.1

WMFA, mean∗10−2 (SD) 31.1± 1.8 31.2± 1.7 31.4± 1.8 31.2± 1.6 30.7± 2.1

% change from year 25, mean (SD)

TBV∗ 0.4± 1.6 0.5± 1.8 0.4± 1.5 0.5± 1.5 0.3± 1.9

GMV −0.3± 2.3 −0.2± 2.3 −0.4± 2.4 −0.2± 2.1 −0.6± 2.5

WMV 1.3± 1.9 1.3± 1.9 1.4± 1.7 1.4± 1.9 1.4± 2.2

HV 0.3± 2.4 0.5± 2.8 0.4± 2.1 0.4± 2.3 −0.0± 2.5

WMFA −2.8± 3.1 −2.9± 3.5 −2.3± 2.3 −3.0± 3.1 −3.0± 3.5

BDNF, brain-derived neurotrophic factor; BMI, body mass index; ICV, intracranial volume; TBV, total brain volume; GMV, gray matter volume; WMV, white matter volume; HV, hippocampal

volume; WMFA, white matter fractional anisotropy. Missingness: Education n= 2; Dyslipidemia n= 2; Depression score n= 3.
∗P-value < 0.05, adjusted for age, sex, race, and ICV.

BDNF as the moderating variable, adjusting for covariates. The

PROCESS analysis gives values of brain measures by ST quartiles

at the 16, 50, and 84%ile of logBDNF.

For the longitudinal analysis, we used the same approach as in

the main analysis. Five-year brain measure change was expressed as

the percent change in brain measures from Y25 to Y30 exam (Jack

et al., 2004).

We conducted all analyses using SAS 9.4 R© (SAS Institute, Inc.,

Cary, NC). Significance was based on 95% CI not including 0.

Results

Characteristics of study participants at the
year 25

At the Y25 exam, participants were on average 50.3 years

old, 51.6% were female, and 38.6% were Black (Table 1). Black

participants tended to have higher ST. Vascular risk factors varied

differed across ST quartiles. People with higher ST quartiles
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TABLE 2 Associations between logBDNF and 25-year exam risk factors,

CARDIA brain-MRI sub-study.

Risk factor β estimate 95%CI

Education −0.10 −0.24, 0.03

BMI 0.01 −0.01, 0.02

Diabetes 0.04 −0.23, 0.31

Smoking 0.23 0.07, 0.40

Hypertension 0.21 0.04, 0.39

Dyslipidemia 0.13 −0.03, 0.30

Depression −0.01 −0.02, 0.01

BDNF, brain-derived neurotrophic factor; BMI, body mass index.

β estimate was the difference of logBDNF per-unit change for yes vs. no risk factors, adjusted

for age, race, and sex.

had higher BMI, and more often had diabetes, hypertension,

dyslipidemia, and smoked compared with people in the lowest

ST quartile (Table 1, Supplementary Table 3). Smoking (β = 0.23,

95% CI: 0.07, 0.40) and hypertension (β = 0.21, 95% CI: 0.04,

0.39) were significantly associated with one-unit higher logBDNF

levels adjusting for age, sex, and race, respectively, compared with

never-smoking and non-hypertensive (Table 2).

Hypothesis 1: Cross-sectional mediation
e�ects of BDNF

Adjusting for age, sex, race, and ICV, compared with those

in the lowest ST quartile (≤4.3 h per day), people in the highest

ST quartile (>8.4 h per day) had a significantly smaller brain

volumes: TBV of −12.2 cc (95%CI: −20.73, −3.69), GMV of −7.8

cc (95%CI: −14.31, −1.28), and HV of −0.2 cc (95%CI: −0.33,

−0.03) (Table 3). There were no significant differences in WMV

or WMFA across different ST quartiles. Neither ST quartiles nor

any of the brain measures were significantly associated with BDNF.

Controlling for BDNF, or other covariates, the indirect effects

between ST and brain measures were similar to the direct effects

(i.e., without BDNF adjustment) suggesting BDNF did not mediate

the association between ST and brain structure.

Hypothesis 2: Cross-sectional moderation
(interaction) analysis

In Model 1 (Table 3, Figure 2), plasma BDNF significantly

moderated the difference in TBV (95% CIinteraction: 0.28, 16.54)

and WMV (95% CIinteraction: 1.08, 10.64) between the highest

and lowest ST quartile. In those in the highest quartile of

ST, higher BDNF levels were associated with higher TBV and

WMV. Therefore, the difference in TBV and WMV between

the high and low quartiles of ST was reduced with higher

BDNF levels. Controlling for covariates, the difference in TBV

between the high and low ST quartiles at the 16th percentile

of logBDNF was −21.4 cc (95% CI: −33.60, 9.21), −11.0

cc (95% CI: −19.65, −2.41) at the 50th logBDNF percentile,

and a non-significant difference of −4.4 cc (95% CI: −15.89,

TABLE 3 Mediation and moderation e�ects of plasma BDNF levels on

sedentary time (ST) and brain measures, model 1, CARDIA brain-MRI

sub-study.

Models Cross-sectional Longitudinal

β coe�cient
(95%CI)

β coe�cient
(95%CI)

Hypothesis 1: Mediation

ST (highest vs. lowest quartile) → MRI

TBV −12.2 (−20.73,−3.69) −0.2 (−0.65, 0.32)

GMV −7.8 (−14.31,−1.28) −0.4 (−1.09, 0.28)

WMV −4.4 (−9.43, 0.60) 0.2 (−0.40, 0.70)

HV −0.2 (−0.33,−0.03) −0.5 (−1.25, 0.17)

WMFA −0.3 (−0.74, 0.08) −0.1 (−1.14, 1.01)

ST (highest vs. lowest

quartile) →

logBDNF

0.2 (−0.06, 0.42) N/A

logBDNF → MRI

TBV −0.9 (−3.74, 2.01) 0.3 (0.14, 0.45)

GMV −0.8 (−2.98, 1.41) 0.3 (0.12, 0.56)

WMV −0.1 (−1.76, 1.61) 0.2 (0.06, 0.41)

HV 0.0 (−0.03, 0.07) 0.5 (0.29, 0.74)

WMFA −0.1 (−0.23, 0.05) −0.5 (−0.87,−0.18)

ST (highest vs. lowest quartile) → logBDNF → MRI

TBV −12.1 (−20.65,−3.57) −0.2 (−0.69, 0.26)

GMV −7.7 (−14.23,−1.17) −0.5 (−1.14, 0.21)

WMV −4.4 (−9.45, 0.62) 0.1 (−0.44, 0.66)

HV −0.2 (−0.33,−0.03) −0.6 (−1.33, 0.06)

WMFA −0.3 (−0.73, 0.10) 0.0 (−1.04, 1.09)

Hypothesis 2: Moderation

ST (highest vs. lowest quartile) and logBDNF moderation

TBV 8.4 (0.28, 16.54) −0.4 (−0.82, 0.06)

GMV 2.6 (−3.69, 8.79) −0.5 (−1.09, 0.15)

WMV 5.9 (1.08, 10.64) −0.3 (−0.79, 0.23)

HV 0.1 (−0.07, 0.21) −0.6 (−1.19, 0.08)

WMFA 0.2 (−0.15, 0.63) 0.2 (−0.75, 1.24)

BDNF, brain-derived neurotrophic factor; ST, sedentary time; TBV, total brain volume; GMV,

gray matter volume; WMV, white matter volume; HV, hippocampal volume; WMFA, white

matter fractional anisotropy.

Results were based onModel 1, adjusted for age, sex, race, and intracranial volume (ICV). For

Hypothesis 1, β coefficients were for ST on logBDNF, MRI (cross-sectional) or change of MRI

(longitudinal). For Hypothesis 2, β coefficients were for interaction.

7.13) at the 84th percentile. For WMV, the difference between

the high and low quartiles was −10.8 cc (95% CI: −18.01,

−3.66), −3.6 cc (95% CI: −8.67, 1.47) and 1.0 cc (95% CI:

−5.74, 7.80) for the 16th, 50th and 84th logBDNF percentiles

respectively. In Model 2, after additionally adjusting for vascular

risk factors, plasma BDNF significantly moderated the difference

in WMV (95% CIinteraction: 1.14, 11.49) but not the TBV (95%

CIinteraction: −0.13, 17.11) between the high and low ST quartiles

(Supplementary Table 1).
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FIGURE 2

Moderation e�ects of BDNF on sedentary time (ST) to brain MRI at the Year 25, CARDIA Brain-MRI sub-study. (a) BDNF, brain-derived neurotrophic

factor. (b) Models adjusted for age, sex, race, and intracranial volume (ICV).

Hypotheses 1 and 2 longitudinal analyses

Longitudinally, there was no significant difference in percent

change in brain measures by ST quartiles adjusting for age,

sex, race, and ICV (Table 3). However, the amount of change

in brain volumes depended on the BDNF level. For example,

with every unit increase in logBDNF, there was a 0.3% (95% CI:

0.14%, 0.45%) less decline in TBV. Table 3 also shows similar

associations in GMV, WMV, and HV. There was no evidence that

BDNF mediated or moderated the association of ST to change in

brain measures.

Discussion

Based on cross-sectional and longitudinal analyses, we

investigated whether level of plasma BDNF influenced the

association between ST and brain structure in a community-

dwelling, middle-aged cohort of Black and White participants.

Plasma BDNF levels modified the association between ST and brain

measures. We found the lower the ST, the lower the brain volumes,

but the differences between brain volumes in high vs. low ST were

smaller as logBDNF increased in TBV and WMV (Figure 2). Our

longitudinal analyses showed no association of ST to change in
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brain volumes but did show less decline in brain volume with

higher BDNF levels. We did not find significant mediation or

moderation effects in WM integrity in our study population.

The activity-BDNF-brain volume
associations

BDNF plays a neurotrophic role for neuronal survival and

brain plasticity for cognitive function (Weinstein et al., 2014).

Experimental and human studies have linked plasma BDNF levels

to brain structure and function and have shown exercise increased

BDNF levels and brain health. However, prior studies on mediation

or moderation of BDNF plasma levels on the PA—brain function

are limited, and the findings are inconsistent (Egan et al., 2003;

Vaynman et al., 2004; Raz et al., 2009; Brown et al., 2014).

A recent review of randomized controlled trials by Gasquoine

suggested limited benefits of PA for memory performance through

BDNF regulation, suggesting pathways outside the central nervous

system regarding the beneficial effects of PA for cognitive function

(Gasquoine, 2018).

In general, mechanisms that regulate plasma BDNF levels are

not clear. Several studies have shown plasma BDNF levels are under

genetic regulation of the BDNF Val66Met polymorphism where

Met allele carriers have lower plasma BDNF levels than Val/Val

homozygotes (Takeuchi et al., 2020). There are also differences in

brain structure or function associated with Met and Val carriership

(Brown et al., 2014; Weinstein et al., 2014). Other studies have

suggested plasma BDNF levels are influenced by lifestyle factors

either directly or indirectly by the BDNF Val66Met polymorphism

(Egan et al., 2003). These factors include cognitive stimulation

(Adcock et al., 2020), diet (Sánchez-Villegas et al., 2011; Yamada-

Goto et al., 2012), stress (Yamada-Goto et al., 2012), sleep (Schmitt

et al., 2016), and smoking (Xia et al., 2019). In our study, tobacco

use, and hypertension were related to significantly higher plasma

BDNF levels (Table 2). This finding is consistent with studies in

mid- to late-life populations and in animal models (Kenny et al.,

2000; Golden et al., 2010; Amoureux et al., 2012; Weinstein et al.,

2014). BDNF activity, the amount of BDNF expressed by the

regulating genes, was positively correlated with high blood pressure

and negatively associated with smoking (Golden et al., 2010;

Weinstein et al., 2014). In animal studies, increased aortic BDNF

expression occurs before blood pressure increases (Amoureux et al.,

2012). Regional brain BDNF expression increased after chronic

nicotine treatment in rats through the BDNF-TrkB pathway

(Kenny et al., 2000).

We also found no association of ST to BDNF, suggesting

measures of low levels of activity do not capture low levels

of exposure to BDNF-associated factors that are specifically

stimulated by exercise. These processes may be independent of

those that lie along the sedentary—active continuum or are

dependent on other lifestyle or disease-related associated processes.

BDNF and the brain

Our findings from the longitudinal analyses suggest that

relatively higher BDNF levels are associated with less 5-year decline

in TBV, GMV, and HV. Although many studies have focused on

maintaining BDNF levels for the benefits of GM structures such

as the hippocampus (Erickson et al., 2010; Maioli et al., 2012),

there is also evidence that BDNF may play a role in maintaining

WM health through expression by glial cells (Sato et al., 2009;

Giorgio et al., 2010; Miyamoto et al., 2015). Studies have reported

relatively higher BDNF levels were associated with slower change

in WMV with age (Driscoll et al., 2012). However, relatively higher

BDNF plasma levels are associated withmore 5-year decline inWM

microstructure measured byWMFA in our study. This relationship

could be explained by the upregulation of BDNF levels through

oligodendrogenesis by WM glial cells (e.g., astrocytes) to protect

and regenerate damagedWM fibers (Sato et al., 2009; Giorgio et al.,

2010; Miyamoto et al., 2015).

Strengths of the study

This study has several strengths. As mentioned in previous

publications, the CARDIA study provides data on a large

community-based middle-aged cohort that includes Black and

White participants. Data on this midlife age group provide

important information of early changes in the brain, which may

contribute to late-age prediction of cognitive impairment. Further,

there are few data on the associations among ST, BDNF and brain

volume in a such a cohort, which reflects the wider community.

Additionally, we could examine these associations both cross-

sectionally and longitudinally. We were also able to systematically

study and identify other lifestyle factors that may influence levels of

BDNF and should be accounted for in future studies.

Limitations of our study

Although the people who returned for a second MRI had

fewer cardiovascular risk factors, there was no difference in BDNF

and brain measures compared to those who did not return.

Compared to studies with objective measures of PA, our self-

reported ST may be over or underestimated to an unknown degree

particularly if there are systematic differences in reporting by a

factor of importance to this study, such as smoking or hypertension

(Wanner et al., 2017). Furthermore, ST not only includes relatively

inactive sitting, but it also includes activities such as computer

work, socializing using the phone, or artwork. There are mixed

associations between different sedentary activities and the brain,

including both positive impact of mentally stimulating activities

(e.g., crafts, puzzles, video games, etc.) (Wanders et al., 2021) and

a negative impact from TV viewing (Hoang et al., 2016). More

complete measures of sedentary behavior which could differentiate

time and activities on sitting at work and during leisure time are

needed to further explore the effect of cognitive stimulation on

BDNF levels and its association with brain outcomes.

Lastly, we were not able to examine the role of the BDNF

polymorphism in our study. Additionally, the analysis assumes the

BDNF plasma levels reflect its activity in the brain, which is a

weakness in all studies of plasma biomarkers of brain health. In

humans, peripheral BDNF is often used as a proxy since central

BDNF is difficult to measure. In animal studies, the peripheral
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and central BDNF are associated by BDNF crossing the blood-

brain barrier in both directions (Gejl et al., 2019). However, as with

all blood-based biomarkers of central processes, there is always a

gap in our understanding of how close the blood-based molecules

reflect central activity.

Conclusions

Together with other experimental and clinical studies, this

study suggests that the negative association of ST with TBV and

WMV was reduced in persons with relatively higher plasma BDNF

levels in midlife.
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