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Targeted plasticity therapy (TPT) utilizes vagus nerve stimulation (VNS) to
promote improvements in function following neurological injury and
disease. During TPT, a brief burst of VNS induces neuromodulator release,
which when paired with relevant behavioral events can influence functionally
relevant neuroplasticity. Functional improvements following TPT are therefore
in part mediated by neuromodulator signaling. Unfortunately, comorbidities
associated with neurological disease often result in altered cognitive states that
can influence neuromodulator signaling, potentially impeding neuroplasticity
induced by TPT. Aside from altered cognitive states, cardiorespiratory rhythms
also affect neuromodulator signaling, due to the vagus nerve’s role in relaying
visceral sensory information from the cardiovascular and respiratory systems.
Moreover, precise VNS delivery during specific periods of the cardiorespiratory
rhythms may further improve TPT. Ultimately, understanding the impact of
patient-specific states on neuromodulator signaling may likely facilitate
optimized VNS delivery, paving the way for personalized neuromodulation
during TPT. Overall, this review explores challenges and considerations for
developing advanced TPT paradigms, focusing on altered cognitive states and
cardiorespiratory rhythms. We specifically discuss the possible impact of these
cognitive states and autonomic rhythms on neuromodulator signaling and
subsequent neuroplasticity. Altered cognitive states (arousal deficits or pain)
could affect VNS intensity, while cardiorespiratory rhythms may further inform
optimized timing of VNS. We propose that understanding these interactions
will lead to the development of personalized state dependent VNS paradigms
for TPT.
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Introduction

Vagus nerve activity influences central neuromodulator signaling
via connections with subcortical structures regulating the release of
acetylcholine, norepinephrine, serotonin, and dopamine (Rodenkirch
et al., 2022; Hays et al., 2013). This influence impacts synaptic
transmission, neuronal excitability, and network activity
throughout the nervous system (Lee and Dan, 2012; Brzosko et al.,
2019). VNS can activate these neuroanatomical pathways, electrically
facilitating neuromodulator release and neuroplasticity. TPT leverages
these processes by pairing relevant experiences with VNS in a
temporally precise manner, further enhancing activity-dependent
neuroplasticity in the central nervous system (Hays, 2016). TPT
has been successfully employed across a variety of applications,
including stroke (Dawson et al., 2021; Meyers et al., 2018; Badran
et al., 2023; Redgrave et al., 2018; Francisco et al., 2023; Khodaparast
et al., 2014; Hays et al., 2014), spinal cord injury (Ganzer et al., 2018;
Darrow et al., 2020), peripheral nerve injury (Meyers et al., 2019;
Darrow et al., 2021; Ruiz et al., 2023a), tinnitus (Engineer et al., 2011;
Borland et al., 2016), post-traumatic stress disorder (Noble et al.,
2019), as well as learning and memory (Bowles et al., 2022; Altidor
et al., 2021; Olsen et al., 2023).

Importantly, the vagus nerve is primarily a conduit for sensory
information from end organs to subcortical and cortical areas,
facilitating the processing and integration of information related to
autonomic function. At the cervical level, ~80% of its fibers are
afferent and relay information from organs to the brain, while the
remaining ~20% are efferent fibers dedicated to organ control. Given
these complex interactions between the organs, the vagus nerve, and
the central nervous system, at least two major factors emerge that
significantly affect overall neuromodulator signaling: 1) altered
cognitive states and 2) ongoing autonomic rhythms. While
developments in VNS have led to FDA-approved therapies to treat
epilepsy, obesity, stroke, and depression, the responder rates in clinical
trials have varied significantly compared to preclinical studies (Dickie
et al., 2019; Dawson et al., 2021; Morris et al., 1999; Tyler et al., 2017).
This could, in part, be due to variability in patient-specific physiology
impacting VNS-induced neuromodulator release.

Recent developments in bioelectronic medicines have
interestingly begun using stimulation paradigms based on specific
physiological states, cardiorespiratory rhythms, and altered
cognitive states, representing a possible avenue for optimizing
VNS paradigms and TPT. Studies are now exploring the use of
closed-loop adaptive neuromodulation systems to optimally deliver
stimulation based on the sleep-wake cycle in patients with
Parkinson’s disease (Gilron et al., 2021). Algorithms that consider
patient-specific circadian rhythms are also now being utilized to
optimize adaptive stimulation systems for treating epilepsy (Fleming
et al., 2022). Brain-computer interfaces rely on neural signals to
decode intent and re-establish control of the impaired end effector
(Ethier et al., 2015). These neural signals are often influenced by
altered states, such as shifts in attention or arousal (Hennig et al.,
2021), motivation (Kleih-Dahms et al., 2021), and neuropathic pain
(Vuckovic et al., 2015). Therefore, identifying the influence of non-
motor cognitive states in neural decoding could further improve the
performance of BCI-FES systems for movement control (Gallego
et al., 2022). Moreover, regulating arousal levels via neurofeedback
may also improve BCI performance, highlighting the importance of

cognitive states (Faller et al., 2019). Overall, evidence suggests that
personalized optimization of stimulus programming in
neuromodulation systems can importantly improve patient
outcomes (Moro et al., 2006). For example, a recent clinical
study found that personalized chronic adaptive deep brain
stimulation (DBS) outperformed conventional DBS for improving
motor symptoms (Oehrn et al., 2024). Optimizing stimulus
programming has also been useful in managing speech
impairments following Parkinson’s disease (Swinnen et al., 2024).
Furthermore, appropriately timed stimulation synchronized with
physiological states affects both functional outcome and
neuroplasticity. For example, phase specific thalamic DBS can
suppress essential tremor significantly better than traditional
high-frequency thalamic DBS (Cagnan et al., 2017). Phase-
specific stimulation synchronous with cortical beta oscillations
can also lead to bidirectional synaptic plasticity (Zanos et al.,
2018), similar to studies using electroencephalography (EEG)
guided transcranial magnetic stimulation for learning and
memory (Taylor et al., 2008) or movement disorders (Wendt
et al., 2022). Recent studies are now using closed-loop
neuromodulation approaches for individuals with treatment-
resistant depression, utilizing recordings from the amygdala and
spectral power in the gamma frequency as an indicator of their
cognitive state (Scangos et al., 2021). Lastly, cardiovascular rhythms
and state dependent stimulation is now being incorporated into
adaptive cardiac pacemakers that adjust stimulation based on
exertional state and demand (Świerżyńska et al., 2023).

Taken together, these studies outline a framework for possibly
developing a state dependent VNS paradigm for TPT to maximize
plasticity and function recovery, considering the influence of altered
cognitive states and cardiorespiratory rhythms. Patient-specific
cognitive states, such as arousal and pain perception changes,
could ultimately influence VNS parameter selection. In addition,
cardiorespiratory rhythms may significantly impact the VNS
timing needed for optimized TPT. Overall, this review aims to
summarize and discuss the influence of altered cognitive states and
cardiorespiratory rhythms on neuromodulator release, potentially
impacting neuroplasticity associated with TPT. The content
throughout aims to be hypothesis generating, hopefully paving the
way for the development of personalized VNS and optimized TPT.

Role of neuromodulator signaling in
neuroplasticity associated with TPT

VNS promotes neuromodulator release that significantly affects
neuronal excitability, enhancing signal-to-noise ratios and salient
events, as well as influencing synaptic modifications in the brain,
thereby regulating several aspects of neuroplasticity (Pedrosa and
Clopath, 2017; Hirata et al., 2006). Neuroplasticity represents a critical
substrate of learning and memory (Serradj et al., 2023), recovery of
motor function after neurological injury (Nandakumar et al., 2023;
Mohammed and Hollis 2018; Ward et al., 2003), and several other
processes. Subcortical structures, namely, the nucleus basalis of
Meynert (NB), the locus coeruleus (LC), the dorsal raphe nucleus
(DRN), and the ventral tegmental area (VTA), serve as principal
sources of key neuromodulators involved in neuroplasticity, including
acetylcholine, norepinephrine, serotonin, and dopamine respectively
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(for an extensive review refer to (Gu, 2002)). Dysregulation of these
neuromodulators has been associated with deficits in learning,
impaired memory consolidation, and behavioral dysfunction
following neurological injury (Li and Hollis, 2023; Ramanathan
et al., 2015; Conner et al., 2010; Monk and Hussain Shuler, 2019;
Wachtel et al., 1975).

VNS engages these neuromodulatory transmission systems via
the nucleus tractus solitarius (NTS) in the brainstem, subsequently
promoting neuronal activation in the NB (Bowles et al., 2022;
Collins et al., 2021; Mridha et al., 2021), the LC (Hulsey et al.,
2016b), the DRN (Manta et al., 2012; 2013; Dorr and Guy, 2006),
and the VTA (Brougher et al., 2021; Fernandes et al., 2020)
(Figure 1A). Even a brief burst of VNS releases neuromodulators
diffusely throughout the cortex, causing widespread changes in
cortical excitability (Collins et al., 2021). Moreover, this
neuromodulator release triggered by VNS is essential for TPT-
induced neuroplasticity (Kilgard and Merzenich, 1998; Hulsey
et al., 2016a; Ramanathan et al., 2009). A reduction in
neuromodulator signaling impairs TPT-induced neuroplasticity,
while enhancement facilitates neuroplasticity and behavioral

outcomes (Hulsey et al., 2016a; Hulsey et al., 2019; Nichols et al.,
2011; Meyers et al., 2019; Bowles et al., 2022).

TPT commonly uses a brief burst of VNS (e.g., 0.5 s in duration).
Importantly, these brief bursts of stimulation alone are insufficient
to strengthen synapses and facilitate TPT-induced neuroplasticity,
as they must be paired with a given event in a temporally precise
manner to promote enhanced function (Hays, 2016; Hays et al.,
2014). Aside from TPT, other applications of VNS commonly use
longer stimulation trains that can facilitate some degree of
neuroplasticity (Furmaga et al., 2012; Biggio et al., 2009; Olsen
et al., 2022). Typical plasticity mechanisms follow Hebbian rules
requiring the coincident activity of presynaptic and postsynaptic
neurons, with the temporal differences in spiking dictating synaptic
strengthening via long-term potentiation (LTP) or weakening via
long-term depression (LTD), known as spike timing dependent
plasticity (STDP) (Urbin et al., 2017; Kleim and Jones, 2008;
Ziemann et al., 2004). These synaptic modifications are often
transient, and the rules of STDP can be dramatically influenced
by the presence of neuromodulators (Brzosko et al., 2019; Pawlak
et al., 2010; Gerstner et al., 2018). Recent studies suggest that most

FIGURE 1
Mechanisms of TPT-induced neuroplasticity mediated by neuromodulator signaling. (A) TPT commonly involves implanting a VNS cuff (iVNS) at the
cervical level along with an implantable pulse generator (IPG), stimulating the ear non-invasively targeting the auricular branch of the vagus (TaVNS), or
stimulating the neck non-invasively targeting the cervical vagus (TcVNS). Stimulating the vagus nerve and its branches can activate the nucleus tractus
solitarius (NTS) in the brainstem, which has extensive projections to other key brainstem nuclei facilitating neuromodulator release, including the
locus coeruleus (LC) for norepinephrine release, the nucleus basalis of Meynert (NB) for acetylcholine release, the dorsal raphe nucleus (DRN) for
serotonin release, and the ventral tegmental area (VTA) for dopamine release. Overall, VNS leads to the release of these neuromodulators across multiple
brain areas. The vagus nerve also transmits information from the cardiovascular and respiratory tissues to the NTS and higher brain order structures,
thereby possibly affecting VNS-induced neuromodulator signaling. (B) TPT for upper limb rehabilitation commonly uses a brief burst of iVNS (0.8 mA,
30 Hz, 100 µs pulse width, and a 0.5 s train duration) that can be paired with successful movements to improve motor performance (e.g., where the
achieved force exceeds a given threshold). (C) Coincident activity of presynaptic and postsynaptic neurons during rehabilitation creates a transient
synaptic tag, commonly referred to as the synaptic eligibility trace. These traces can be converted to long-term changes in synaptic strengthmediated by
VNS-induced neuromodulator release local to the synapse (please note the specific time scales in panel C; red dashed lines (B, C): VNS thresholds during
successful force events).
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synaptic plasticity is heterotypic, involving the reinforcement of
neuromodulators seconds after Hebbian conditioning leveraging the
synaptic eligibility trace (He et al., 2015; Bailey et al., 2000; Froemke
et al., 2007) (Figures 1B,C). Neuromodulator release associated with
TPT generally acts as a reinforcer (Bowles et al., 2022) when paired
with behavioral events and modifies the STDP window further
affecting neuroplasticity (Hays et al., 2013). There are a number
of possible behavioral events for triggering VNS during TPT,
ultimately depending on the therapeutic application (e.g., VNS
paired with a motor event during upper limb rehabilitation, VNS
paired with a somatosensory event during tactile rehabilitation, or
VNS paired with an auditory event during therapy for tinnitus).

Importantly, VNS activates the NTS, a critical structure receiving
ongoing neural signaling from the visceral tissues (e.g., neural signals
from the cardiovascular and respiratory systems). Hence, this visceral
input likely affects VNS-induced neuronal transmission within the
NTS (Beaumont et al., 2017) and subsequent downstream
neuromodulator release. Overall, these intricate brain-body
interactions and the role of visceral input affecting TPT-induced
neuroplasticity are incompletely understood. This emphasizes the
need for further inquiry, particularly given the vagus nerve’s
connection to the viscera, the brainstem, and higher-order structures.

Role of stimulation dose in modifying
neuromodulator signaling

The stimulation dose is a critical concept when considering
neuromodulator release and overall neuromodulatory signaling.
The stimulation dose for VNS involves a number of factors
governing the amount of electrical energy being applied to the
vagus (Peterchev et al., 2012). Stimulation dose can be adjusted by
varying the amplitude of stimulation, location, modality of
stimulation, waveform characteristics (pulse width, frequency,
or inter-trial interval), stimulation timing, and the overall
therapy duration. Overall, TPT has used several VNS
approaches, including invasive VNS at the cervical level using
an implantable cuff (iVNS) (Khodaparast et al., 2014; Borland
et al., 2016; Noble et al., 2017; Ganzer et al., 2018; Meyers et al.,
2018; Meyers et al., 2019; Darrow et al., 2020; Tseng et al., 2020;
Dawson et al., 2021), noninvasive trans-auricular stimulation
(TaVNS) targeting the auricular branch of the vagus nerve
located on the ear (Redgrave et al., 2018; Badran et al., 2023;
Chen et al., 2023; Rufener et al., 2023; Thompson et al., 2021), and
transcutaneous VNS at the cervical level (TcVNS) (Gurel et al.,
2020; Jigo et al., 2024; McIntire et al., 2021). Each stimulation
approach could differentially engage important neuromodulatory
systems and hence likely requires unique stimulation dosing
strategies. iVNS, TaVNS, and TcVNS are exclusively used in
this section to better differentiate the various VNS approaches.

Parametric characterization of the optimal stimulation dose for
TPT has been most extensively studied in animal models using
iVNS. Increasing the stimulus intensity and pulse width leads to
increased activity in the noradrenergic LC (Hulsey et al., 2016a), as
well as increased cholinergic transmission from NB to the cortex
(Mridha et al., 2021). However, increasing the pulse frequency alters
the timing, but not the total amount, of VNS-driven neuronal
activity in the LC (Hulsey et al., 2016a) and cholinergic activity

from NB (Mridha et al., 2021). Moreover, extensive characterization
of plasticity as a function of iVNS dose has revealed a non-
monotonic inverted U relationship between frequency, stimulus
intensity, and plasticity across several preclinical TPT studies
(Hays et al., 2023; Borland et al., 2016; Buell et al., 2019; Souza
et al., 2021b; Hays et al., 2023; Loerwald et al., 2018). Additionally,
the number of overall VNS event pairings (Hays et al., 2014), as well
as the interval between VNS event pairings within sessions (Borland
et al., 2018) and across sessions/weeks (Ruiz et al., 2023b), influences
neuroplasticity and recovery. An optimal stimulation dose, usually
consisting of a specific set of VNS parameters (0.8 mA, 30 Hz, 100 µs
pulse width, 0.5 s train duration, and biphasic pulses), generally
enhances neuroplasticity and improvements following TPT across a
variety of applications (Hays et al., 2023).

There is now increasing interest in using noninvasive TaVNS
for TPT, also known to activate subcortical structures such as the
NTS and LC (Frangos et al., 2015; Sclocco et al., 2019). TPT
paradigms that utilize TaVNS are now being applied to stroke
rehabilitation (Badran et al., 2023; Redgrave et al., 2018; Wu et al.,
2020) and have shown promise in smaller cohorts of patients.
More extensive large-scale clinical trials can be pursued to assess
whether TaVNS is a reliable means of providing TPT and
enhancing recovery. TPT using noninvasive TcVNS at the
cervical level has also shown promise (Jigo et al., 2024;
McIntire et al., 2021). Overall, new data indicates that the
effects of TaVNS outcomes may be variable compared to iVNS
(Thompson et al., 2021; Verma et al., 2021; Badran et al., 2018;
Warren et al., 2019; Keute et al., 2019; Gadeyne et al., 2022). This
variability could partly be due to differences in fiber recruitment
and subsequent activation of the associated neuromodulatory
centers, which often results in differential brain network
modulation when comparing iVNS and TaVNS (Schuerman
et al., 2021). Moreover, these noninvasive studies are commonly
done in human subjects, where the variability across investigations
could be due to several factors, including patient-specific
pathophysiology. Further assessing both TaVNS and TcVNS
clinically, and its specific mechanisms preclinically, should
allow for a sufficient characterization of the stimulation
parameter space and optimization of outcomes as needed
following non-invasive TPT.

Overall, there are a number of aspects to consider when
optimizing the stimulation dose for TPT. Regardless, the
possible effects of altered cognitive states and cardiorespiratory
rhythms on TPT-induced plasticity and recovery remain poorly
understood. Both of these processes affect neuromodulator
signaling. Altered cognitive states may likely affect several
required stimulation dose components, including stimulus
intensity, pulse width, and duration, while cardiorespiratory
rhythms may ultimately impact the timing required for
optimized VNS delivery.

Role of altered cognitive states in
modifying neuromodulator signaling

While the stimulation dose for maximizing plasticity is robust
and generalizable in preclinical models (Hays et al., 2023; Souza
et al., 2021a; Tyler et al., 2017), the responder rates in clinical trials
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have varied (e.g., 47% in the VNS-REHAB pivotal trial for stroke and
50% using VNS paired with tone therapy for tinnitus). This
emphasizes a need to possibly optimize the stimulation dose
further and specifically consider patient-specific states for
improving responder rates and recovery.

Patients with neurological injuries or diseases often have
comorbidities, leading to altered cognitive states such as
enhanced pain perception, arousal deficits, and lack of
motivation. For instance, spinal cord injuries may result in
neuropathic pain (Henderson et al., 2011; Blumenthal et al.,
2021), while parkinsonism can alter arousal levels (Verma et al.,
2024) and induce sudden daytime sleepiness (Verma et al., 2023).
Stroke patients also often exhibit apathy (Marin andWilkosz, 2005).
These physiological changes impact neuromodulator transmission
and cortical excitability and can therefore potentially modify the
effects of TPT.

Recent preclinical studies have highlighted that TPT may fail to
improve motor recovery in the presence of neuropathic pain
(Adcock et al., 2022). In this study, neuropathic pain may have
also contributed to the animal’s overall behavioral engagement in
the task. Regardless, pain alters cholinergic signaling in the basal
forebrain, potentially affecting TPT-induced neuroplasticity
(Oswald et al., 2022; Paquette et al., 2019; Piché et al., 2010).
Moreover, neuropathic pain can have effects on noradrenergic
signaling in the LC, manifesting as an exacerbation of
noradrenergic transmission when co-occurring with chronic
depression (Bravo et al., 2014). This suggests that considering the
subject’s pain perception may be crucial when optimizing the
stimulation dose for TPT. Scoring methodologies, such as a
visual analog scale for pain perception, can quantify the patient’s
pain perception level (Bodian et al., 2001). Machine learning
algorithms can likely use these features to modify stimulus
intensity adaptively based on the patient’s pain state, optimizing
VNS-mediated neuromodulator release.

Arousal state can also influence learning (Song, 2019), recovery
of function after injury (Goldfine and Schiff, 2011), and
performance (Yerkes and Dodson, 1908). It is well known that
alterations in neuromodulator signaling mediate arousal’s impact on
behavior (Joshi et al., 2016; Reimer et al., 2016; Murphy et al., 2014)
and cortical excitability, both of which are essential for synaptic
plasticity (Lee and Dan, 2012). Recent studies indicate that VNS
modulates pupil dilation, a biomarker of arousal, primarily through
noradrenergic signaling in the LC and cholinergic signaling in the
NB (Mridha et al., 2021; Collins et al., 2021). Moreover, the basal
arousal state before VNS delivery differentially impacts cortical
excitability and behavioral responses in preclinical models
(Collins et al., 2021). Hence, correlates of neuromodulator
signaling assessed using pupillometry can possibly be used to
measure basal arousal state and inform the efficacy of VNS
delivery. Measuring the high-frequency to low-frequency activity
ratios derived from EEG is another possible avenue for assessing
arousal levels (Putman et al., 2014). In addition, the P300 signal
derived from EEG can also be utilized to quantify correlates of
attention and noradrenergic signaling (D’Agostini et al., 2023;
Gurtubay et al., 2023; Riccio et al., 2013). While these findings
are promising, they await testing in human subjects to understand
the complex interaction between arousal states and
responses to VNS.

Conventionally, when examining the relationship between
arousal and behavior, the Yerke-Dodson law (Yerkes and
Dodson, 1908) reveals a non-monotonic inverted U
relationship, with moderate arousal being the most optimal and
a hyper-aroused state (e.g., stress or pain) being detrimental to
performance. Interestingly, it has been hypothesized that
hyperarousal resulting from a higher stimulation dose could
impede TPT (Hays et al., 2023), potentially explaining the
inverted U relationship between stimulation dose and TPT. The
relationship between neuromodulator signaling and stimulation
parameter optimization has also been modeled previously (Buell
et al., 2019). Based on these findings, arousal is likely to
significantly modify neuromodulator signaling. Overall, these
findings suggest that the arousal levels during TPT sessions
likely influences the relationship between stimulation dose,
plasticity, and performance. Overall, further studies are needed
to elucidate the intricate relationship between arousal states and
performance during TPT.

In addition to arousal deficits, diminished motivation is a
common comorbidity following brain injury, such as stroke
(Marin and Wilkosz, 2005; Verrienti et al., 2023). Lack of
motivation adversely impacts rehabilitation therapy efficacy
(Yoshida et al., 2023), as well as BCI performance (Kleih-Dahms
et al., 2021). This is partly due to impaired endogenous
dopaminergic engagement, where the energetic cost of effort
often outweighs the reward value (Neuser et al., 2020). Notably,
VNS therapy can improve the motivation to work for rewards
(Neuser et al., 2020). However, to optimize therapy outcomes, it
is necessary to understand how this improvement in motivation
interacts with and affects functional outcomes in VNS-based
TPT studies.

Medication taken by patients that affects neuromodulator
signaling likely also affects VNS mediated neuromodulator
release and may limit TPT efficacy (for a more detailed review,
refer to (Hays et al., 2023)). In a recent preclinical study, preliminary
findings support using beta blockers to alter the inverted U
relationship between stimulus intensity and neuroplasticity
(Neifert et al., 2023). Moreover, alpha-blockers also attenuated
activity-dependent plasticity during rehabilitation (Sawaki et al.,
2003). These studies highlight the need to carefully consider the
pharmacological agents administered when designing therapeutic
strategies that rely on neuromodulator systems such as TPT. In
summary, there is a critical need to further assess how altered
cognitive states discussed above may interact with VNS-induced
neuromodulator signaling, TPT, and recovery.

Role of cardiorespiratory rhythms in
modifying neuromodulator signaling

In addition to cognitive states, cardiorespiratory rhythms also
robustly modulate neuromodulator signaling. Sensory afferents
from the vagus nerve terminate within the NTS, carrying
information related to a number of visceral processes including
cardiovascular and respiratory states (e.g., via baroreceptors and
pulmonary stretch receptors). Cardiorespiratory afferents arise from
several locations, including mechanoreceptors signaling changes in
blood pressure and pulmonary stretch (primarily located in the
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aortic arch, the carotid sinus, and the pulmonary tissues), as well as
peripheral chemoreceptors signaling changes in blood gas content
(primarily located in the carotid body and aortic body) (Zyuzin and
Jendzjowsky, 2022). These systems interact with each other and
modulate overall NTS activity (Spyer, 1982; Rogers et al., 1993;
Hayward and Felder, 1995; Zoccal et al., 2014; Mifflin, 1993;
Beaumont et al., 2017). Hence, it’s likely that neuromodulator
release induced by VNS may be differentially modulated across
the ongoing phases of the cardiovascular (systole or diastole) and
respiratory rhythms (inspiration or expiration).

Neural activity in the LC is differentially modulated during
ongoing phases of the cardiovascular and respiratory rhythms
(Biancardi et al., 2014; Biancardi et al., 2008; Iwamoto et al.,
2023; Magalhães et al., 2018; Morilak et al., 1986; Patrone et al.,
2014; Carvalho et al., 2017). For example, neurons in the LC are
more likely to be activated during the diastolic phase rather than the
systolic phase of the cardiovascular rhythm (Morilak et al., 1986;
Morilak et al., 1987). Respiratory rhythms also entrain the neuronal
activity of LC, making it more responsive to specific phases of the
respiratory cycle (Magalhães et al., 2018; Huangfu et al., 1992;
Iwamoto et al., 2023). This was recently assessed using fMRI,
demonstrating a greater activation of the LC when VNS was
delivered during exhalation compared to inhalation (Sclocco
et al., 2019). Overall, studies have used VNS delivered during
expiration demonstrating that the NTS may be more sensitive to
afferent input during this phase of the respiratory cycle (Garcia et al.,
2017; Sclocco et al., 2019). Neuronal activity in the LC also processes
information related to blood oxygenation. In fact, studies have
shown that the firing frequency of LC is heightened during
conditions of hypoxia and hypercapnia (Magalhães et al., 2018;
Biancardi et al., 2008). Hence, conditions of altered chemoreceptor
signaling (Plataki et al., 2013) may potentially impact
neuromodulator signaling in the LC during TPT.

Aside from subcortical structures, cortical excitability in
response to sensory stimuli is also preferentially modulated
depending on the phase of the cardiovascular cycle (Park et al.,
2018; Gray et al., 2010). A recent study demonstrated that both
somatosensory evoked potentials and pain perception were higher
during the diastolic phase than the systolic phase of the
cardiovascular rhythm (Al et al., 2020). Interestingly, this
phenomenon also exists across different modalities of sensory
stimuli (for an extensive review, refer to Critchley and
Garfinkel (2015)).

Lastly, cardiovascular measures such as heart rate variability
have been used as a marker of sympathetic and parasympathetic
balance (Bravi et al., 2013), usually quantified as the ratio of low
frequency (0.04–0.15 Hz) to high frequency (0.15–0.4 Hz) activity.
Overall, these measures are sensitive to recording length, signal
processing method, breathing, body position, and emotional state
(Shaffer and Ginsberg, 2017). Longer recording times pose an
additional challenge for precise spectral estimation, making it
possibly suboptimal for adaptive TPT paradigms requiring
shorter timescales (i.e., seconds). Additionally, recent studies
demonstrate that direct recordings of cardiac vagal activity
correlate with a subset of heart rate variability parameters
(Laborde et al., 2017; Marmerstein et al., 2021; Billman, 2013).
Nevertheless, HRV could be useful for quantifying arousal levels
(Huo et al., 2023).

Taken together, these studies demonstrate the extensive
influence of cardiovascular and respiratory factors on
neuromodulator signaling and the sensitivity of inputs
originating from both VNS and other sensory stimuli (both
factors critically involved in several forms of TPT). Given the
impact of cardiorespiratory rhythms on neuromodulator
signaling, it is tempting to speculate that VNS during diastole
may better facilitate neuromodulator release. Additionally, VNS
during expiration may also be beneficial in driving
neuroplasticity. Appropriately timing VNS during TPT,
considering both the targeted event and the optimal phase(s) of
the cardiorespiratory rhythms, may likely further enhance
neuroplasticity and behavioral outcomes after TPT. Regardless,
extensive work is needed to address these hypotheses.

Discussion and future directions

Altered cognitive states and cardiorespiratory rhythms affect
neuromodulator tone, potentially significantly impacting TPT. To
assess the possibility of optimizing TPT for personalized use, it is
important to consider not only the individual impacts of each state
and autonomic rhythm on neuromodulator signaling, but also their
complex interactions that could ultimately affect plasticity
(Mylavarapu et al., 2023). Given the nature of these interactions,
machine learning frameworks may be needed to both fine-tune VNS
parameters and further identify relationships between signals
(Ganzer et al., 2022; Ganzer and Sharma, 2019). Overall, the
performance of any state dependent TPT system is dependent on
several factors, including system controller inputs and overall system
design. Table 1 summarizes a number of existing neuromodulation
devices and their associated stimulation control schemes. These
systems have the following stimulation control schemes: 1) open-
loop control consisting of a static control algorithm, where
stimulation parameters are fixed regardless of the given state; 2)
closed-loop feedforward control triggering stimulation delivery via a
change in a monitored variable alone; 3) closed-loop feedback
control monitoring a variable that needs to be modified in order
to alleviate symptoms, therefore optimizing the stimulation dose in
an adaptive and closed-loop manner.

A state dependent TPT system (schematized in Figure 2) can
possibly leverage a number of technology attributes listed in Table 1.
As previously discussed, altered cognitive states and
cardiorespiratory rhythms may affect neuromodulator signaling
and ultimately TPT efficacy. Fortunately, most of these factors,
with the exception of pain, have viable biomarkers that can be used
for decoding (Figure 2). Spectral analysis of electrocorticography
(ECoG) signals have been integrated into responsive
neurostimulation systems for epilepsy (Table 1). Similar to
ECoG, EEG is also a valuable electrophysiological signal and can
be used to assess a patient’s arousal levels and attention (Figure 2A;
e.g., via a decrease in the ratio of high-frequency to low-frequency
spectral power in the EEG). Additionally, a correlate of basal
neuromodulator signaling can be extracted from pupillometry as
a complimentary feature for arousal, with additional potential use as
a biomarker of VNS-induced neuromodulator release (Figure 2A).
For measuring the phases of ongoing cardiovascular and respiratory
rhythms, wearable sensors can be utilized similar to other existing
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technologies (Figure 2B; e.g., via electrocardiography and
pneumography) (Bayoumy et. al., 2021). Functional
improvements over longer time scales may also be used to
potentially adjust stimulation dose and enhance outcomes
(Mylavarapu et al., 2023; Epperson et al, 2024), as further
recovery of function may require modification of stimulation
parameters across time during TPT. Overall, these are a number
of hypothesis generating considerations and challenges related to
state dependent TPT that require further investigation.

Simple or complex stimulation control algorithms can be used
for decoding and triggering optimized VNS. Ultimately, advanced
machine learning techniques may be required to effectively integrate
these multifactorial inputs and enhance VNS control (Ganzer et al.,
2022; Ganzer and Sharma, 2019). Bayesian optimization represents
one option. This approach iteratively refreshes assessment of the
response surface by utilizing a probabilistic model that effectively
converges on ideal settings, while maintaining a balance between
exploration and exploitation (Shahriari et al., 2016). Bayesian
optimization has also been extensively used in neurostimulation
(Choinière et al., 2024). Furthermore, bayesian optimization may be
especially effective for individualizing therapy, as it can adapt to each
patient’s unique physiological profile. In addition, deep neural
networks and ensemble learning are likely viable options for
optimizing VNS control. Deep learning algorithms can handle
large datasets that may be required for deciphering the complex
relationship between state dependent signals and their role in
optimized neuroplasticity. In the context of movement disorders,
these models can discern subtle changes in the states mentioned
above, potentially maximizing the effectiveness of VNS during TPT.

Furthermore, these models may also be able to relate physiological
states to optimized VNS control in ways that are not self-evident to
humans. Lastly, ensemble learning can combine decisions from
multiple models, where simple and complex algorithms are being
used in combination (Dietterich, 2000) (e.g., complex arousal state
detection using EEG combined with simpler cardiac cycle detection
using electrocardiography). Ultimately, future studies will need to
consider the combinatorial characterization of physiological states
and autonomic rhythms on neuromodulator signaling, plasticity,
and functional improvement during TPT, paving the way towards
state dependent VNS and enhanced TPT.
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TABLE 1 Overview of selected neuromodulation devices and their control system attributes. Abbreviations: iVNS (implanted vagus nerve stimulation), TPT
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(evoked compound action potential), LFP (Local field potential), and TcVNS (transcutaneous vagus nerve stimulation).

Therapeutic
application

Medical device Stimulation
approach

General control
scheme

Controller input
(if closed-loop)

Tinnitus Lenire® Tongue stimulation Open-loop N/A

Stroke Vivistim® (MicroTransponder) iVNS (TPT) Open-loop or closed-loop
feedforward

N/A or therapist assessing
movement quality

Multiple sclerosis PoNS™ (Helius Medical Technologies) Tongue stimulation Open-loop N/A

Epilepsy SenTiva™ (LivaNova) iVNS Open-loop or closed-loop
feedforward

N/A or ECG (heart rate)

RNS® system (NeuroPace) DBS Closed-loop feedforward ECoG

Pain Evoke® system (Saluda Medical) SCS Closed-loop feedback ECAP

Intellis™ AdaptiveStim™ (Medtronic) SCS Closed-loop feedforward or
closed-loop feedback

Pain level or body position

RestoreSensor™ (Medtronic) SCS Closed-loop feedforward or
closed-loop feedback

Pain level or accelerometer

Heart failure Barostim™ (CVRx) Carotid sinus stimulation Open-loop N/A

Obesity Maestro® System (EnteroMedics) iVNS Open-loop N/A

Parkinson’s disease Percept™ PC (Medtronic) DBS Open-loop N/A (LFP recordings only)

Headache gammaCore™ (electroCore) TcVNS Open-loop or closed-loop
feedforward

N/A or pain level

Obstructive sleep apnea Inspire® Upper Airway Stimulation system
(Inspire Medical Systems)

Hypoglossal nerve
stimulation

Closed-loop feedforward Respiratory sensor
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FIGURE 2
System design considerations for state dependent TPT. The following information is applied to upper limb TPT as an example. (A) Altered states such
as pain and arousal deficits can alter neuromodulator signaling. Increased pain perceptionmay require reducing VNS intensity (e.g., via amplitude or pulse
width) characterized by negative weights (W1 < 0), while arousal deficits may require compensation (W2) by increasing stimulus intensity to achieve the
desired neuromodulator signaling. Pupillometry can also be used to extract an indirect fast measure of neuromodulator signaling (W3), with force
feedback during upper limb rehabilitation measuring a slower and long-term biomarker of functional improvement (W4), all allowing for further
adjustment of VNS parameters and possible optimization of recovery. (B) The specific timing of VNS during TPT may also play a significant role in
improving neuroplasticity and recovery of function. For example, force feedback during upper limb TPT can be used as a fast read-out of successful
movement trials. TPT during diastole (W5 = 1, if diastole) may further improve neuromodulator signaling. VNS during the expiratory phase of the
respiratory cycle (W6 = 1, if expiration) may also lead to optimized neuromodulator release and, hence, enhanced neuroplasticity. Overall, this a priori
knowledge can be used to modify the given weights of the schematized control system with further fine-tuning via adaptive machine-learning
algorithms.
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