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When deploying agents to execute a mission with collective behavior, it is
common for accidental malfunctions to occur in some agents. It is
challenging to distinguish whether these malfunctions are due to actuator
failures or sensor issues based solely on interactions with the affected agent.
However, we humans know that if we cause a group behavior where other agents
collide with a suspected malfunctioning agent, we can monitor the presence or
absence of a positional change and identify whether it is the actuator (position
changed) or the sensor (position unchanged) that is broken. We have developed
artificial intelligence that can autonomously deploy such “information acquisition
strategies through collective behavior” usingmachine learning. In such problems,
the goal is to plan collective actions that result in differences between the
hypotheses for the state [e.g., actuator or sensor]. Only a few of the possible
collective behavior patterns will lead to distinguishing between hypotheses. The
evaluation function to maximize the difference between hypotheses is therefore
sparse, with mostly flat values across most of the domain. Gradient-based
optimization methods are ineffective for this, and reinforcement learning
becomes a viable alternative. By handling this maximization problem, our
reinforcement learning surprisingly gets the optimal solution, resulting in
collective actions that involve collisions to differentiate the causes.
Subsequent collective behaviors, reflecting this situation awareness, seemed
to involve other agents assisting the malfunctioning agent.
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1 Problem formulation

The group cooperation of agents is an important topic studied in the context of
autonomous systems (Lee et al., 2018; Hu et al., 2020). Because it is likely that each agent will
have individual biases in its actuator or sensor performance, it is an important autonomous
ability to analyze these inherent biases and revise the control plan appropriately to continue
the group mission. Such biases dynamically change over time during missions, occasionally
leading to failures in some functions of an agent. When such changes occur, it is essential to
promptly revise the transportation plan using methods such as reinforcement learning.
However, this requires constructing a virtual environment that accurately reflects real-
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world conditions. Therefore, to properly update the operational plan
using reinforcement learning, it is necessary to identify the causes of
the biases, including any failures, in each agent as they occur.

Previous research on fault diagnosis methods in swarm robotic
systems includes the work by O’Keeffe et al. (O’Keeffe et al., 2018).
This approach adopts a fault diagnosis mechanism, inspired by
biological immune systems, that learns from past diagnostic results
to efficiently identify malfunctions based on the behavior of robots.
However, the diagnostic tests assumed here only target predictable
faults and may struggle when multiple faults occur simultaneously.
This difficulty in diagnosis is an inevitable challenge in the
advancement of robotic development.

One of the factors complicating this diagnosis is the difficulty in
distinguishing the causes of faults.

Suppose that a command base, which controls a group of agents
via each command gj (Figure 1A), has detected an anomaly in the
position of an agent (e.g., no change in the position was observed).
There are two possible causes for the observed anomaly: (1) actuator
failures (agent is unable to move) or (2) sensor failures (agent can
move, but the move is not captured by the sensor) (Figure 1B).
Depending on the hypothesis [the failure may have occurred in the
actuators (ha) or sensors (hs)], the plan is subsequently calibrated
and updated accordingly. However, it is generally difficult to identify
which problem caused the anomaly solely through communication
between the base and the agent. An intuitive method to identify the
correct hypothesis is to execute a collision to the failure agent by
other agents to check whether any displacement is observed by the
sensor. Such a collision should demonstrate agent displacement;
sensor failure would not detect that displacement. Thus, the correct
hypothesis can be identified by “planning a group motion.” The
question then arises as to whether such planning can be set up
autonomously as a “strategy to acquire environmental information”
(Friston, 2010).

Such autonomous planning appears to be feasible given the
following value function. Suppose that the command g �
(g1, g2,/ ) is issued from the control base, directing the agent’s
action to specify which of the hypotheses (ha, hs) is supported
(Figure 1A). This command updates the agent state to R → ~R(g).
The updated state ~R should be denoted as ~R

(hl)(g) because it
depends on the hypothesis about the state before the update

(l � a, s). As the expected results differ for different hypotheses,
the following expression can be used to evaluate the distinction:
D � ‖~R(hs) − ~R

(ha)‖. To ensure appropriate planning g that involves
collisions between agents, a non-zero difference D is obtained, and
the likelihood of each hypothesis can be determined. We must,
therefore, formulate a plan that maximizes D � D(g) to ensure a
significant difference. Accordingly, an autonomous action plan can
be formulated to maximize D(g) as a value function.

However, this maximization task is difficult to complete via
conventional gradient-based optimization. Owing to the wide range
of possibilities for g , interactions such as collisions are rare events,
and for most of the planning phase g , D(g) � 0, it is impossible to
distinguish between hypotheses. Namely, sub-spaces with finite D
are sparse in the overall state space (sparse rewards). In such cases,
gradient-based optimization is insufficient for the task of
formulating appropriate action plans because the zero-gradient
encompasses the vast majority of the space. For such sparse
reward optimization, reinforcement learning, which has been
thoroughly investigated in the applications of autonomous
systems (Huang et al., 2005; Xia and El Kamel, 2016; Zhu et al.,
2018; Hu et al., 2020), can be used as an effective alternative.

Reinforcement learning (Nachum et al., 2018; Sutton and Barto,
2018; Barto, 2002) is becoming an establishedfield in the wider context
of robotics and system controls (Peng et al., 2018; Finn and Levine
(2017). Methodological improvements have been studied intensively,
especially by verifications on gaming platforms (Mnih et al., 2015;
Silver et al., 2017; Vinyals et al., 2019). Thus, the topic addressed in this
study is becoming a subfield known as multi-agent reinforcement
learning (MARL) (Busoniu et al., 2006; Gupta et al., 2017; Straub et al.,
2020; Bihl et al., 2022; Gronauer and Diepold, 2021). Specific examples
of multi-agent missions include unmanned aerial vehicles (UAV)
(Bihl et al., 2022; Straub et al., 2020) and sensor resource management
(SRM)Malhotra et al., 2017, 1997; Hero andCochran, 2011; Bihl et al.,
2022). The objective of this study can also be regarded as the
problem of handling non-stationary environments in multi-agent
reinforcement learning (Nguyen et al., 2020; Foerster et al., 2017).
As a consequence of failure, agents are vulnerable to the gradual loss of
homogeneity. Prior studies have addressed the problem of
heterogeneity in multi-agent reinforcement learning (Busoniu et al.,
2006; Calvo and Dusparic, 2018; Bihl et al., 2022; Straub et al., 2020;

FIGURE 1
Agents perform group actions according to commands communicated from the “control base” (the figure depicts an example with three agents
indexed by j). Thewavy arrow denotes a command signal from the base, whereas the dotted arrows represent the return signals from each sensor on each
agent [panel (A)]. When an anomaly is detected in a return signal, two hypotheses—ha or hs—can be considered [panel (B)].
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Gronauer and Diepold, 2021). The problem of sparse rewards has also
been recognized and discussed as one of the current challenges in
reinforcement learning (Wang and Taylor, 2017; Bihl et al., 2022).
Recent advancements in reinforcement learning have introduced
various innovative methods for handling single-agent or multi-
agent scenarios. These approaches have focused on improving
sample efficiency, computational costs, and learning stability across
different frameworks. One such method is TD7, which utilizes state-
action learned embeddings (SALE) for jointly learning embeddings of
both states and actions Fujimoto et al., 2024). CrossQ is another
approach that improves sample efficiency while significantly reducing
computational costs by utilizing batch normalization (Bhatt et al.,
2019). Continuous dynamic policy programming (CDPP) extends
relative entropy regularized reinforcement learning from value
function-based frameworks to actor-critic structures in continuous
action spaces, achieving improved sample efficiency and learning
stability (Shang et al., 2023). Furthermore, dropout Q-functions
(DroQ) employs a small ensemble of dropout Q-functions to
enhance computational efficiency while maintaining sample
efficiency comparable to randomized ensembled double Q-learning
(REDQ) (Hiraoka et al., 2021). In the realm of multi-agent
reinforcement learning, multi-agent continuous dynamic policy
gradient (MACDPP) has achieved high learning capability and
sample efficiency by introducing relative entropy regularization to
the centralized training with decentralized execution (CTDE)
framework Miao et al., 2024).

The discussion thus far can be generalized as follows: Consider a
scenario involving N agents where some anomalies occur, and
multiple hypotheses are conceivable. For instance, similar to the
earlier example, there could be cases where only a sensor or only an
actuator fails in a single agent. Alternatively, there could be scenarios
involving multiple agents where anomalies occur in several sensors
and actuators, among other various cases. Furthermore, let R denote
the state of these N agents, which could be a vector obtained by
concatenating the coordinates of N robots. Under hypothesis l, the

state R is updated by a command g to a new state ~R
(hl). The

difference between the states under hypotheses l and l′ can be
expressed as D<l,l′> � ‖~R(hl) − ~R

(hl′)‖, similar to earlier. If a virtual
environment that faithfully reproduces these agents’ behavior is
prepared, and g that maximizes D<l,l′> can be found through
reinforcement learning, executing g in real systems and observing
the outcomes would allow for discrimination between hypotheses.
To search for a g that simultaneously discriminates all hypotheses,
reinforcement learning should be conducted to maximize the sum of
D<l,l′> across all combinations of hypotheses.

As a prototype of such a problem, we considered a system
composed of three agents moving on an (x, y)-plane, administrated
by a command base to perform a cooperative task (Figure 2). In
performing the task, each agent is asked to convey an item to a goal
post individually. The second agent (#2) is assumed to be unable to
move along the y-direction due to an actuator failure. By quickly
verifying tiny displacements in each agent, the command base can
detect the problem occurring in #2. However, it cannot attribute the
cause to either the actuators or the sensors. Consequently, the
control base sets hypotheses ha and hs and begins planning the
best cooperative motions g* to classify the correct hypothesis via
reinforcement learning.

Remarkably, the optimal action plan generated by reinforcement
learning showed a human-like solution to pinpoint the problem by
colliding other agents with the failed agent. By inducing a collision,
the base could identify that #2 is experiencing problems with its
actuators rather than sensors. The base then starts planning group
motions to complete the conveying task, considering the limited
functionality of #2. We observe that the cooperative tasks are
facilitated by a learning process wherein other agents appear to
compensate for the deficiency of #2 by pushing it toward the goal. In
the present study, we employed a simple prototype system to
demonstrate that reinforcement learning is extremely effective in
setting up a verification plan that pinpoints multiple hypotheses for
general cases of system failure.

FIGURE 2
View of actual machines labeled as Agents #1–#3. Agent #2 is unable to move in the y-direction due to actuator failure. Agents #1 and #3 are on
their way to rescue Agent#2 (see the main text about how the AI determines the action plan for the recovery of Agent #2).
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2 Methodology

Let the state space for the agents be R. For instance, given three
agents (j � 1, 2, 3) situated on a xy-plane at positions (xj, yj), their
states can be specified as R � (x1, y1, x2, y2, x3, y3); that is, points in
six-dimensional space. The state is driven by a command g according to
the operation plan generated in the command base. When g is assigned
to a given R, the state is updated depending on which hypothesis hl is
taken, each of which restricts R by individual constraint:

g: R → ~R
hl( )

g ,R( ).
The difference

D g ,R( ) � ∑
<l,l′>

~R
hl( )

g ,R( ) − ~R
hl′( ) g ,R( )

������
������

can then be the measure to evaluate performance and thereby
distinguish between the hypotheses. Therefore, the best operation
plan for the distinction should be determined as

g* � argmax
g

D g ,R( ).

The naive idea of performing optimization using gradient-
based methods is insufficient, owing to the sparseness described
in the introduction. For g , D(g ,R) � 0, the gradient is zero for
most of R because it is incapable of selecting the next update.
Accordingly, we employed reinforcement learning as an alternative
optimization approach.

Suppose we can evaluate the reward ρ(R, g) for the action g to be
taken for a given state R. In reinforcement learning, decisions aim to
maximize the action value Q(R, g), rather than maximizing the
immediate reward ρ(R, g). Although the reward ρ(R, g) indicates
the benefit obtained at that moment, the action value Q(R, g)
represents the benefit accumulated over the future. The governing
equation that links the given ρ(R, g) with Q(R, g) is known as the
Bellman equation, being expressed in self-consistent manner. Users
specify the reward function ρ(R, g) and the detailed specifications of
the Bellman equation to self-consistently determine the action value
Q(R, g) using a library. In this study, we employed the OpenAI Gym
(Brockman et al., 2016) as such a library. Though the details of the
reinforcement learning implementation are found in the general
literature, we provide further details using our notation adopted in
this paper in Section 1 of the SupplementaryMaterial. In this research,
the operational plans are finally determined by the converged action
value, �Q(R, g), obtained by the self-consistent iterations as

�g0 � argmaxg �Q R0, g( )
�g0: R0 → R1

�g1 � argmaxg �Q R1, g( )
�g1: R1 → R2

/ .

(1)

3 Experiments

The workflow required to achieve the mission for the agents, as
described in §1, proceeds as follows:

[0a ] To determine if there are errors found in any of the agents,
the base issues commands to move all agents by tiny

displacements (and consequently, Agent #2 is found to
have an error).

[0b ] Corresponding to each possible hypothesis (ha and hs), the
virtual spaces R(hl){ }

l�a,s are prepared by applying each
constraint.

[1 ] Reinforcement learning (Qα) is performed at the command
base using the virtual space, generating “the operation plan
α” to distinguish the hypotheses.

[2 ] The plan α is performed by the agents. The command base
compares the observed trajectory with that obtained in the
virtual spaces in Step [1]. In the process, the hypothesis that
yields the closest trajectory to that observed is identified as
accurate (ha).

[3 ] By taking the virtual space R(ha) as the identified hypothesis,
another learning Qβ is performed to get the optimal plan β

for the original mission (conveying items to goal posts).
[4 ] Agents are operated according to the plan β.

In this context, the term “virtual space” refers to an environment
where physical computations are performed to simulate the
movements of agents. In this study, it was implemented using
Python. All learning processes and operations are simulated on a
Linux server. The learning phase is the most time-intensive,
requiring approximately 3 h to complete using a single processor
without any parallelization. For the learning phase, we implemented
the PPO2 (proximal policy optimization, version 2) algorithm
Schulman et al., 2015) from the OpenAI Gym Brockman et al.,
2016) library. Reinforcement learning (Qα) was benchmarked on
the multilayer perceptron (MLP) and long short-time memory
(LSTM) network structures, with performance compared between
them. In the reinforcement learning described in [1], the state used
comprised the positions of all agents, and the actions were defined as
the direction of movement (x, y) for each agent. Conversely, in the
reinforcement learning approach used in [3], the state included not
only the positions of all agents but also the number of items each
agent carried, the positions of all goal posts, and the number of items
at each goal post. The actions remained the same, involving the
direction of movement (x, y) for each agent. We did not conduct
specific tuning for the hyperparameters as a default setting, as shown
in Table 1. However, it has been pointed out that hyperparameter

TABLE 1 PPO2 hyperparameters used in training.

Parameter Value

gamma 0.99

n_steps 128

ent_coef 0.01

learning_rate 0.00025

vf_coef 0.5

max_grad_norm 0.5

lam 0.95

nminibatches 4

noptepochs 4

cliprange 0.2
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optimization (HPO) can significantly improve the performance
of reinforcement learning (Henderson et al., 2018; Straub et al.,
2020; Bihl et al., 2020; Snoek et al., 2012; Domhan et al., 2015;
Bihl et al., 2022; Young et al., 2020). The comparison indicates
that MLP performs better, with possible reasons given in the
third paragraph of §4. The results described herein were obtained
by the MLP network structure. Notably, LSTM also generated
almost identical agent behaviors to those exhibited by the
MLP (possible reasons are given in the Section 3 of the
Supplementary Material.

The learning process Qα in Step [1] is performed using two
virtual spaces V(hs,a), corresponding to the two hypotheses:

R hl( ) ∈ V hl( ).

Each R(hl) can take such possibilities under each constraint of its
hypothesis (e.g., y3 cannot be updated due to the actuator error). For
an operation g , the state on each virtual space is updated as

g:
R hs( ) → ~R

hs( )
g ,R hs( )( )

R ha( ) → ~R
ha( )

g ,R ha( )( ) .

Taking the value function,

ρ α( ) g ,R h1( ),R h2( )( ) � ~R
h1( )

g ,R h1( )( ) − ~R
h2( )

g ,R h1( )( )
�����

�����, (2)

the two-fold Q-table is updated self-consistently as

Q g ,R h1( ),R h2( )( ) � ρ α( ) g ,R h1( ),R h2( )( )
+ ∑

g′,R′ h1( ) ,R′ h2( )
F Q g′,R′ h1( ),R′ h2( )( ){ },(

π g′,R′ h1( ),R′ h2( )( ){ }).

Denoting the converged table as �Qα(g ,R(h1),R(h2)), the sequence
of operations is obtained as given in Equation 1; in other words,

�g α( )
0 , �g α( )

1 ,/�g α( )
M{ }. (3)

The operation sequence generates the two-fold sequence of (virtual)
state evolutions as

R
hs,a( )

1 → R
hs,a( )

2 →/→ R
hs,a( )

M{ }, (4)

as shown in Figure 3A.
In Step [2], the agents operate according to the plan expressed by

Equation 3 to update (real) states as

R1 → R2 →/→ RM{ }, (5)
to be observed by the command base. The base compares Equations
4, 5 to identify whether hs or ha is the cause of failure (ha in
this case).

In Step [3], Qβ-learning is performed for reward ρ(β). The
reward function ρ(β) calculates the sum of the individual agents’
rewards, where each agent gets a reward of a/(r + 1) + b · δ(r)
depending on its distance r from the goal post. Thus, a higher
reward is realized when the agent gets closer to the goalpost. By
setting a � 0.01 and b � 100.0, a much higher reward value (a + b)
is obtained when the agent reaches the goal post (r � 0). Although
learning efficiency varies depending on the values of a and b, a
relatively high efficiency was achieved by setting b≫ a. The
operation sequence is then obtained as

�g
β( )

M+1, �g
β( )

M+2,/�g
β( )

L{ },
by which the states of the agents are updated as

FIGURE 3
Agent trajectories are driven by each operation plan consequently generated via reinforcement learning (with the MLP neural network structure),Qα

first [panel (A)] and Qβ [panel (B)]. The trajectories in (A) are the virtual states, R(hs,a) (two-fold), branching for Agent #2 with respect to the hypothesis.
Those given in (B) are the real trajectories, as obtained via Equation 6. The labels (1)–(3) indicate the agents, which move along the directions denoted by
red arrows. Dotted circles indicate collisions between agents.

Frontiers in Control Engineering frontiersin.org05

Utimula et al. 10.3389/fcteg.2024.1402621

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2024.1402621


RM+1 → RM+2 →/→ RL{ }, (6)
as shown in Figure 3B.

4 Discussion

Figure 3A depicts two-fold trajectories, Equation 4,
corresponding to the hypotheses ha and hs. Although R(ha) �
R(hs) for Agent #1, the branching R(ha) ≠ R(hs) occurs for Agent
#2 during operations. The branching process earns a score via the
value function ρ(α) in Equation 2, which indicates that the learning
Qα was conducted properly. Thus, the ability to capture the
difference between ha and hs has been realized. The red dotted
circle shown in (a) represents a collision between Agents #2 and #3,
inducing the difference between R(ha) and R(hs) (the trajectories only
reflect the central positions of agents, while each agent has a finite
radius similar to its size; therefore, the trajectories themselves do not
intersect even when a collision occurs). In addition, the collision
strategy is never generated in a rule-based manner, as the agents
autonomously deduce their strategy via reinforcement learning.

Three square symbols (closed) situated at the edges of a triangle
in Figure 3 represent the goalposts for the conveying mission.
Figure 3B shows the real trajectories for the mission, where the
initial locations of the agents are the final locations in the panel (a).
From their initial locations, Agents #1 and #3 immediately arrived at
their goals to complete each mission and subsequently headed to
Agent #2 for assistance. Meanwhile, Agent #2 attempted to reach its
goal using its limited mobility; that is, only along the x-axis. At the
closest position, all three agents coalesced, and Agents #1 and
#3 began pushing Agent #2 toward the goal. Though this
behavior is simply the consequence of earning more from the

value function ρ(β), it appears as if Agent #1 wants to assist the
malfunctioning agent cooperatively (a video of the behavior shown
in Figure 3B is available at the link Hayaschi, 2024). By identifying
the constraint ha for the agents in the learning phase Qα, the
subsequent learning phase Qβ is confirmed to generate the
optimal operation plans to ensure that the team maximizes their
benefit through cooperative behavior as if an autonomous decision
has been made by the team.

During training, if the target reward is not reached in the given
number of training sessions, the training process is reset to avoid
being trapped by the local solution. In Figure 4, the training curves of
rejected trials are shown in blue, whereas the acceptable result is
shown in red. Evidently, more learning processes were rejected inQβ

(right panel) than in Qα (left panel). This indicates that it is a more
challenging task to perform transport planning with three
malfunctioning agents than to plan the action to pinpoint a
hypothesis between any two. However, under more complex
failure conditions, more learning is expected to be rejected for
Qα as well, as the number of possible hypotheses increases.

The performance of LSTM and MLP was compared in terms of
the success rate for obtaining working trajectories to distinguish
between the hypotheses. Notably, even when applying the well-
converged Q-table, there is a certain rate required for the non-
working trajectories to eliminate the difference between the
hypotheses. This is a result of the stochastic nature of the policy in
generating the trajectories. In the present work, we took
50 independent Q-tables, each of which was generated from
scratch, and obtained 50 corresponding trajectories. The rate
required to obtain the trajectories required to distinguish among
the hypotheses amounts to 94% for a learning management system
(LMS) and 78% for LSTM. In the present comparison, we used the
same iteration steps as for Q-table convergence. Because LSTM has a

FIGURE 4
Learning curve evaluated for MLP network construction in terms of the reward function. Results for Qα (left panel) and Qβ (right panel) are shown.
Blue and red curves correspond to trajectories that did not reach the target reward at the end of training and those that successfully reached the target
reward, respectively.
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more complex internal structure, its learning quality was expected to
be relatively lower than that of an LMS for the common condition, and
its performance rate was likewise expected to be lower. In other words,
a higher iteration cost is required for LSTM to achieve performance
comparable to an LMS. As such, the results shown in the main text are
those obtained by the LMS, whereas those obtained by LSTM are
presented in the Supplementary Material for reference.

For a simulation in a virtual environment space, we must evaluate
the distances between agents at every step. As this is a pairwise
evaluation, its computational cost scales as ~ N2 for N agents. This
cost scaling can be mitigated by using the domain decomposition
method wherein each agent is evaluated according to its voxel, and the
distance between agents is represented by that between corresponding
voxels registered in advance. The corresponding cost scales linearly
withN at amuch faster rate than the naive ~ N2 evaluationmethod as
the number of agents N increases.

5 Conclusion

Agents performing group missions can suffer from errors during
missions. Multiple hypotheses may be devised to explain the causes of
such errors. Cooperative behaviors, such as collisions between agents,
can be deployed to identify said causes. We considered the
autonomous planning of group behaviors via machine-learning
techniques. Different hypotheses explaining the causes of the errors
lead to different expected states as updated from the same initial state
by the same operation. The larger the difference becomes, the better the
corresponding operation plan can distinguish between the different
hypotheses. In other words, the magnitude of the difference can be the
value function to optimize the desired operation plan. Gradient-based
optimization does not work well because a tiny fraction among the vast
possible operations (e.g., collisions) can capture the difference, leading
to a sparse distribution of the finite value for the function. We
discovered that reinforcement learning is the obvious choice for
such problems. Notably, the optimal plan obtained via
reinforcement learning was the operation that causes agents to
collide with each other. To identify the causes of error using this
plan, we developed a revised mission plan that incorporates the failure
of another learning where the malfunctioning agent receives assistance
fromother agents. By identifying the cause of failure, the reinforcement
learning process plans a revisedmission plan that considers said failure
to ensure an appropriate cooperation procedure. In this study, we
conducted tests under the significant constraint that one of the three
agents was malfunctioning. As described in §1, the framework can
generally be formulated for N agents. Future research will need to
explore more detailed studies, including changes in the number of
agents and variations in malfunctions. The findings presented in this
paper provide initial insights into the capabilities of the proposed
methods. Additional comparisons and results based on multiple trials,
as well as comparisons with a greater number of baselines, are
necessary to substantiate the conclusions of this study further.
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