
Reinforcement learning for path
planning of free-floating space
robotic manipulator with collision
avoidance and observation noise

Ahmad Al Ali and Zheng H. Zhu*

Mechanical Engineering Department, York University, Toronto, ON, Canada

This study introduces a novel approach for the path planning of a 6-degree-of-
freedom free-floating space robotic manipulator, focusing on collision and
obstacle avoidance through reinforcement learning. It addresses the
challenges of dynamic coupling between the spacecraft and the robotic
manipulator, which significantly affects control and precision in the space
environment. An innovative reward function is introduced in the
reinforcement learning framework to ensure accurate alignment of the
manipulator’s end effector with its target, despite disturbances from the
spacecraft and the need for obstacle and collision avoidance. A key feature of
this study is the use of quaternions for orientation representation to avoid the
singularities associated with conventional Euler angles and enhance the training
process’ efficiency. Furthermore, the reward function incorporates joint velocity
constraints to refine the path planning for the manipulator joints, enabling
efficient obstacle and collision avoidance. Another key feature of this study is
the inclusion of observation noise in the training process to enhance the
robustness of the agent. Results demonstrate that the proposed reward
function enables effective exploration of the action space, leading to high
precision in achieving the desired objectives. The study provides a solid
theoretical foundation for the application of reinforcement learning in
complex free-floating space robotic operations and offers insights for future
space missions.

KEYWORDS

space robotic manipulator, free-floating, reinforcement learning, deep deterministic
policy gradient, path planning, collision and obstacle avoidance, observation noise

1 Introduction

Space exploration represents a sign of human curiosity that drives scientific
and technological advancements at the frontier of our knowledge. Space technologies
have materialized our wildest dreams, from the exploration of space to the
potential colonization of different planets. Among these technologies, robotic
manipulators designed for space operations have emerged as critical tools for
various missions, including on-orbit servicing, space debris removal, and in-
space assembly of large structures due to their high technological readiness level
(Papadopoulos et al., 2021). These manipulators perform tasks that would be too
dangerous, costly, or time-consuming for human astronauts to perform (Flores-
Abad et al., 2014).

OPEN ACCESS

EDITED BY

Yang Gao,
King’s College London, United Kingdom

REVIEWED BY

Liang Sun,
University of Science and Technology Beijing,
China
Zhigang Ren,
Guangdong University of Technology, China

*CORRESPONDENCE

Zheng H. Zhu,
gzhu@yorku.ca

RECEIVED 01 March 2024
ACCEPTED 25 April 2024
PUBLISHED 15 May 2024

CITATION

Al Ali A and Zhu ZH (2024), Reinforcement
learning for path planning of free-floating space
robotic manipulator with collision avoidance
and observation noise.
Front. Control. Eng. 5:1394668.
doi: 10.3389/fcteg.2024.1394668

COPYRIGHT

© 2024 Al Ali and Zhu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Control Engineering frontiersin.org01

TYPE Original Research
PUBLISHED 15 May 2024
DOI 10.3389/fcteg.2024.1394668

https://www.frontiersin.org/articles/10.3389/fcteg.2024.1394668/full
https://www.frontiersin.org/articles/10.3389/fcteg.2024.1394668/full
https://www.frontiersin.org/articles/10.3389/fcteg.2024.1394668/full
https://www.frontiersin.org/articles/10.3389/fcteg.2024.1394668/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcteg.2024.1394668&domain=pdf&date_stamp=2024-05-15
mailto:gzhu@yorku.ca
mailto:gzhu@yorku.ca
https://doi.org/10.3389/fcteg.2024.1394668
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org/journals/control-engineering#editorial-board
https://www.frontiersin.org/journals/control-engineering#editorial-board
https://doi.org/10.3389/fcteg.2024.1394668

Research in space robotic manipulator divides into two distinct
categories: free-flying and free-floating (Dubowsky and
Papadopoulos, 1993). Free-flying manipulators are characterized
by the active control of position and orientation (attitude) of the base
spacecraft through the use of thrusters, while the manipulator
executes its designated tasks (Seddaoui et al., 2021). This
approach, which is analogue to the operation of a fixed-base
manipulator, has been extensively studied with focus on path
planning and control (Pfeiffer, 1968; Wang et al., 2021).
However, the reliance on the thrusters for pose (position and
attitude) control incurs significant fuel consumption, potentially
reducing the operational lifespan of the system in orbit.

Conversely, free-floating manipulator systems operate with a
base spacecraft whose pose is not actively controlled. Instead, the
pose of the spacecraft is allowed to naturally react to the
manipulator’s joint movements due to the conservation of
momentum (Ratajczak and Tchon, 2021; Tsiotras et al., 2023).
Intuitively, this approach offers significant advantages, such as
the saving of spacecraft fuel and a reduced risk of collision with
targets, which might otherwise result from the active attitude control
of the base spacecraft. Despite these advantages, controlling free-
floating space robots represents a significant challenge. The dynamic
interaction between the manipulator and its base spacecraft, due to
the conservation of momentum, introduces a complex coupling
effect. This effect significantly complicates path planning and
motion control, as actions performed by the manipulator can
inadvertently after the pose of the base spacecraft, and vice versa.
The determination of the pose of the end-effector of the manipulator
depends not only on the current joint angles on the manipulator but
also on the previous velocities of both the joints and the base
spacecraft (Nanos and Papadopoulos, 2017). Additionally, the
nonholonomic nature of angular momentum further complicates
control strategies, making traditional path-planning solutions,
typically used for fixed-base manipulators, ineffective for free-
floating space manipulators (Rybus et al., 2017; Dai et al., 2022),
highlighting the need for innovative solutions in this area.

2 Related works

To bridge the research gap in the control and path planning of
free-floating space manipulator, a challenge not encountered with
fixed-base manipulators, various techniques have been proposed
(Agrawal et al., 1996; Luo et al., 2018). Early efforts, as outlined in
(Agrawal et al., 1996) applied inverse kinematics to path planning
while respecting the nonholonomic constraints of angular
momentum. However, this approach has limitations in
guaranteeing path optimality, as dynamic singularities, which are
often unpredictable uniquely from the manipulator’s kinematics,
can adversely affect the manipulator’s performance (Xu et al., 2011).
In response to these limitations, more recent studies have turned to
optimization theory to enhance path-planning solutions, such as
particle swarm optimization (Wang et al., 2015) and non-singular
terminal sliding mode control (Shao et al., 2021). Despite their
promise, these optimization-based solutions often demand
substantial computational resources, complicating their
application in real-time implementation, especially when facing
uncertain disturbances. Additionally, any changes in the initial

conditions of the manipulator or its target pose necessitate a
comprehensive re-optimization process.

To address this shortfall, researchers have explored the potential
of using machine learning (Ye et al., 2019), and more specifically,
reinforcement learning (RL), to overcome these limitations (Xie
et al., 2020). In essence, RL employs an agent that learns a decision-
making policy dynamically through trial-and-error interactions with
its environment (in this case, the space manipulator) to maximize a
predefined reward function (Sutton and Barto, 2018; Nguyen and
Hung, 2019). This learning process, which is within a Markov
Decision Process framework, allows the agent to issue commands
to alter the environment state and receive feedback in the form of
rewards based on the efficacy of its actions. Remarkably, this process
does not rely on prior data samples or predefined rules. Hence, the
motivation behind exploring the application of RL in tasks like
capturing a target by a free-floating space manipulator system lies in
its ability to navigate the complexities of the task easily while
operating within the constraints of space-based environments.
After the training phase concludes, the trained agent is
encapsulated solely by a set of weights and biases, represented
within neural networks. These parameters are lightweight and
can be readily deployed on various hardware platforms without
necessitating extensive computational resources. This characteristic
is particularly advantageous in space missions where acquiring
powerful computational resources is inherently challenging.

Several RL techniques, such as the Deep Deterministic Policy
Gradient (DDPG), Actor-Critic algorithm, and Q-learning, have
proven effective in path planning for manipulator operating in
continuous action spaces. For instance, a study implemented soft
Q-learning for path planning of a 3-DOF (Degrees of Freedom)
space robotic manipulator (Yan et al., 2018). The reward function in
this study was designed based on the distance between the end-
effector of the manipulator and the target. It returns positive rewards
for minimizing the distance and imposing penalties (negative
rewards) for cumulative joint torques.

While the value-based Q-learning performs well when agents
select actions from a finite set, policy-gradient based methods like
DDPG excel for continuous state and action spaces (Liu and Huang,
2021). In another instance, the DDPG algorithm was applied to path
planning for a simple 2-DOF space manipulator (Hu et al., 2018).
The reward function in the study included terms for obstacle
avoidance, penalties for disturbances from the base spacecraft,
and a small penalty for the path length. Additionally, DDPG was
used to enhancing the training efficiency of a 3-DOF space robotic
manipulator through pre-training (Du et al., 2019). Similarly, a dual-
arm space robotic manipulator, each arm with 4-DOF, was trained
using DDPG, with the reward function incorporating velocity
constraints and penalties to prevent collisions between the arms
(Li Haoxuan et al., 2021). Furthermore, the Actor-Critic algorithm
was utilized for path planning for a 6-DOF space robotic
manipulator, aiming for position and orientation alignment
(Liang et al., 2021). The reward function in this case was based
not only on the distance difference but also a term for the Euler angle
difference between the end effector and the target. In a separate
context, DDPG was applied for collision-free path planning for a
fixed-base manipulator with 7-DOF, using artificial potential fields
within the reward functions to represent obstacles (Li Yinkang et al.,
2021). The same algorithm was later applied to a redundant 7-DOF

Frontiers in Control Engineering frontiersin.org02

Al Ali and Zhu 10.3389/fcteg.2024.1394668

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2024.1394668

manipulator in a free-floating condition, aiming for target capture
with a reward function also based on artificial potential fields (Li
et al., 2022).

Table 1 summarizes the current state of RL applications in path
planning for space robotic manipulators. This emerging field has
seen limited publications to date. The majority of research has
focused on training 3-DOF space manipulators, with fewer
studies exploring 6-DOF or higher. A significant oversight in
many studies in the neglect of joint velocity limitations. Movover,
there is a lack of incorporation of quaternion-based expressions for
attitude control and consideration of obstacle avoidance in path
planning, both of which are crucial for practical applications.
Additionally, the use of scalar reward functions in the Markov
Decision Process can potentially restrict the search space or result in
local optima if not designed with caution. The challenge of balancing
exploration-exploitation in RL continues to be a prominent area of
research (Jepma and Sander, 2011).

The development of RL path planning in free-floating space
manipulators remains scarce. Research suggests that constructing an
effective reward function capable of optimizing the control strategy
of an agent in a perturbed environment is still a significant challenge.

This paper proposes a deep RL algorithm that integrates DDPG
and Actor-Critic neural networks for efficient path planning for a 6-
DOF free-floating space manipulator. Our methodology aims to
expedite training convergence in dynamic settings by designing
reward functions that consider several critical factors. These
include aligning the manipulator’s end effector (EE) with the
target using a novel quaternion-based approach for orientation
comparison and incorporating joint velocity constraints to
achieve smoother EE trajectories. Additionally, our algorithm
introduces measures to prevent self-collision of the manipulator’s
links and, importantly, incorporates external obstacle avoidance
capabilities during target approach - a novel feature not
previously implemented in the literature. Recognizing the
imperfection of real-world sensors, we further enhance our
model’s practical applicability by including white noise in the
observations during training. This ensures that the trained agent

is resilient to signal noise and capable of achieving successful target
capture. The effectiveness and advantages of our proposed algorithm
are validated through numerical simulations.

3 Mathematic model of a free-floating
space manipulator

A general free-floating space robotic manipulator is composed
of an n-DOF manipulator mounted on a floating base spacecraft, as
shown in Figure 1. An inertial reference frame, designated as OXYZ,
is defined in space. Within this frame, the base spacecraft (B0) is
treated as link 0 with 6-DOF and the first link of the manipulator is
affixed to the base spacecraft at joint J1. The manipulator itself is
constructed from n rigid links connected in series by n
independently actuated revolute joints. The position of the EE is
denoted by a vector pe ∈ R3.

TABLE 1 Summary of current research on RL-based path planning for space manipulators.

Ref Hu et al.
(2019)

Yan et al.
(2018)

Du et al. (2019) Li et al.
(2021b)

Liang et al.
(2021)

Li et al.
(2022)

Algorithm MRDDPG Soft
Q-Learning

DDPG + pre-
training

DDPG Deep RL DDPG

DOF 2 3 3 4 6 7

Target Capture
Constraints

EE*
Position

EE*
Attitude

- - - -

(Euler angles) (Euler angles)

Joint
Velocity

- - - - -

Obstacle Avoidance - - - - - -

Observation Noise - - - - - -

* EE, End Effector.

FIGURE 1
Schematic of a general free-floating space robotic manipulator
with n rigid links.

Frontiers in Control Engineering frontiersin.org03

Al Ali and Zhu 10.3389/fcteg.2024.1394668

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2024.1394668

The position (pe) and orientation (Ae) of the EE can be
accurately determined by propagating the relative position and
orientation of each joint from the base spacecraft to the end-
effector, such that

pe � r0 + b0 +∑n
i�1

pi+1 − pi() (1)

Ae � Ao∏n
i�1

Ai (2)

where pi is the position vector of the ith joint in the inertial frame
and Ai is the rotation matrix of the ith link. Differentiating Eqs 1, 2
with respect to time results in the linear (ve ∈ R3) and angular
(ωe ∈ R3) velocities of the EE, such that

ve � _pe � v0 + ω0 × pe − r0() +∑n
i�1

_φiji() × pe − pi()[] (3)

ωe � ω0 +∑n
i�1
ωi, ωi � _φiji (4)

where _φi and ji are the ith joint’s angular velocity and direction in the
inertial frame, respectively. Rewriting the velocity equations into a
compact matrix form with the base state _xb � [v0,ω0]T and EE state
_xe � [ve,ωe]T yields

_xe � Jb _xb + Jm _Φ (5)
where _Φ � [_φ1, _φ2,/ _φn]T is the joint angular velocity vector, and
(Jb, Jm) are the Jacobian matrices dependent on the base spacecraft
and manipulator motions, respectively.

In a free-floating space manipulator system, the total momentum is
conserved. Assuming that the initial momenta of the system is zero, we
can express the conservation of momentum conservation as

P � m0v0 +∑n
i�1
mi ai _pi + bi _pi+1() � 0 (6)

L � I0ω0 + r0 × m0v0() +∑n
i�1

Iiωi + ri × mi ai _pi + bi _pi+1()[] � 0 (7)

or in the compact matric form as

P
L

[] � Mb _xb +Mm
_Φ � 0 (8)

where mi is the mass of the ith link, Ii is the inertial moment of the
ith link at its center of mass (CM), (ai, bi) are fractional coefficients
measuring the distances from the CM of the ith link to its two ends
and satisfy the condition of ai + bi � 1,Mb is the inertia matrix of the
base spacecraft, and Mm is the coupling inertia matrix of the
manipulator. The detailed expression of these inertia matrices
can be found in Wilde et al. (2018).

Combining Eqs. 5, 8 yields

_xe � Jm − JbM
−1
b Mm() _Φ � Jg _Φ (9)

where Jg is the generalized Jacobian matrix dependent on the base
spacecraft attitude, joint angles, and mass properties of the base
and links.

Based on the above kinematics, the dynamics of the free-floating
n-link robotic manipulator system, as shown in Figure 1, can be
derived by Lagrange equations (Wilde et al., 2018).

M€q + _M _q + C _q, q() � F (10)
where

M � Mb Mbm

MT
bm Mm

[] F � 0
u

[] C � cb
cm

[]
and q � [xb,Φ]T is the generalized displacement vector of the free-
floating space robotic manipulator, Mbm is the inertia matrix
reflecting the dynamic coupling between the base spacecraft and
the manipulator, cb and cm represents the Coriolis forces acting on
the base spacecraft and the manipulator, and u is the control torque
at the joints. This equation serves as the mathematical base in our
dynamic simulation environment of a free-floating manipulator,
which will be used for reinforcement learning training.

To ascertain the algorithm’s performance and effectiveness
under real-world conditions, the parameters used in the
simulations are based on actual space robotic manipulator
missions (Li et al., 2019). Table 2 shows a brief summary of past
space robotic manipulator missions. Notably the mass ratios in most
cases are small except for the Orbital Express mission, with a 7.4%
mass ratio being the highest. Accordingly, this mass ratio was
selected in study to show the need to consider the free-floating
base condition.

4 Reinforcement learning for
path planning

4.1 DDPG reinforcement learning algorithm

The control objective of the free-floating manipulator is to move
the EE smoothly towards a specified target with precise position and
orientation without any collisions between the manipulator’s links,
the target, and any obstacles along the path. With this in mind, the
observations that are critical to the learning process are defined as

s � Φ, _Φ, pe, αe, βe, γe, _pe,ωe, pT, αT, βT, γT, _pT,ωT, pOb, d, ϑ[] (11)

where subscripts “T”, “e”, and “Ob” refer to the target, the end-
effector, and Obstacle, respectively, d and ϑ are the distance and
orientation difference between the EE and the target, respectively, to
be described in details in Section 4.

The actions that control the manipulator are the torque input at
each joint:

a � u1, u2,/, un[]T (12)

Assuming that the continuous system dynamics between states s
and the actions a are discretized in the time domain at time step ti,
we obtain:

si+1 � f si, ui,ws,i+1() (13)
where ui is the control input applied to the system and ws,i is the
noise representing the unmodeled system dynamics in the
environment.

Applying RL algorithms, such as Q-learning, to a continuous
system like robotic path planning is challenging. This challenge
arises from the necessity of optimizing actions ai at each timestep i
through a greedy policy. An alternative, the Deep Q-Network

Frontiers in Control Engineering frontiersin.org04

Al Ali and Zhu 10.3389/fcteg.2024.1394668

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2024.1394668

(DQN) algorithm (Silver et al., 2014) offers a solution by estimating
the Q function with deep neural networks (DNNs) that take states
and actions as inputs and return the expected cumulative reward as
output. The DQN algorithm uses two distinct DNNs, the main
network and target, which operate concurrently. DQN is able to
learn value functions using in a stable and robust way due to two
innovations (Lillicrap et al., 2015). The network is trained off-policy
with samples from a replay buffer to minimize correlations between
samples, and the network is trained with a target Q network to give
consistent targets during temporal difference backups. This is also
used in the DDPG algorithm. Moreover, the response to the input
actions by the robotic manipulator is deterministic. Thus, instead of
learning a set of probability distributions, a deterministic action can
be directly learned from given states for the robotic manipulator
system (Silver et al., 2014). Accordingly, the DDPG algorithm is used
here to compute the policy gradient ∇J(θ).

The stability of policy gradient methods has been well-studied
under the Lyapunov framework. For instance, Hejase and Ozguner,
(2023) proved that the policy gradient is negative statistically, which
is a crucial factor in ensuring the stability of DDPG methods from a
statistical standpoint.

In the DDPG, the actor network deterministically returns in a
continuous action space based on its interaction with the
environment by the parameterized policy μθQ and is updated by
the application of gradient ascent on the policy gradient,

∇θJ θ() � E
β~μ

∑N−1

i�0
∇θμθ ai si|()∇aQμθ ,i si, ai()⎡⎣ ⎤⎦ (14)

where N is the time steps in each episode, μ(θ) is a deterministic
policy, and β(θ) is a behavior policy with different trajectories
βθ(a | s) from the policy trajectories μθ(a | s). The deterministic
policy gradient can be calculated by trajectories that are sampled
from a distinct behavior policy βθ(a | s) based on an Actor-Critic
approach (Degris et al., 2012),

Qμθ ,i s, a() � E
β~μ

∑N−1

i�0
γiRi s � si, a � μθ si()∣∣∣∣⎡⎣ ⎤⎦ (15)

Here, Qμθ(s, a) is the Q-function that represents the expected
discounted return calculated by starting from the ith time step,

taking the state-action pair [si, ai � μθ(si)] and generating
rewards based on the policy μθ until the end of the
episode. Notably, the Q-function depends exclusively on
environment, meaning that it can be learned off policy by
the Q-learning algorithm (Watkins and Peter, 1992). The
parameter γ ∈ [0, 1] is a discount factor. If γ � 1, the agent
treats all future rewards equally, which is suitable for long-
term planning. On the opposite, the agent is for short-term
planning if γ≪ 1.

The critic network evaluates the agent’s performance by
estimating the Q-value of state-action pairs (si, ai). The
Q-function is approximated by the Bellman equation
(Bellman, 1996).

Qμθ si, ai() � E
β~μ

R si, ai() + γQμθ si+1, μ si+1()()[] (16)

and using Temporal difference, the Q-function can be calculated
recursively over a parameter θQ, to guide the next-generation
of actions.

Qj+1
μθ

si, ai() � Qj
μθ

si, ai()

+ α E
β~μ

Ri si, ai() + γQμθ si+1, μ si+1()() ∣∣∣∣ θQ[] − Qj
μθ

si, ai(){ }
(17)

The critic parameters are updated by reducing the loss function,
such that,

L θQ() � E
β~η

Qμθ ,i si, ai θQ
∣∣∣∣() − yi()2[] (18)

yi � Ri + γiQμθ ,i si+1, μ si+1() θQ
∣∣∣∣() (19)

To ensure the samples are independently distributed, a replay
buffer is created to store the tuple (si+1, si, ai, Ri) that are sampled
from the environment according to the exploration policy (Lillicrap
et al., 2015). At each time step, the actor and critic are updated by
sampling a minibatch uniformly from the buffer. When the replay
buffer is full the oldest samples are discarded. Because DDPG is an
off-policy algorithm, the replay buffer can be large, allowing the
algorithm to benefit from learning across a set of uncorrelated
transitions.

TABLE 2 Past space robotic capture missions.

Mission Date DOF Robotic arm
length (m)

Robotic arm
mass (kg)

Base spacecraft
mass

Base-arm
ratio

Canadarm (2024) 1981-2010 (Space
shuttle)

6 15 410 78,000 kg 0.53%

Canadarm (2024) 2001 (ISS) 7 17 1,497 408,000 kg 0.37%

Canadarm (2024) 2022 (lunar gateway) 7 8.5 715 - -

Dextre (2024) 2008 (ISS) 3 3.7 1,710 408, 000 kg 0.42%

JEMRMS. (2024) 2009 (ISS) 6 10 and 2 780 408, 000 kg 0.19%

European Robotic Arm.
(2024)

Under review (ISS) 7 11 630 408, 000 kg 0.15%

ETS-VII. (2024) 1997 6 2 45 2,450 kg 1.84%

Orbital Express. (2024) 2007 6 3 71 953 kg 7.45%

Frontiers in Control Engineering frontiersin.org05

Al Ali and Zhu 10.3389/fcteg.2024.1394668

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2024.1394668

Directly implementing Q learning with neural networks
proved to be unstable in many environments. However, for
DDPG the target actor and critic parameters are soft updated,
rather than directly copying the weights. The weights of
these target networks are updated by having them slowly
track the learned networks such that θQ,i+1 � τθQ,i +
(1 − τ)θQ,i+1 and θμ,i+1 � τθμ + (1 − τ)θμ,i+1 to improve the
Q-learning stability, where τ≪ 1 is the smoothing factor
(Lillicrap et al., 2015). This means that the target values are
constrained to change slowly, greatly improving the stability of
learning. This simple change moves the relatively unstable
problem of learning the action-value function closer to the
case of supervised learning. The pseudo-code that describes
the detailed training process for the DDPG algorithm is shown
in Table 3.

4.2 Actor-Critic networks

The actor and critic DNNs are created using standard feed-
forward neural networks, each one with two hidden layers. The first
and second hidden layers have 400 and 300 neurons, respectively.
The actor network inputs are the states of the system, and its outputs
are the actions. However, the critic network inputs are the state-
action pairs, and its outputs are the action values. In this study, the
robotic manipulator includes 6 links, i.e., n = 6. Thus, the
dimensions of the state and actions are s ∈ S32, and a ∈ A6,
respectively.

4.3 Reward function

As the most critical part of reinforcement learning, the
reward function is directly responsible for how the algorithm
trains and what objectives are achieved. With that in mind, an
innovative reward function is developed to minimize the pose
difference between the EE and the target as well as the sudden
changes in joint velocities. The reward function (Rt) is evaluated
at each time step, and the sum of these evaluations across all time
steps constitutes the episode reward.

The pose difference is represented by the position error d and the
orientation error ϑ. The primary part of the reward function
must include:

Rt � −Kdd −Kϑϑ (20)
where Kd and Kϑ are positive reward coefficients. As the pose
difference is minimized, the reward Rt is maximized. Notably this
guidance term will ensure the agent is learning to align the EE and
the target.

The position error is determined straightforward by:

d � pT − pe
���� ���� � �����������������������������

xT − xe()2 + yT − ye()2 + zT − ze()2
√

(21)

The orientation error of the EE can be defined either by a unit
quaternion (ξ) or a set of Euler angles (α, β, γ). In the previous work
as shown in Table 1, the expression of the orientation error is based
on a set of Euler angles, such that,

ϑ �
�����������������������������
αT − αe()2 + βT − βe()2 + γT − γe()2√

(22)

where (αe, βe, γe) and (αT, βT, γT) are the Euler angles of the EE and
the target, respectively. It is worth pointing out that the orientation
difference in such a form loses the information of rotation sequence
of Euler angles. This increases the search space in the learning
process and may even lead to divergence. Thus, the Euler angle
representation is not used in the current work. Instead, an
innovative reward function is built using the quaternion
representation of orientations.

Let the orientations of the EE and the target be represented by
two unit quaternions ξE and ξT, respectively, as shown
in Figure 2.

TABLE 3 Pseudo code of DDPG algorithm.

Procedure

Initiate online actor μ(s | θμ) and critic Q(s, a | θQ) and randomly load weights θμ

and θQ

Initiate target actor μ′ and critic Q′ networks weights θμ → θμ′ , θQ → θQ′

Initiate replay buffer (RAM)

For each episode M do

For each timestep

According to current state s, choose action a � μ(s | θμ) +N. N is a random
process exploration noise

Perform action a, then detect reward r, and new state s′
Record the incident (s, a, r, s′) in replay buffer

Select a small batch of incidents that occurred (s, a, r, s′) out of the buffer

If the final timestep is reached, the target value function is stored

y � r

Else store the target value function y � r + γQ′(s′, μ′(s′ | θμ′) | θQ′)
Fill in the critic parameters by reducing L (loss function)

L � 1
M∑M
i�1
[y − Q(s, a | θQ)]2

Fill in the actor parameters by increasing the anticipated reward using J
(gradient)

∇θμ J ≈ 1
M∑M

i�1
∇aQ(s, a | θQ)∇θμ μ(s | θμ)

Fill in the target actor/critic with

θQ′ � τθQ + (1 − τ)θQ′ and θμ′ � τθμ + (1 − τ)θμ′
where τ is the smoothing factor

End for

End for

FIGURE 2
Quaternion representation of orientation difference.

Frontiers in Control Engineering frontiersin.org06

Al Ali and Zhu 10.3389/fcteg.2024.1394668

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2024.1394668

The orientation error of the EE with respect to the target can be
expressed as (Campa and Camarillo, 2008):

~ξ � ξT − ξe � ξT × ξ*e (23)
where ξ*e is the conjugate of the quaternion ξe. Accordingly, an
orientation difference between the EE and the target is
determined by:

ϑ � 2 arccos Re ~ξ()[] (24)

As the EE approaches the desired pose, the pose error (d, ϑ)
diminishes as well as the reward function in Eq. 20. To ensure the EE
stays within the desired pose for capture, large rewards (rd, rϑ) are
added to the reward function in Eq. 20 if d and ϑ are within
predefined ranges, such that:

Rt � −Kdd − Kϑϑ + rd + rϑ (25)

rd � 0 if d≥ d0

r1 if d< d0
{ and rϑ � 0 if ϑ≥ ϑ0 ∪ d≥ d0

r2 if ϑ< ϑ0 ∩ d< d0
{

where d0 and ϑ0 are pre-defined indicators for close proximity
operation region for position and orientation, respectively. Once the
end-effector enters into this region, large positive rewards are
assigned to the reward function to encourage and accelerate the
agent converging towards the desired pose.

Furthermore, a large negative penalty (pl) is added to the reward
function in Eq. 25 to avoid self-collision between the robotic links
and the target. If the distance between any two is less than a
predefined safe distance, the penalty pl is added to the reward
function, such that:

Rt � −Kdd −Kϑϑ + rd + rϑ − pl (26)

pl �
0 if min

i≠j
ri − rj
���� ����≥ r0

pl if min
i≠j

ri − rj
���� ����< r0

⎧⎪⎨⎪⎩
where pl > 0 is a penalty for two links being too close to
each other.

To facilitate obstacle avoidance, a substantial negative penalty
(pOb) is incorporated into the reward function in Eq. 26. This
penalty (pOb) is activated whenever the distance between the
obstacle’s CM and any link’s CM falls below a predefined
safety range:

Rt � −Kdd −Kϑϑ + rd + rϑ − pl − pOb (27)

pOb � 0 if dOb ≥dOb

pOb if dOb <dOb
{

Figure 3 shows a simplified illustration of how the
safety distance defined between any link and the obstacle
is defined.

Finally, in order to ensure a smooth path and avoid sudden
changes in motion, a velocity penalty is incorporated as a negative
reward (pj) into the reward function described in Eq. 27. This leads
to the final reward function Rt,

Rt � −Kdd −Kϑϑ + rd + rϑ − pl − pOb − pj ∑ _φ()2 (28)

where pj > 0 is a velocity penalty for smooth joint velocities by
multiplying the squared sum of joint angular velocities.

In summary, the core aspect of RL lies in crafting a robust
reward function. The adaptability of our approach shines as we
can tailor the reward terms in the reward function to suit varied
missions and tasks. This adaptability is evidently demonstrated
by the above process to augment the reward function with
multiple terms—comprising rewards or penalties—that
correspond to the specific objectives at hand. This iterative
process ensures our algorithm remains versatile and effective
across diverse scenarios.

5 Simulation outcomes and analysis

5.1 Simulation environment

In this study, the proposed RL approach for motion planning
of a free-floating space robotic manipulator is verified by
simulation using MATLAB® and Simulink®. The physical
parameters of the manipulator are given in Table 4. Table 5
provides the RL training hyperparameters and the initial
conditions for all simulation cases. These simulations were
performed on a PC equipped with an Intel® Core™ i7-10600K
Processor and 32 GB of RAM.

5.2 Simulation results

Three different cases of path planning were conducted to
demonstrate the capabilities of the proposed RL approach, each
employing different reward functions. The first case used the
reward function in Eq. 27 without velocity constraints. The
second case used the reward function in Eq. 28 with the
velocity constraints. The third case used the same reward
function as the second case. However, it included noisy
observations by adding white noise, thereby closely reflecting
realistic sensor observations.

5.2.1 Case 1–approach target without velocity
constraints

In this case, the free-floating space robotic manipulator has been
trained by the reward function in Eq. 27 toward the desired pose

FIGURE 3
Simplified illustration of obstacle avoidance safety distances.

Frontiers in Control Engineering frontiersin.org07

Al Ali and Zhu 10.3389/fcteg.2024.1394668

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2024.1394668

(x, y, z, ξ)T. The parameters in this reward function are defined as
kd � 0.1, kϑ � 0.001, d0 � 0.2m, ϑ0 � 30+, rd � 1, rϑ � 2, pOb � 0.5,
dOb � 0.3. These parameters are used in all simulation cases
described below.

The training progress is shown in Figure 4, where the blue line is
the cumulative rewards from all timesteps in each episode, and the
red line is the moving average of the cumulative rewards of all
episodes. These curves show that the agent learns to reach the
desired pose by searching for the highest reward. The term
(−Kdd −Kϑϑ) in the reward function efficiently guides the EE
towards the capture range within the first 5,000 episodes,
while the term (−pl − pOb) in the reward function effectively
prevents collisions of the manipulator with the obstacle, the
target and itself.

Upon entering the capture range, the large rewards (rd + rϑ)
in the reward function are activated to keep the EE within the
capture range while simultaneously refining the EE’s pose
throughout the remaining timesteps to prepare the
gripper for capture. The large variation of the episode reward
reflects the activation and deactivation of the large rewards
(rd + rϑ) in this process. Figure 5 shows several snapshots of the
output path for the space robotic manipulator towards
the target.

Figure 6A shows the pose error between the EE and the target
over time with the left subfigure representing the distance error (d)
and the right subfigure depicting the orientation difference (ϑ). The
trained agent guides the EE towards the desired target pose range
(d0, ϑ0) within approximately 6 s. Subsequently, the EE stays within
that region to achieve capture for the remaining duration of the
simulation. It is worth mentioning that the threshold (d0 � 0.20m)
does not imply that the minimum distance error the trained agent
can reach; instead, it signifies that crossing this threshold secures a
large positive reward (rd). With this large positive reward, the agent
achieves a minimum distance error of Δd = 0.058 m and orientation
error of Δθ = 4.85°.

Figure 6B shows the time histories of actions (control torques) at
all 6 joints as given by the agent. The agent effectively provides the
necessary torques to achieve a valid path for the manipulator to
move the EE towards the target, ensuring no self-collision occurs
between manipulator links, and most importantly, avoiding the
obstacle placed between the EE and the target.

It is worth pointing out that the RL hyperparameters play a
pivotal role in governing various aspects of the learning process,
including learning dynamics, exploration versus exploitation
trade-offs, convergence, adaptation to changing environments,

TABLE 4 Physical parameters of 6-DOF space robotic manipulator (Wilde, et al., 2018).

Bodies Mass (kg) Length (m) Ix (kg/m2) Iy (kg/m2) Iz (kg/m2)

Base 1700 0.75 × 0.75×0.75 1,434 1,434 1735

Link 1 5 0.25 0.0292 0.0292 0.0063

Link 2 5 0.2 0.0292 0.0292 0.0063

Link 3 50 0.75 0.0625 26.1 26.1

Link 4 10 0.2 0.0125 0.215 0.215

Link 5 50 0.75 0.0625 26.1 26.1

Link 6 5 0.2 0.0063 0.0292 0.0292

Target sphere 0 radius 0.1 0 0 0

Obstacle sphere 0 radius 0.1 0 0 0

TABLE 5 RL training hyperparameters and initial conditions.

Parameter Value

Learning rate 0.001

Replay buffer size 50,000

Discount factor 0.99

Mini-batch size 128

Episode timesteps 400

Timestep size 0.025 s

Episode Time 10 s

Loewr and Upper Bounds For Joint Torques (1-3) −6 Nm, 6 Nm

Loewr and Upper Bounds For Joint Torques (4-6) −3 Nm, 3 Nm

Initial EE Pose (x, y, z, ξ)e (0, 0, 2.675, −1, 0, 0, 0)

Target Pose (x, y, z, ξ)T (0.8, 0, 1.6, 0.707, 0, 0.707, 0)

Obstacle Position (1.5, 0, 1)

FIGURE 4
RL training of case 1 for 10,000 episodes.

Frontiers in Control Engineering frontiersin.org08

Al Ali and Zhu 10.3389/fcteg.2024.1394668

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2024.1394668

and computational resource utilization. The training is greatly
influenced by the learning rate, replay buffer and discount
factor. The learning rate dictates the pace at which the RL
agent updates its estimates based on new information,
influencing both the speed and stability of learning. Similarly,
a larger replay buffer enhances sample efficiency and stability by
enabling the agent to learn from a diverse array of past

experiences while mitigating overfitting risks. Moreover, the
discount factor is essential for the agent’s long-term decision-
making, allowing it to balance immediate rewards with future
gains. This factor significantly influences the convergence and
stability of RL algorithms and aids in handling uncertainty and
delayed rewards, thus facilitating effective exploration and
exploitation strategies.

FIGURE 5
Case 1 solution for space manipulator path reaching the target.

FIGURE 6
(A) Position and orientation tracking errors vs. time. (B) Time histories of joint torques (actions) given by the agent.

Frontiers in Control Engineering frontiersin.org09

Al Ali and Zhu 10.3389/fcteg.2024.1394668

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2024.1394668

5.2.2 Case 2–approach target with velocity
constraints

To achieve smoother motion and eliminate undesired sudden
changes in the path, as shown in Figure 6A at the beginning of the
path, often associated with high joint angular velocities, a velocity

penalty term for all six joint velocities (−pj ∑ (_φ)2) has been added
to the reward function, as shown in Eq. 27. The parameters for this
simulation case are the same as those in case 1, with the inclusion of
an additional parameter of pj � 0.005.

The training results are shown in Figures 7, 8. Figure 7 shows the
convergence of the reward function. Figure 8A shows the pose error
between the EE and the target over time, and Figure 8B shows the time
histories of actions (control torques) for all 6 joints given by the agent.

In comparison to Figures 4, 7 shows that the training process is
similar to Case 1. The training converges to the capture range in
approximately 5,000 episodes. Upon entering the capture range, the
large rewards (rd + rϑ) in the reward function are activated to keep
the EE within the capture range while simultaneously refining the
EE’s pose throughout the remaining timesteps to prepare the gripper
for capture. However, it is noted that in Case 2, the introduction of a
velocity penalty term (−pj ∑ (_φ)2) to the reward function results in
a smoother path. Comparing Figure 8A with Figure 6A reveals an
improvement in the convergence of the path in the first 3 s.
Furthermore, the end-effector successfully converges towards the
capture range. The high rewards (rd + rϑ) helps the agent staying in
this region for future capture and servicing with a minimum

FIGURE 7
RL training of case 2 for 10,000 episodes.

FIGURE 8
(A) Position and orientation tracking errors vs. time, (B) Time histories of joint torques (actions) given by agent.

Frontiers in Control Engineering frontiersin.org10

Al Ali and Zhu 10.3389/fcteg.2024.1394668

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2024.1394668

distance error of Δd = 0.088 m and orientation difference of
Δθ = 6.61°.

To further examine the effect of the velocity constraint term on
agent training, the square sum of all six joint velocities (∑ (_φ)2)
along the path is shown in Figure 9. It is observed that the square
sum of velocities obtained from the path in Case 2 (right plot) barely
surpasses 80 in comparison to the 160 reached in Case 1 (left plot).
These results clearly demonstrate the efficacy of modifying the
reward function on the solution. Such findings open the door for
future research to enhance path optimization by designing better
reward functions, potentially incorporating torque penalties, energy
consumption penalties, and the integration of optimal path
constraints commonly used in optimization to RL.

5.2.3 Case 3–approach target with noisy
observations

In real missions, assuming perfect observations of the state
is unrealistic, particularly in estimating the target’s pose using
vision sensors like cameras. To evaluate the robustness of the
proposed reward function in handling noisy observations,
training of the agent was proceeded with the same
reward function and parameters in Case 2, except
introducing white noise to the observations that would be
obtained from cameras in real mission. The noise is added to
the target pose and obstacle position: pT, αT, βT, γT, pOb with a
signal-to-noise ratio (SNR) of 10/1 to simulate realistic
conditions:

Signalout � Signalin 1 + Rn[]
where Rn ∈ [−0.1, 0.1] is a random number with Mean = 0
and Variance = 1.

The training outcome is shown in Figure 10. It is noted that
the agent is able to obtain high rewards despite the presence of
observational noise. Figure 11A shows the pose error between the
EE and the target over time. Despite the presence of noise in the
target position and orientation observations, the agent effectively
manages to align the EE and the target for capture. The agent
achieves a minimum distance error of Δd = 0.048 m and
orientation difference of Δθ = 7.79°. Notably, as the EE
approaches the target, the absolute value of the noise
decreases, imitating the characteristic behavior observed in

real camera observations. The agent successfully overcomes
the challenge of noisy inputs, which proves the effectiveness
and robustness of the proposed solution.

Figure 11B shows the time histories of actions (control torques)
for all six joints given by the agent. Observations reveal that the
torques required for capture exhibit more oscillations compared to
the previous solution in Figure 8. This increase in oscillation results
from the noisy observations that add uncertainties during training.
It is worth mentioning that the agent trained in Case 3 (noise on
observations) still manages to achieve the desired task when
implemented in a noise-free environment. Conversely, the agent
trained in Case 2 (no noise on observations) fails its task in a noisy
environment. This highlights the importance of RL training under
realistic and challenging conditions. Exposing the agent to noise
during training equips it with the ability to effectively achieve its task
in real-world applications.

6 Conclusion

This study investigated the obstacle avoidance path
planning problem for a free-floating space robotic
manipulator using RL. The DDPG algorithm was used to
train an agent to control a 6-DOF space robotic manipulator
to achieve the desired goals. Specifically, it aims to find a feasible

FIGURE 9
Square sum of all joint angular velocities in Case 1 (left) and Case 2 (right).

FIGURE 10
RL training of case 3 for 10,000 episodes.

Frontiers in Control Engineering frontiersin.org11

Al Ali and Zhu 10.3389/fcteg.2024.1394668

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2024.1394668

path towards position and orientation alignment between the
EE and the target, without any self-collation between
manipulator links, while avoiding external obstacles along
the path. The proposed method was verified using simulation
with three different simulation cases–without joint velocity
constraints, with joint velocity constraints, and with noisy
observations. The results show the proper construction of a
reward function is critical for training the agent using RL and
affects the quality of the path. The inclusion of observation
noise in the training will significantly enhance the robustness of
the agent. The offline nature of the training in the RL
approaches diminishes the need for
immediate computational efficiency considerations. After the
training phase concludes, the trained agent is encapsulated
solely by a set of weights and biases, represented within
neural networks. These parameters are lightweight and can
be readily deployed on various hardware platforms without

necessitating extensive computational resources. This
characteristic is particularly advantageous in space missions
where acquiring powerful computational resources is
inherently challenging.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

AA: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Software, Validation,

FIGURE 11
(A) Position and orientation tracking errors vs. time, (B) Time histories of joint torques (actions) given by the agent.

Frontiers in Control Engineering frontiersin.org12

Al Ali and Zhu 10.3389/fcteg.2024.1394668

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2024.1394668

Visualization, Writing–original draft, Writing–review and
editing. ZZ: Conceptualization, Funding acquisition,
Investigation, Methodology, Project administration, Resources,
Supervision, Validation, Writing–review and editing,
Writing–original draft.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work is
supported by the FAST grant (19FAYORA14) of the Canadian
Space Agency and the Discovery Grant (RGPIN-2018-05991) and
CREATE program (555425-2021) of the Natural Sciences and
Engineering Research Council of Canada.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their
affiliated organizations, or those of the publisher, the editors and
the reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Agrawal, S. K., Garimella, R., and Desmier, G. (1996). Free-floating closed-chain
planar robots: kinematics and path planning. Nonlinear Dyn. 9, 1–19. doi:10.1007/
BF01833290

ASC-CSA (2024a). Canadarm, Canadarm2, and Canadarm3 – a comparative table.
Available at: https://www.asc-csa.gc.ca/eng/iss/canadarm2/canadarm-canadarm2-
canadarm3-comparative-table.asp April 5, 2024).

ASC-CSA (2024b). Dextre. Available at: https://www.asc-csa.gc.ca/eng/iss/dextre/
data-sheet.asp April 5, 2024).

Bellman, R. (1966). Dynamic programming. Science 153, 34–37. doi:10.1126/science.
153.3731.34

Campa, R., and Camarillo, K. (2008). Unit quaternions: a mathematical tool for
modeling, path planning and control of robot manipulators. Robot. Manip. InTech.
doi:10.5772/6197

Dai, Ye, Xiang, C., Zhang, Y., Jiang, Y., Qu, W., and Zhang, Q. (2022). A Review of
spatial robotic arm trajectory planning. Aerospace 9 (7), 361. doi:10.3390/
aerospace9070361

Degris, T., White, M., and Sutton, R. S. (2012). Off-policy actor-critic. Available at:
https://arxiv.org/abs/1205.4839.

Du, D., Zhou, Q., Qi, N., Wang, Xu, and Liu, Y. (2019). “Learning to control a
free-floating space robot using deep reinforcement learning,” in 2019 IEEE
International Conference on Unmanned Systems (ICUS), Beijing, China,
October, 2019, 519–523.

Dubowsky, S., and Papadopoulos, E. (1993). The kinematics, dynamics, and control of
free-flying and free-floating space robotic systems. IEEE Trans. robotics automation 9
(5), 531–543. doi:10.1109/70.258046

ETS-VII (2024). ETS-VII. Available at: https://www.eoportal.org/satellite-missions/
ets-vii#background-on-ets-missions April 5, 2024).

European Robotic Arm (2024). European robotic arm. Available at: https://www.esa.
int/Science_Exploration/Human_and_Robotic_Exploration/International_Space_
Station/European_Robotic_Arm April 5, 2024).

Flores-Abad, A., Ma, Ou, Pham, K., and Ulrich, S. (2014). A review of space robotics
technologies for on-orbit servicing. Prog. Aerosp. Sci. 68, 1–26. doi:10.1016/j.paerosci.
2014.03.002

Hejase, B., and Ozguner, U. (2023). “Lyapunov stability regulation of deep
reinforcement learning control with application to automated driving,” in
2023 American Control Conference (ACC), San Diego, CA, USA, May, 2023,
4437–4442.

Hu, X., Huang, X., Hu, T., Zhong, S., and Hui, J. (2018). “Mrddpg algorithms for path
planning of free-floating space robot,” in 2018 IEEE 9th International Conference on
Software Engineering and Service Science (ICSESS), Beijing, China, November, 2018,
1079–1082.

JEMRMS (2024). JEMRMS. Available at: https://iss.jaxa.jp/en/kibo/about/kibo/rms/
April 5, 2024).

Jepma, M., and Sander, N. (2011). Pupil diameter predicts changes in the
exploration–exploitation trade-off: evidence for the adaptive gain theory. J. cognitive
Neurosci. 23 (7), 1587–1596. doi:10.1162/jocn.2010.21548

Li, H., Gong, D., and Yu, J. (2021a). An obstacles avoidance method for
serial manipulator based on reinforcement learning and Artificial Potential
Field. Int. J. Intelligent Robotics Appl. 5, 186–202. doi:10.1007/s41315-021-
00172-5

Li, W.-J., Cheng, D.-Yi, Liu, X.-G., Wang, Y.-B., Shi, W.-H., Tang, Z.-X., et al.
(2019). On-orbit service (OOS) of spacecraft: a review of engineering
developments. Prog. Aerosp. Sci. 108, 32–120. doi:10.1016/j.paerosci.2019.
01.004

Li, Y., Li, D., Zhu, W., Sun, J., Zhang, X., and Li, S. (2022). Constrained motion
planning of 7-DOF space manipulator via deep reinforcement learning
combined with artificial potential field. Aerospace 9 (3), 163. doi:10.3390/
aerospace9030163

Li, Y., Xiaolong, H., She, Y., Li, S., and Yu, M. (2021b). Constrained motion planning
of free-float dual-arm space manipulator via deep reinforcement learning. Aerosp. Sci.
Technol. 109, 106446. doi:10.1016/j.ast.2020.106446

Liang, B., Chen, Z., Guo, M., Wang, Y., and Wang, Y. (2021). Space
robot target intelligent capture system based on deep reinforcement learning
model. J. Phys. Conf. Ser. 1848 (1), 012078. doi:10.1088/1742-6596/1848/1/
012078

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2015).
Continuous control with deep reinforcement learning. Available at: https://arxiv.org/
abs/1509.02971.

Liu, Y.-C., and Huang, C.-Yu (2021). DDPG-based adaptive robust tracking control
for aerial manipulators with decoupling approach. IEEE Trans. Cybern. 52 (8),
8258–8271. doi:10.1109/TCYB.2021.3049555

Luo, J., Yu, M., Wang, M., and Yuan, J. (2018). A fast trajectory planning framework
with task-priority for space robot. Acta Astronaut. 152, 823–835. doi:10.1016/j.
actaastro.2018.09.023

Nanos, K., and Papadopoulos, E. G. (2017). On the dynamics and control of free-
floating space manipulator systems in the presence of angular momentum. Front.
Robotics AI 4, 26. doi:10.3389/frobt.2017.00026

Nguyen, H., and Hung, La. (2019). “Review of deep reinforcement learning for robot
manipulation,” in 2019 Third IEEE International Conference on Robotic Computing
(IRC), Naples, Italy, February, 2019, 590–595.

Orbital Express (2024). Orbital express. Available at: https://mda.space/en/orbital-
express/April 5, 2024).

Papadopoulos, E., Aghili, F., Ma, Ou, and Lampariello, R. (2021). Robotic
manipulation and capture in space: a survey. Front. Robotics AI 8, 686723. doi:10.
3389/frobt.2021.686723

Pfeiffer, F. (1986). Manipulator trajectory planning and control. IFAC Proc. Vol. 19
(14), 325–330. doi:10.1016/s1474-6670(17)59499-9

Ratajczak, J., and Tchoń, K. (2021). Coordinate-free jacobian motion planning: a 3-d
space robot. IEEE Trans. Syst. Man, Cybern. Syst. 52 (8), 5354–5361. doi:10.1109/tsmc.
2021.3125276

Rybus, T., Seweryn, K., and Sasiadek, J. Z. (2017). Control system for free-
floating space manipulator based on nonlinear model predictive control
(NMPC). J. Intelligent Robotic Syst. 85, 491–509. doi:10.1007/s10846-016-
0396-2

Seddaoui, A., Mini Saaj, C., and Nair, M. H. (2021). Modeling a controlled-floating
space robot for in-space services: a beginner’s tutorial. Front. Robotics AI 8, 725333.
doi:10.3389/frobt.2021.725333

Shao, X., Sun, G., Xue, C., and Li, X. (2021). Nonsingular terminal sliding mode
control for free-floating space manipulator with disturbance. Acta Astronaut. 181,
396–404. doi:10.1016/j.actaastro.2021.01.038

Frontiers in Control Engineering frontiersin.org13

Al Ali and Zhu 10.3389/fcteg.2024.1394668

https://doi.org/10.1007/BF01833290
https://doi.org/10.1007/BF01833290
https://www.asc-csa.gc.ca/eng/iss/canadarm2/canadarm-canadarm2-canadarm3-comparative-table.asp
https://www.asc-csa.gc.ca/eng/iss/canadarm2/canadarm-canadarm2-canadarm3-comparative-table.asp
https://www.asc-csa.gc.ca/eng/iss/dextre/data-sheet.asp
https://www.asc-csa.gc.ca/eng/iss/dextre/data-sheet.asp
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.5772/6197
https://doi.org/10.3390/aerospace9070361
https://doi.org/10.3390/aerospace9070361
https://arxiv.org/abs/1205.4839
https://doi.org/10.1109/70.258046
https://www.eoportal.org/satellite-missions/ets-vii#background-on-ets-missions
https://www.eoportal.org/satellite-missions/ets-vii#background-on-ets-missions
https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/International_Space_Station/European_Robotic_Arm
https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/International_Space_Station/European_Robotic_Arm
https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/International_Space_Station/European_Robotic_Arm
https://doi.org/10.1016/j.paerosci.2014.03.002
https://doi.org/10.1016/j.paerosci.2014.03.002
https://iss.jaxa.jp/en/kibo/about/kibo/rms/
https://doi.org/10.1162/jocn.2010.21548
https://doi.org/10.1007/s41315-021-00172-5
https://doi.org/10.1007/s41315-021-00172-5
https://doi.org/10.1016/j.paerosci.2019.01.004
https://doi.org/10.1016/j.paerosci.2019.01.004
https://doi.org/10.3390/aerospace9030163
https://doi.org/10.3390/aerospace9030163
https://doi.org/10.1016/j.ast.2020.106446
https://doi.org/10.1088/1742-6596/1848/1/012078
https://doi.org/10.1088/1742-6596/1848/1/012078
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://doi.org/10.1109/TCYB.2021.3049555
https://doi.org/10.1016/j.actaastro.2018.09.023
https://doi.org/10.1016/j.actaastro.2018.09.023
https://doi.org/10.3389/frobt.2017.00026
https://mda.space/en/orbital-express/
https://mda.space/en/orbital-express/
https://doi.org/10.3389/frobt.2021.686723
https://doi.org/10.3389/frobt.2021.686723
https://doi.org/10.1016/s1474-6670(17)59499-9
https://doi.org/10.1109/tsmc.2021.3125276
https://doi.org/10.1109/tsmc.2021.3125276
https://doi.org/10.1007/s10846-016-0396-2
https://doi.org/10.1007/s10846-016-0396-2
https://doi.org/10.3389/frobt.2021.725333
https://doi.org/10.1016/j.actaastro.2021.01.038
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2024.1394668

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014).
“Deterministic policy gradient algorithms,” in International conference on machine
learning, Beijing, China, June, 2014, 387–395.

Sutton, R. S., and Barto, A. G. (2018) Reinforcement learning: an introduction.
Cambridge, MA, USA: MIT Press, 2–25.

Tsiotras, P., King-Smith, M., and Ticozzi, L. (2023). Spacecraft-mounted robotics.
Annu. Rev. Control, Robotics, Aut. Syst. 6, 335–362. doi:10.1146/annurev-control-
062122-082114

Wang, L., Lai, X., Meng, Q., and Wu, M. (2021). Effective control method based
on trajectory optimization for three-link vertical underactuated manipulators with
only one active joint. IEEE Trans. Cybern. 53, 3782–3793. doi:10.1109/tcyb.2021.
3125187

Wang, M., Luo, J., and Ulrich, W. (2015). Trajectory planning of free-floating space
robot using Particle Swarm Optimization (PSO). Acta Astronaut. 112, 77–88. doi:10.
1016/j.actaastro.2015.03.008

Watkins, C., and Peter, D. (1992). Q-learning.Mach. Learn. 8, 279–292. doi:10.1023/
a:1022676722315

Wilde, M., Kwok Choon, S., Grompone, A., and Romano, M. (2018).
Equations of motion of free-floating spacecraft-manipulator
systems: an engineer’s tutorial. Front. Robotics AI 5, 41. doi:10.3389/frobt.
2018.00041

Xie, Z., Sun, T., Kwan, T. H., Mu, Z., and Wu, X. (2020). A new reinforcement
learning based adaptive sliding mode control scheme for free-floating space
robotic manipulator. IEEE Access 8, 127048–127064. doi:10.1109/ACCESS.
2020.3008399

Xu, W., Liang, B., and Xu, Y. (2011). Practical approaches to handle the singularities
of a wrist-partitioned space manipulator. Acta Astronaut. 68 (1-2), 269–300. doi:10.
1016/j.actaastro.2010.07.004

Yan, C., Zhang, Q., Liu, Z., Wang, X., and Liang, B. (2018). “Control of free-floating
space robots to capture targets using soft q-learning,” in 2018 IEEE International
Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia,
December, 2018, 654–660.

Ye, X., Dong, Z.-H., and Jia-Cai, H. (2019). Research on adaptive reaction null space
planning and control strategy based on VFF–rls and SSADE–ELM algorithm for free-
floating space robot. Electronics 8 (10), 1111. doi:10.3390/electronics8101111

Frontiers in Control Engineering frontiersin.org14

Al Ali and Zhu 10.3389/fcteg.2024.1394668

https://doi.org/10.1146/annurev-control-062122-082114
https://doi.org/10.1146/annurev-control-062122-082114
https://doi.org/10.1109/tcyb.2021.3125187
https://doi.org/10.1109/tcyb.2021.3125187
https://doi.org/10.1016/j.actaastro.2015.03.008
https://doi.org/10.1016/j.actaastro.2015.03.008
https://doi.org/10.1023/a:1022676722315
https://doi.org/10.1023/a:1022676722315
https://doi.org/10.3389/frobt.2018.00041
https://doi.org/10.3389/frobt.2018.00041
https://doi.org/10.1109/ACCESS.2020.3008399
https://doi.org/10.1109/ACCESS.2020.3008399
https://doi.org/10.1016/j.actaastro.2010.07.004
https://doi.org/10.1016/j.actaastro.2010.07.004
https://doi.org/10.3390/electronics8101111
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2024.1394668

	Reinforcement learning for path planning of free-floating space robotic manipulator with collision avoidance and observatio ...
	1 Introduction
	2 Related works
	3 Mathematic model of a free-floating space manipulator
	4 Reinforcement learning for path planning
	4.1 DDPG reinforcement learning algorithm
	4.2 Actor-Critic networks
	4.3 Reward function

	5 Simulation outcomes and analysis
	5.1 Simulation environment
	5.2 Simulation results
	5.2.1 Case 1–approach target without velocity constraints
	5.2.2 Case 2–approach target with velocity constraints
	5.2.3 Case 3–approach target with noisy observations

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

