
Graph neural networks for
decentralized multi-agent
perimeter defense

Elijah S. Lee1*, Lifeng Zhou2, Alejandro Ribeiro1 and Vijay Kumar1

1GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, United States, 2Department of Electrical and
Computer Engineering, Drexel University, Philadelphia, PA, United States

In this work, we study the problem of decentralized multi-agent perimeter defense
that asks for computing actions for defenders with local perceptions and
communications to maximize the capture of intruders. One major challenge for
practical implementations is to make perimeter defense strategies scalable for large-
scale problem instances. To this end, we leverage graph neural networks (GNNs) to
develop an imitation learning framework that learns a mapping from defenders’ local
perceptions and their communication graph to their actions. The proposed GNN-
based learning network is trained by imitating a centralized expert algorithm such
that the learned actions are close to that generated by the expert algorithm. We
demonstrate that our proposed network performs closer to the expert algorithm and
is superior to other baseline algorithms by capturingmore intruders. Our GNN-based
network is trained at a small scale and can be generalized to large-scale cases. We
run perimeter defense games in scenarios with different team sizes and
configurations to demonstrate the performance of the learned network.

KEYWORDS

graph neural networks, perimeter defense, multi-agent systems, perception-action-
communication loops, imitation learning

1 Introduction

The problem of perimeter defense games considers a scenario where the defenders are
constrained to move along a perimeter and try to capture the intruders while the intruders aim
to reach the perimeter without being captured by the defenders (Shishika and Kumar, 2020). A
number of previous works have solved this problem with engagements on a planar game space
(Shishika and Kumar, 2018; Chen et al., 2021). However, in the real world, the perimeter may be
represented by a three-dimensional shape as the players (e.g., defenders and intruders) may
have the ability to perform three-dimensional motions. For example, a perimeter of a building
that defenders aim to protect can be enclosed by a hemisphere. As a result, the defender robots
should be able to move in three-dimensional space. For example, aerial robots have been well
studied in various settings (Lee et al., 2016; Lee et al., 2020a; Nguyen et al., 2019; Chen et al.,
2020), and all these settings can be real-world use-cases for perimeter defense. For instance,
intruders try to attack a military base in the forest and defenders aim to capture the intruders.

In this work, we tackle the perimeter defense problem in a domain where multiple agents
collaborate to accomplish a task. Multi-agent collaboration has been explored in many areas
including environmental mapping (Thrun et al., 2000; Liu et al., 2022), search and rescue
(Baxter et al., 2007; Miller et al., 2020), target tracking (Lee et al., 2022b; Ge et al., 2022), on-
demand wireless infrastructure (Mox et al., 2020), transportation (Ng et al., 2022; Xu et al.,
2022), and multi-agent learning (Kim et al., 2021). Our approach employs a team of robots that
work collectively towards a common goal of defending a perimeter. We focus on developing
decentralized strategies for a team of defenders for various reasons: i) the teammates can be

OPEN ACCESS

EDITED BY

Douglas Guimarães Macharet,
Federal University of Minas Gerais, Brazil

REVIEWED BY

Ziyang Meng,
Tsinghua University, China
Christopher Nielsen,
University of Waterloo, Canada

*CORRESPONDENCE

Elijah S. Lee,
elslee@seas.upenn.edu

SPECIALTY SECTION

This article was submitted to
Networked Control,
a section of the journal
Frontiers in Control Engineering

RECEIVED 22 November 2022
ACCEPTED 03 January 2023
PUBLISHED 13 January 2023

CITATION

Lee ES, Zhou L, Ribeiro A and Kumar V
(2023), Graph neural networks for
decentralized multi-agent
perimeter defense.
Front. Control. Eng. 4:1104745.
doi: 10.3389/fcteg.2023.1104745

COPYRIGHT

© 2023 Lee, Zhou, Ribeiro and Kumar. This
is an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Control Engineering frontiersin.org01

TYPE Original Research
PUBLISHED 13 January 2023
DOI 10.3389/fcteg.2023.1104745

https://www.frontiersin.org/articles/10.3389/fcteg.2023.1104745/full
https://www.frontiersin.org/articles/10.3389/fcteg.2023.1104745/full
https://www.frontiersin.org/articles/10.3389/fcteg.2023.1104745/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcteg.2023.1104745&domain=pdf&date_stamp=2023-01-13
mailto:elslee@seas.upenn.edu
mailto:elslee@seas.upenn.edu
https://doi.org/10.3389/fcteg.2023.1104745
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org/journals/control-engineering#editorial-board
https://www.frontiersin.org/journals/control-engineering#editorial-board
https://doi.org/10.3389/fcteg.2023.1104745

dynamically added or removed without disrupting explicit hierarchy;
ii) the centralized systemmay fail to cope with the high dimensionality
of a team’s joint state space; and iii) the defenders have a limited
communication range and can only communicate locally.

To this end, we aim to develop a framework where a team of
defenders collaborates to defend the perimeter using decentralized
strategies based on local perceptions and communications.
Specifically, we explore learning-based approaches to learn policies
by imitating expert algorithms such as the maximum matching
algorithm (Chen et al., 2014). Maximum matching algorithm that
runs the exhaustive search to find the best policy is very
computationally intensive at large scales since this approach is
combinatorial in nature and assumes global information. We utilize
GNN as the learning paradigm and demonstrate that the trained
network can perform close to the expert algorithm. GNNs have
decentralized communication architecture that capture the
neighboring interactions and transferability that allows for
generalization to previously unseen scenarios (Ruiz et al., 2021).
We demonstrate that our proposed GNN-based network can be
generalized to large scales in solving multi-robot perimeter defense
games.

With this insight, we make the following primary contributions in
this paper:

Framework for decentralized perimeter defense using graph
neural networks. We propose a novel learning framework that
utilizes a graph-based representation for the perimeter defense
game. To the best of our knowledge, we are the first to solve the
decentralized hemisphere perimeter defense problem by learning
decentralized strategies via graph neural networks.

Robust perimeter defense performance with scalability. We
demonstrate that our methods perform close to an expert policy
(i.e., maximum matching algorithm Chen et al. (2014)) and are
superior to other baseline algorithms. Our proposed networks are
trained at a small scale and can be generalized to large scales.

2 Related work

2.1 Perimeter defense

In a perimeter defense game, defenders aim to capture intruders by
moving along a perimeter while intruders try to reach the perimeter
without being captured by the defenders. We refer to (Shishika and
Kumar, 2020) for a detailed survey. Many previous works dealt with
engagements on a planar game space (Shishika and Kumar, 2018;
Macharet et al., 2020; Bajaj et al., 2021; Chen et al., 2021; Hsu et al.,
2022). For example, a cooperative multiplayer perimeter-defense game
was solved on a planar game space in (Shishika and Kumar, 2018). In
addition, an adaptive partitioning strategy based on intruder arrival
estimation was proposed in (Macharet et al., 2020). Later, a
formulation of the perimeter defense problem as an instance of the
flow networks was proposed in (Chen et al., 2021). Further, an
engagement on a conical environment was discussed in (Bajaj
et al., 2021), and a model with heterogeneous teams was addressed
in (Hsu et al., 2022).

High-dimensional extensions of the perimeter defense problem
have been recently explored in (Lee et al., 2020b; Lee et al., 2021; Lee
et al., 2022a; Lee and Bakolas, 2021; Yan et al., 2022). For example, Lee
and Bakolas (2021) analyzed the two-player differential game of

guarding a closed convex target set from an attacker in high-
dimensional Euclidean spaces. Yan et al. (2022) studied a 3D
multiplayer reach-avoid game where multiple pursuers defend a
goal region against multiple evaders. Lee et al. (2020b); Lee et al.,
2021; Lee et al., 2022a) considered a game played between aerial
defender and ground intruder.

All of the aforementioned works focus on solving centralized
perimeter defense problems, which assume that players have global
knowledge of other players’ states. However, decentralized control
becomes a necessity as we reach a large number of players. To remedy
this problem, Velhal et al. (2022) formulated the perimeter defense
game into a decentralized multi-robot spatio-temporal multitask
assignment problem on the perimeter of a convex shape. Paulos
et al. (2019) proposed neural network architecture for training
decentralized agent policies on the perimeter of a unit circle, where
defenders have simple binary action spaces. Different from the
aforementioned works, we focus on the high-dimensional
perimeter, specialized to a hemisphere, with continuous action
space. We solve multi-agent perimeter defense problems by
learning decentralized strategies with graph neural networks.

2.2 Graph neural networks

We leverage graph neural networks as the learning paradigm
because of their desirable properties of decentralized architecture
that captures the interactions between neighboring agents and
transferability that allows for generalization to previously unseen
cases (Gama et al., 2019; Ruiz et al., 2021). In addition, GNNs
have shown great success in various multi-robot problems such as
formation control (Tolstaya et al., 2019), path planning (Li et al.,
2021), task allocation (Wang and Gombolay, 2020), and multi-target
tracking (Zhou et al., 2021; Sharma et al., 2022). Particularly, Tolstaya
et al. (2019) utilized a GNN to learn a decentralized flocking behavior
for a swarm of mobile robots by imitating a centralized flocking
controller with global information. Later, Li et al. (2021) implemented
GNNs to find collision-free paths for multiple robots from start
positions to goal positions in obstacle-rich environments. They
demonstrated that their decentralized path planner achieves a near-
expert performance with local observations and neighboring
communication only, which can also be generalized to larger
networks of robots. The GNN-based approach was also employed
to learn solutions to the combinatorial optimization problems in a
multi-robot task scheduling scenario (Wang and Gombolay, 2020)
and multi-target tracking scenario (Zhou et al., 2021; Sharma et al.,
2022).

3 Problem formulation

3.1 Motivation

Perimeter defense is a relatively new field of research that has been
explored recently. One particular challenge is that the high-
dimensional perimeters add spatial and algorithmic complexities
for defenders to execute their optimal strategies. Although many
previous works considered engagements on a planar game space
and derived optimal strategies in 2D motions, the extension
towards high-dimensional spaces is unavoidable for practical

Frontiers in Control Engineering frontiersin.org02

Lee et al. 10.3389/fcteg.2023.1104745

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.1104745

applications of perimeter defense games in real-world scenarios. For
instance, a perimeter of a building that defenders aim to protect can be
enclosed by a generic shape, such as a hemisphere. Since defenders
cannot pass through the building and are assumed to be close to the
building at any time, they are employed to move along the surface of
the dome, which leads to the “hemisphere perimeter defense game.”
The intruder is moving on the base plane of the hemisphere, which
implies a constant altitude during moving. The movement of the
intruder is constrained to 2D since it is assumed that intruders may
want to stay low in altitude to hide from the defenders in the real
world.

It is worth noting that the hemisphere defense problem is more
challenging to solve than a problem where both agents are allowed to
freely move in a 3D space. There were previous works in which both
defenders and intruders could move in 3-dimensional spaces (Yan
et al., 2022; Yan et al., 2019; Yan et al., 2020). In all cases, the authors
were able to explicitly derive the optimal solutions even in multi-robot
scenarios. Although our problem limits the dynamics of the defenders
to the surface of the hemisphere, these constraints make the finding of
an optimal solution intractable and challenging.

3.2 Hemisphere perimeter defense

We consider a hemispherical dome with radius of R as perimeter. The
hemisphere constraint is for the defender to safely move around the
perimeter (e.g., building). In this game, consider two sets of players: D �
{Di}Ni�1 denoting N defenders, and A � {Aj}Nj�1 denoting N intruders. A
defender Di is constrained to move on the surface of the dome while an
intruder Aj is constrained to move on the ground plane. We will drop the
indices i and j when they are irrelevant. An instance of 10 vs. 10 perimeter
defense is shown in Figure 1. The positions of the players in spherical
coordinates are: zD = [ψD, ϕD, R] and zA = [ψA, 0, r], where ψ and ϕ are the
azimuth and elevation angles, which gives the relative position as: z ≜ [ψ, ϕ,
r], where ψ ≜ ψA−ψD and ϕ ≜ ϕD. The positions of the players can also be
described in Cartesian coordinates as: xD and xA. All agents move at unit

speed, defenders capture intruders by closing within a small distance ϵ, and
both defender and intruder are consumed during capture. An intruder
wins if it reaches the perimeter (i.e., r(tf) = R) at time tf without being
captured by any defenders (i.e., ‖xAi(t) − xDj(t)‖> ϵ,∀Dj ∈ D,∀t< tf).
A defender wins by capturing an intruder or preventing it from scoring
indefinitely (i.e., ϕ(t) = ψ(t) = 0, r(t) > R). The main interest of this work is
to maximize the number of captures by defenders, given a set of initial
configurations.

3.3 Optimal breaching point

Given zD, zA, we call breachingpoint as a point on the perimeter at
which the intruder tries to reach the target, as shown B in Figure 2. We
call the azimuth angle that forms the breaching point as breaching
angle, denoted by θ, and call the angle between (zA−zB) and the tangent
line at B as approach angle, denoted by β. It is proved in (Lee et al.,
2020b) that given the current positions of defender zD and intruder zA
as point particles, there exists a unique breaching point such that the
optimal strategy for both defender and intruder is to move towards it,
known as optimal breaching point. The breaching angle and approach
angle corresponding to the optimal breaching point are known as
optimal breaching angle, denoted by θ*, and optimal approach angle,
denoted by β*. As stated in (Lee et al., 2020b), although there exists no
closed-form solution for θ* and β*, they can be computed at any time
by solving two governing equations:

β* � cos−1]
cos ϕD sin θ*��������������

1 − cos2ϕD cos2θ*
√() (1)

and

θ* � ψ − β* + cos−1
cos β*
r

() (2)

3.4 Target time and payoff function

We call the target time as the time to reach B and define τD(zD, zB)
as the defender target time, τA(zA, zB) as the intruder target time, and
the following as payoff function:

p(zD, zA, zB) � τD(zD, zB) − τA(zA, zB) (3)
The defender reaches B faster if p < 0 and the intruder reaches B

faster if p > 0. Thus, the defender aims tominimize pwhile the intruder
aims to maximize it.

3.5 Optimal strategies and nash equilibrium

It is proven in (Lee et al., 2020b) that the optimal strategies for
both defender and intruder are to move towards the optimal breaching
point at their maximum speed at any time. Let Ω and Γ be the
continuous vD and vA that lead to B so that τD(zD, Ω) ≜ τD(zD, zB) and
τA(zA, Γ) ≜ τA(zA, zB), and let Ω* and Γ* be the optimal strategies that
minimize τD(zD, Ω) and τA(zA, Γ), respectively, then the optimality in
the game is given as a Nash equilibrium:

p(zD, zA,Ω*, Γ)≤p(zD, zA,Ω*, Γ*)≤p(zD, zA,Ω, Γ*) (4)

FIGURE 1
Instance of 10 vs. 10 perimeter defense. Defenders are constrained
to move on the surface of the dome while intruders are constrained to
move on the ground plan.

Frontiers in Control Engineering frontiersin.org03

Lee et al. 10.3389/fcteg.2023.1104745

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.1104745

3.6 Problem definition

To maximize the number of captures during N vs. N defense, we
first recall the dynamics of a 1 vs. 1 perimeter defense game. It is
proven in (Lee et al., 2020b) that the best action for the defender in
one-on-one game is to move towards the optimal breaching point
(defined in Section 3.3). The defender reaches the optimal breaching
point faster than the intruder does if payoff p (defined in Section 3.4) is
negative, and the intruder reaches faster if p > 0. From this, we infer
that maximizing the number of captures in N vs. N defense is the same
as finding a matching between the defenders and intruders so that the
number of the negative payoff of assigned pairs is maximized. In an
optimal matching, the number of negative payoffs stays the same
throughout the overall game since the optimality in each game of
defender-intruder pairs is given as a Nash equilibrium (see
Section 3.5).

The expert assignment policy is amaximummatching (Chen et al.,
2014; Shishika and Kumar, 2018). To execute this algorithm, we
generate a bipartite graph with D and A as two sets of nodes
(i.e., V � {1, 2, .., N}), and define the potential assignments between
defenders and intruders as the edges. For each defender/node Di in D,
we find all the intruders/nodes Aj inA that are sensible by the defender
and compute the corresponding payoffs pij for all the pairs. We say
that Di is strongly assigned to Aj if pij < 0. Using the edge set E given by
maximum matching, we can maximize the number of strongly
assigned pairs. For uniqueness, we choose a matching that
minimizes the value of the game, which is defined as

V � ∑
Di,Aj()∈E*

pij, (5)

where E* is the subset of E with negative payoff
(i.e., E* � {(Di, Aj) ∈ E|pij < 0}). This unique assignment ensures
that the number of captures is maximized at the earliest possible.

However, running the exhaustive search using maximum matching
algorithm can be very expensive as the team size increases. This
method is combinatorial in nature and assumes centralized
information with full observability. Instead, we aim to find
decentralized strategies that uses local perceptions {Zi}i∈V (see
Section 4.1). To this end, we formalize the main problem of this
paper as follows.

Problem 1 (Decentralized Perimeter Defense with Graph Neural
Networks). Design a GNN-based learning framework to learn a
mapping M from the defenders’ local perceptions {Zi}i∈V and their
communication graph G to their actions U , i.e., U � M({Zi}i∈V,G),
such that U is as close as possible to action set Ug selected by a
centralized expert algorithm.

We describe in detail our learning architecture for solving Problem
1 in the following section.

4 Methods

In this paper, we learn decentralized strategies for perimeter
defense using graph neural networks. Inference of our approach is
in real-time, which is scalable to a large number of agents. We use an
expert assignment policy to train a team of defenders who share
information through communication channels. In Section 4.1, we
introduce the perception module for processing the features that are
input to GNN. Learning the decentralized algorithm through GNN
and planning the candidate matching for the defenders are discussed
in Section 4.2. The control of the defender team is explained in Section
4.3, and the training procedure is detailed in Section 4.4. The overall
framework is shown in Figure 3. For the choice of architecture, we
decouple the control module from the learning framework since
directly learning the actions is unnecessary. Learning an
assignment between agents is sufficient, and the best actions can be
computed by the optimal strategies (Section 3.5).

FIGURE 2
Coordinates and relevant variables in the 1 vs. 1 hemisphere defense game.

Frontiers in Control Engineering frontiersin.org04

Lee et al. 10.3389/fcteg.2023.1104745

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.1104745

4.1 Perception

In this section, we assumeN aerial defenders andN ground intruders.
Each defender Di is equipped with a sensor and faces outwards the
perimeter with a field of view FOV. The defenders’ horizontal field of view
FOV is chosen as π assuming a fisheye-type camera.

4.1.1 Intruder features
For each i, a defender observes the set of intruders Aj, and the

relative positions in spherical coordinates between Di and Aj are
represented by ZA

i � {zAij}j∈Nf
A
where Nf

A is the number of intruder
features. The number of input featuresNf

A andNf
D are selected as the

fixed number of closest detected and neighboring agents, respectively.
Although a defender can detect any number of intruders within the
sensing range, a fixed number of detections is selected so that the
system is scalable. In a decentralized setting, a defender should be able
to decide its action based on its local perceptions. We experimentally
chose the fixed number as 10 since an expert algorithm (i.e., the
maximummatching) would always assign a defender to a robot among
the 10 closest intruders.

4.1.2 Defender features
To make the system scalable, we build communication with a fixed

number of closest defenders. Each defenderDi communicates with nearby
defenders Dj within its communication range rc. For each i, the relative
positions between Di and Dj are represented by ZD

i � {zDij }j∈Nf
D
where

Nf
D is the number of defender features. The selected number was 3 since

communicating with many other robots would allow every defender to
have full information of the environment (i.e., centralized) and 3 is the
minimum number that the robots can collect information in every
direction if we assume robots are scattered. If there are fewer than
10 detected intruders or 3 neighboring defenders, we hand over
dummy values to fill up the perception input matrix. It is important
to keep the input features constant since neural networks cannot handle
varying feature sizes.

4.1.3 Feature extraction
Feature extraction is performed by concatenating the relative

positions of observed intruders and communicated defenders,
forming the local perceptions Zi � {ZA

i ,ZD
i }. The extracted

features are fed into a multi-layer perceptron (MLP) to generate
the post-processed feature vector xi, which will be exchanged
among neighbors through communications.

4.2 Learning and planning

We employ graph neural networks with K-hop
communications. Defenders communicate their perceived
features with neighboring robots. The communication graph G
is formed by connecting the nearby defenders within the
communication range rc, and the resulted adjacency matrix S is
given to the graph neural networks.

4.2.1 Graph shift operation
We consider each defender i, i ∈ V has a feature vector xi ∈ RF,

indicating the post-processed information from Di. By collecting the
feature vectors xi from all defenders, we have the feature matrix for the
defender team D as:

X �
xT1
..
.

xTN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � x1, . . . , xF[] ∈ RN×F, (6)

where xf ∈ RN, f ∈ [1, . . . , F] is the collection of the feature f across
all defenders; i.e., xf � [xf1 , . . . , xfN]T with xfi denoting the feature f of
Di, i ∈ V . We conduct graph shift operation for each Di by a linear
combination of its neighboring features, i.e., ∑j∈N i

xj. Hence, for all
defenders D with graph G, the feature matrix X after the shift
operation becomes SX with:

SX[]if � ∑N
j�1

S[]ij X[]fj � ∑
j∈N i

sijx
f
j , (7)

Here, the adjacency matrix S is called the Graph Shift Operator (GSO)
(Gama et al., 2019).

4.2.2 Graph convolution
With the shift operation, we define the graph convolution by a

linear combination of the shifted features on graph G via K-hop
communication exchanges (Gama et al., 2019; Li et al., 2020):

FIGURE 3
Overall framework. Perception module collects local information. Learning & Planning module processes the collected information using GNN through
K-hop neighboring communications. Control module computes the optimal strategies and executes the controller to close the loop.

Frontiers in Control Engineering frontiersin.org05

Lee et al. 10.3389/fcteg.2023.1104745

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.1104745

H X; S() � ∑K
k�0

SkXHk, (8)

where Hk ∈ RF×G represents the coefficients combining F features of
the defenders in the shifted feature matrix SkX, with F and G denoting
the input and output dimensions of the graph convolution. Note that,
SkX = S(Sk−1X) is computed by means of k communication exchanges
with 1-hop neighbors.

4.2.3 Graph neural network
Applying a point-wise non-linearity σ: R → R as the activation

function to the graph convolution (Eq. 8), we define graph perception as:

H X; S() � σ ∑K
k�0

SkXHk
⎛⎝ ⎞⎠. (9)

Then, we define a GNN module by cascading L layers of graph
perceptions (Eq. 9):

Xℓ � σ Hℓ Xℓ−1; S()[] for ℓ � 1, . . . , L, (10)
where the output feature of the previous layer ℓ−1, Xℓ−1 ∈ RN×Fℓ−1

, is
taken as input to the current layer ℓ to generate the output feature of layer
l, Xℓ. Recall that the input to the first layer is X0 = X (Eq. 6). The output
feature of the last layerXL ∈ RN×G, obtained via K-hop communications,
represents the exchanged and fused information of the defender team D.

4.2.4 Candidate matching
The output of the GNN, which represents the fused

information from the K-hop communications, is then processed

with another MLP to provide a candidate matching for each
defender. Figure 3 shows a candidate matching instance if
Nf

A � 6. Given a defender Di, we find the Nf
A closest intruders

and number them from 1 to Nf
A clockwise. The main reason for

numbering the nearby intruders clockwise is to interpret the
feature outputs from our networks in identifying which
intruders would be matched with which defenders. We could
number them counterclockwise or in any arbitrary order.
Since each defender learns decentralized strategies, it needs to
specify an intruder to capture given its local perception. There are
no global IDs for the intruders so without loss of generality we
simply assign the IDs clockwise. The output from the multi-layer
perceptron is an assignment likelihood L, which presents the
probabilities of Nf

A intruder candidates’ likelihood to be
matched with the given defender. For instance, an expert
assignment likelihood Lgi for Di in Figure 3 would be
[0.01,0.01,0.95,0.01,0.01,0.01] if the third intruder (i.e., A3) is
matched with Di by the expert policy (i.e., maximum matching).
The planning module selects the intruder candidate Aj so that the
matching pair (Di, Aj) would resemble the expert policy with the
highest probability. It is worth noting that our approach renders a
decentralized assignment policy given that only neighboring
information is exchanged.

4.2.5 Permutation equivalence
It is worth noting that our proposed GNN-based learning

approach is scalable due to permutation equivalence. This means
that given a decentralized defender, it should be able to decide the
action based on local perceptions that consist of an arbitrary number
of unnumbered intruders. An instance of a perimeter defense game is
illustrated to show this property in Figure 4. The plots focus on a single
defender and intruders are gradually approaching the perimeter as
time passes by. The same intruders are colored in the same color across
different time stamps. Notice that a new light-blue intruder enters into
the field of view of the defender at t = 2, and a purple intruder begins to
appear at t = 3. Although an arbitrary number of intruders are detected
at each time, our system gives IDs to intruders shown as blue numbers
in Figure 4. We number them clockwise but could have done
differently in any permutation (e.g., counterclockwise) because
graph neural networks perform label-independent processing. The
reason for the numbering is to specify which intruders would be
matched with which defenders from the network outputs. Without
loss of generality, we assign the IDs clockwise but we note that these
IDs are arbitrary since the IDs can change at different stamps. For

FIGURE 4
Instance of perimeter defense game at different time stamps. The plots focus on a single defender and its local perceptions.

TABLE 1 Parameter setup in implementing graph neural networks.

Parameter name Symbol Value

Capturing distance ϵ 0.02

Field of view FOV π

Number of intruder features Nf
A

10

Number of defender features Nf
D

3

Communication range rc 1

Default team size Ndef 10

Frontiers in Control Engineering frontiersin.org06

Lee et al. 10.3389/fcteg.2023.1104745

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.1104745

instance, the yellow intruder ID is 2 at t = 1 but becomes 3 at t = 2, 3.
Similarly, the red intruder ID is 3 at t = 1 but changes to 4 at t = 2 and
5 at t = 3. In this way, we accommodate an arbitrary amount of
intruders and thus our system is permutation equivalent.

4.3 Control

The output from the Section 4.2 is inputted to the defender
strategy module in Figure 3. This module handles all the matched
pairs (Di, Aj) and computes the optimal breaching points for each of
the one-on-one hemisphere perimeter defense games (see Section 3.3).
The defender strategy module collectively outputs the position
commands, which are towards the direction of the optimal
breaching points. The SO(3) command (Mellinger and Kumar,
2011) that consists of thrust and moment to control the robot at a
low level is then passed to the defender team D for control. The state
dynamics for the defender-intruder pair is detailed in (Lee et al.,
2020b). The defenders move based on the commands to close the
perception-action loop. Notably, the expert assignment likelihood Lg

would result in the expert action set Ug (defined in Problem 1).

4.4 Training procedure

To train our proposed networks, we use imitation learning to
mimic an expert policy given by maximum matching (explained in
Section 3), which provides the optimal assignment likelihood Lg

(described in Section 4.2) given the defenders’ local perceptions
{Zi}i∈V and the communication graph G. The training set D is
generated as a collection of these data: D � {({Zi}i∈V,G,Lg)}. We
train the mapping M (defined in problem 1) to minimize the cross-
entropy loss between Lg and L. We show that the trainedM provides
U that is close to Ug. The number of learnable parameters in our
networks is independent of the number of team sizes N. Therefore, we
can train our networks on a small scale and generalize our model to
large scales, given that defenders at any scale learn decentralized
strategies based on the local perception of fixed numbers of agents.

4.4.1 Model architecture
Our model architecture consists of a 2-layer MLP with 16 and

8 hidden layers to generate the post-processed feature vector xi, a 2-
layer GNN with 32 and 128 hidden layers to exchange the collected
information from defenders, and a single-layer MLP to produce an

assignment likelihood L. The layers in MLP and GNN are followed
by ReLU.

4.4.2 Graph neural networks details
In implementing graph neural networks, we construct a 1-hop

connectivity graph by connecting defenders within
communication range rc = 1. Given that the default radius is
R = 1, we foresee that three neighboring agents within 1-hop
would provide a wide sensing region for the defenders.
Accordingly, we assume that communications occur in real-time
with Nf

D � 3. Each defender gathers information as input features
that consist of Nf

A � 10 closest intruder positions and Nf
D � 3

closest defender positions. The used parameters are summarized
in Table 1.

4.4.3 Implementation details
The experiments are conducted using a 12-core 3.50 GHz i9-

9920X CPU and anNvidia GeForce RTX 2080 Ti GPU.We implement
the proposed networks using PyTorch v1.10.1 (Paszke et al., 2019)
accelerated with Cuda v10.2 APIs. We use the Adam optimizer with a
momentum of 0.5. The learning rate is scheduled to decay from 5 ×
10–3 to 10–6 within 1500 epochs with batch size 64, using cosine
annealing. We choose these hyperparameters for the best
performance.

5 Experiments

5.1 Datasets

We evaluate our decentralized networks using imitation learning
where the expert assignment policy is the maximum matching. The
perimeter is a hemisphere with a radius R, which is defined by R ��������
N/Ndef

√
where N is team size and Ndef is a default team size. Since

running the maximum matching is very expensive at large scales (e.g.,
N > 10), we set the default team size Ndef = 10. In this way, R also
represents the scale of the game; for instance when N = 40, R becomes
2, which indicates that the scale of the problem’s setting is doubled
compared to the setting when R = 1. Given the team size N = 10, our
experimental arena has a dimension of 10 × 10 × 1 m. In offline, we
randomly sample 10 million examples of defender’s local perception
Zi and find corresponding G and Lg to prepare the dataset, which is
divided into a training set (60%), a validation set (20%), and a testing
set (20%).

FIGURE 5
(A–C) Snapshots of simulated perimeter defense in top view using the proposed method gnn for three different team sizes.

Frontiers in Control Engineering frontiersin.org07

Lee et al. 10.3389/fcteg.2023.1104745

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.1104745

5.2 Metrics

We are mainly interested in the percentage of intruders caught
(i.e., number of captures/total number of intruders). At small scales
(e.g., N ≤ 10), an expert policy (i.e., the maximum matching) can be
run and a direct comparison between the expert policy and our policy
is available. At large scales (e.g.,N > 10), the maximummatching is too
expensive to run. Thus we compare our algorithm with other baseline
approaches: greedy, random, and mlp, which will be explained in
Section 5.3. To observe the scalability on small and large scales, we run
a total of five different algorithms for each scale: expert, gnn, greedy,

random, and mlp. In all cases, we compute the absolute accuracy,
which is defined by the number of captures divided by the team size, to
verify if our network can be generalized to any team size. Furthermore,
we also calculate the comparative accuracy, defined as the ratio of the
number of captures by gnn to the number of captures by another
algorithm, to observe comparative results.

5.3 Compared algorithms

In baseline algorithms, defenders do not communicate their
“intentions” of which intruders would be captured by which
neighboring defenders for a fair comparison since GNN does not
share such information either. For the GNN framework, each defender
perceives nearby intruders, and the relative positions of perceived
intruders, not the “intentions,” are shared by GNN through

FIGURE 6
(A–D) Snapshots of simulated 20 vs. 20 perimeter defense game in top view at terminal time Tf using the four algorithms gnn, greedy, random, andmlp.
The number of captures using these algorithms are 12, 11, 10, and 7, respectively.

FIGURE 7
Percentage of intruders caught (average and standard deviation over 10 trials) by different algorithms on small (N ≤ 10) and large (N > 10) scales.

TABLE 2 Accuracy for small scales.

Team size 2 4 6 8 10

Absolute accuracy
(gnn vs. N)

0.40 0.50 0.53 0.63 0.63

Comparative accuracy
(gnn vs. expert)

0.80 0.87 0.89 0.91 0.95

Comparative accuracy
(gnn vs. greedy)

1.14 1.05 1.14 1.25 1.21

Comparative accuracy
(gnn vs. random)

1.33 1.54 1.88 2.38 1.91

Comparative accuracy (gnn vs. mlp) 1.14 1.67 1.60 1.72 1.58

TABLE 3 Accuracy for large scales.

Team size 20 40 60 80 100

Absolute accuracy (gnn vs. N) 0.53 0.59 0.53 0.55 0.54

Comparative accuracy (gnn vs. greedy) 1.13 1.59 1.42 1.52 1.51

Comparative accuracy (gnn vs. random) 1.71 1.85 1.63 1.77 1.93

Comparative accuracy (gnn vs. mlp) 1.20 1.94 2.55 3.20 3.37

Frontiers in Control Engineering frontiersin.org08

Lee et al. 10.3389/fcteg.2023.1104745

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.1104745

communications. The power of the GNNs is to learn these “intentions”
implicitly via K-hop communications. That way, the decentralized
decision-making (i.e., for both GNN and baselines) may allow
multiple defenders to aim to capture the same intruder while the
centralized planner knows the “intentions” of all the defenders and
would avoid such a scenario.

5.3.1 Greedy
The greedy algorithm can be run in polynomial time and thus

becomes a good candidate algorithm to be compared with our
approach using GNN. For a fair comparison, we run a
decentralized greedy algorithm based on local perception Zi of Di.
We enable K-hop neighboring communications so that the sensible
region of a defender is expanded as if the networking channels of GNN
are active. The defender Di computes the payoff pij (see Section 3.4)
based on any sensible intruder Aj and greedily chooses an assignment
that minimizes the payoff pij.

5.3.2 Random
The random algorithm is similar to the greedy algorithm in that

the K-hop neighboring communications are enabled for the expanded
perception. Among sensible intruders, a defender Di randomly picks
an intruder to determine the assignment.

5.3.3 MLP
For the MLP algorithm, we only train the current MLP of our

proposed framework in isolation by excluding the GNN module. By
comparing our GNN framework to this algorithm, we can observe if
the GNN gives any improvement.

5.4 Results

We run the perimeter defense game in various scenarios with
different team sizes and initial configurations to evaluate the
performance of the learned networks. In particular, we conduct the
experiments at small (N ≤ 10) and large (N > 10) scales. The snapshots
of the simulated perimeter defense game in top view with our

proposed networks for different team sizes are shown in Figure 5.
The perimeter, defender state, intruder state, and breaching point are
marked in green, blue, red, and yellow, respectively. We observe that
intruders try to reach the perimeter. Given the defender-intruder
matches, the intruders execute their respective optimal strategies to
move towards the optimal breaching points (see Section 3.5). If an
intruder successfully reaches it without being captured by any
defender, the intruder is consumed and leaves a marker called
“Intrusion”. If an intruder fails and is intercepted by a defender,
both agents are consumed and leave a marker called “Capture”. The
points on the perimeter aimed by intruders are marked as “Breaching
point”. In all runs, the game ends at terminal time Tf when all the
intruders are consumed. See the supplemental video for more results.

As mentioned in Section 5.1, we run the five algorithms expert,
gnn, greedy, random, and mlp at small scales, and run gnn, greedy,
random, and mlp in large scales. As an instance, the snapshots of

FIGURE 8
Sample efficiencywith different numbers of expert demonstrations.

FIGURE 9
Percentage of intruders caught with various perimeter radii.

FIGURE 10
Percentage of intruders caught with different numbers of intruders
sensed.

Frontiers in Control Engineering frontiersin.org09

Lee et al. 10.3389/fcteg.2023.1104745

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.1104745

simulated 20 vs. 20 perimeter defense game in top view at terminal
time Tf using the four algorithms are displayed in Figure 6. The four
subfigures (a)-(d) show that these algorithms exhibit different
performance although the game begins with the same initial
configuration in all cases. The number of captures by these
algorithms gnn, greedy, random, andmlp are 12, 11, 10, 7, respectively.

The overall results of the percentage of intruders caught by each of
these methods are depicted in Figure 7. It is observed that gnn
outperforms other baselines in all cases, and performs close to
expert at the small scales. In particular, given that our default team
size Ndef is 10, the performance of our proposed algorithm stays
competitive with that of the expert policy near N = 10.

At large scales, the percentage of captures by gnn stays constant,
which indicates that the trained network can be well generalized to the
large scales even if the training has been performed at the small scale.
The percentage of captures by greedy also seems constant but performs
much worse than gnn as the team size gets large. At small scales, only a
few combinations are available in matching defender-intruder pairs
and thus the greedy algorithm would perform similarly to the expert
algorithm. As the number of agents increases, the number of possible
matching increases exponentially so the greedy algorithm performs
worse since the problem complexity gets much higher. The random
approach performs worse than all other algorithms at small scales, but
the mlp begins to perform worse than the random when the team size
increases over 40. This tendency tells that the policy trained only with
MLP cannot be scalable at large scales. Since the training is done with
10 agents, it is optimal near N = 10, but the mlp cannot work at larger
scales and even performs worse than the random algorithm. It is
confirmed that the GNN added to the MLP significantly improves the
performance. Overall, compared to other algorithms, gnn performs
better at large scales than at small scales, which validates that GNN
helps the network become scalable.

To quantitatively evaluate the proposed method, we report the
absolute accuracy and comparative accuracy (defined in Section 5.2) in
Table 2 and Table 3. As expected, the absolute accuracy reaches the
maximumwhen team size approachesN = 10. The overall values of the
absolute accuracy are fairly consistent except when N = 2. We
conjecture that there may not be much information shared by the
two defenders and there could be no sensible intruders at all based on
initial configurations.

The comparative accuracy between gnn and expert shows that our
trained policy getsmuch closer to the expert policy asN approaches 10, and
we expect the performance of gnn to be close to that of expert even at the
large scales. The comparative accuracy between gnn and other baselines
shows that our trained networks perform much better than baseline
algorithms at the large scales (N ≥ 40) with an average of 1.5 times
more captures. The comparative accuracy between gnn and random is
somewhat noisy throughout the team size due to the nature of randomness,
but we observe that our policy can outperform random policy with an
average of 1.8 times more captures at small and large scales. We observe
that mlp performs much worse than other algorithms at large scales.

Based on the comparisons, we demonstrate that our proposed
networks, which are trained at a small scale, can generalize to large
scales. Intuitively, one may think that greedy would perform the best in
a decentralized setting since each defender does its best to minimize the
value of the game (defined in Eq. 5). However, we can infer that greedy does
not know the intentions of nearby defenders (e.g., which intruders to
capture) so it cannot achieve the performance close to the centralized
expert algorithm. Our method implements graph neural networks to

exchange the information of nearby defenders, which perceive their
local features, to plan the final actions of the defender team; therefore,
implicit information of where the nearby defenders are likely to move is
transmitted to each neighboring defender. Since the centralized expert
policy knows all the intentions of defenders, our GNN-based policy learns
the intention through communication channels. The collaboration among
the defender team is the key for our gnn to outperform greedy approach.
These results validate that the implemented GNNs are ideal for our
problem with the properties of the decentralized communication that
captures the neighboring interactions and transferability that allows for
generalization to unseen scenarios.

5.5 Further analysis

5.5.1 Performance vs. number of expert
demonstrations

To analyze the algorithm performance, we have trained our GNN-
based architecture with a different number of expert demonstrations
(e.g., 10 million, 1 million, 100 k, and 10 k). The percentage of
intruders caught (average and standard deviation over 10 trials) on
team size 10 ≤N ≤ 50 are shown in Figure 8. The plot validates that our
proposed network learns better with more demonstrations.

5.5.2 Performance vs. perimeter radius
We have tested the GNN-based proposed method with different

perimeter radii. Intuitively, given the fixed number of agents,
increasing the radius may lead to a failure in the defense system.
We set the default team size of defenders as 40 and increase the
perimeter radius until the percentage of intruders caught converges to
zero. As shown in Figure 9, the percentage decreases as the radius
changes from 100 m to 800 m, converging to zero.

5.5.3 Performance vs. number of intruders sensed
The performance of our GNN-based approach with

different numbers of intruder (e.g., Nf
A) sensed is shown in Figure 10.

We have run the experiments withNf
A as 1, 3, 5, and 10 since no ground

truth expert policy is available to generate the training data for numbers
larger than 10. We observe that the more intruder features are sensed, the
better performances are shown. Further, the performance discrepancy
tends to be smaller as the team size gets bigger. For some team size (e.g.,
40), higher Nf

A performs much better, but this is expected based on the
initial configuration of the game. For instance, if the initial configuration is
very sparse, a defender will benefit from higherNf

A, and the percentage of
intruders caught will be higher.

5.6 Limitations

As perimeter defense is a relatively new field of research, this work
has underlying limiting assumptions. In the problem formulation, we
assume the robots are point particles. Accordingly, we assume optimal
trajectories obey first-order assumptions. There is a preliminary work
(Lee et al., 2021) to bridge the gap between the point particle
assumptions and three-dimensional robots for one-on-one
hemisphere perimeter defense, and we hope to extend the idea of
this work to our multi-agent perimeter defense problem in the
future. Another limitation is that there is no available expert policy,
which can be compared with our proposed method, at large scales.

Frontiers in Control Engineering frontiersin.org10

Lee et al. 10.3389/fcteg.2023.1104745

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.1104745

Running the maximum matching algorithm is very expensive at large
scales, so we compare our GNN-based algorithm with other baseline
methods. Although the consistent performances of tested algorithms
along different scales confirm that our trained networks can be
generalized to large scales, we hope to explore another algorithm
that can be used as an expert policy at large scales to replace the
maximum matching. One consideration is utilizing reinforcement
learning since the algorithm performance at large scales will be available.

6 Conclusion

This paper proposes a novel framework that employs graph neural
networks to solve the decentralized multi-agent perimeter defense
problem. Our learning framework takes the defenders’ local
perceptions and the communication graph as inputs and returns
actions to maximize the number of captures for the defender team.
We train deep networks supervised by an expert policy based on the
maximummatching algorithm. To validate the proposed method, we run
the perimeter defense game in different team sizes using five different
algorithms: expert, gnn, greedy, random, and mlp. We demonstrate that
our GNN-based policy stays closer to the expert policy at small scales and
the trained networks can generalize to large scales.

One future work is to implement vision-based local sensing for the
perception module, which would relax the assumptions of perfect state
estimation. Realizing multi-agent perimeter defense with vision-based
perception and communication within the defenders will be an end
goal. Another future research direction is to find a centralized expert
policy in multi-robot systems by utilizing reinforcement learning.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

EL, LZ, and VK contributed to conception and design of
the study. EL and AR performed the statistical analysis. EL
wrote the first draft of the manuscript. All authors
contributed to manuscript revision, read and approved the
submitted version.

Acknowledgments

We gratefully acknowledge the support from ARL DCIST CRA
under Grant W911NF-17-2-0181, NSF under Grants CCR-2112665,
CNS-1446592, and EEC-1941529, ONR under Grants N00014-20-1-
2822 and N00014-20-S-B001, Qualcomm Research, NVIDIA,
Lockheed Martin, and C-BRIC, a Semiconductor Research
Corporation Joint University Microelectronics Program
cosponsored by DARPA.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Bajaj, S., Torng, E., Bopardikar, S. D., Von Moll, A., Weintraub, I., Garcia, E., et al.
(2021). Competitive perimeter defense of conical environments. arXiv preprint arXiv:
2110.04667.

Baxter, J. L., Burke, E., Garibaldi, J. M., and Norman, M. (2007). “Multi-robot search and
rescue: A potential field based approach,” in Autonomous robots and agents
(Springer), 9–16.

Chen, A. K., Macharet, D. G., Shishika, D., Pappas, G. J., and Kumar, V. (2021).
“Optimal multi-robot perimeter defense using flow networks,” in International symposium
distributed autonomous robotic systems (Springer), 282–293.

Chen, M., Zhou, Z., and Tomlin, C. J. (2014). “Multiplayer reach-avoid games via low
dimensional solutions and maximum matching,” in 2014 American control conference
(IEEE), 1444–1449.

Chen, S. W., Nardari, G. V., Lee, E. S., Qu, C., Liu, X., Romero, R. A. F., et al. (2020).
Sloam: Semantic lidar odometry and mapping for forest inventory. IEEE Robotics
Automation Lett. 5, 612–619. doi:10.1109/lra.2019.2963823

Gama, F., Marques, G., Leus, G., and Ribeiro, A. (2019). Convolutional neural network
architectures for signals supported on graphs. IEEE Trans. Signal Process. 67, 1034–1049.
doi:10.1109/tsp.2018.2887403

Ge, R., Lee, M., Radhakrishnan, V., Zhou, Y., Li, G., and Loianno, G. (2022). Vision-based
relative detection and tracking for teams of micro aerial vehicles. arXiv preprint arXiv:2207.08301.

Hsu, C. D., Haile, M. A., and Chaudhari, P. (2022). A model for perimeter-defense
problems with heterogeneous teams. arXiv preprint arXiv:2208.01430.

Kim, D. K., Liu, M., Riemer, M. D., Sun, C., Abdulhai, M., Habibi, G., et al. (2021). “A
policy gradient algorithm for learning to learn in multiagent reinforcement learning,” in
International Conference on Machine Learning (PMLR), 5541–5550.

Lee, E. S., Loianno, G., Jayaraman, D., and Kumar, V. (2022a). Vision-based perimeter
defense via multiview pose estimation. arXiv preprint arXiv:2209.12136.

Lee, E. S., Loianno, G., Thakur, D., and Kumar, V. (2020a). Experimental evaluation and
characterization of radioactive source effects on robot visual localization and mapping.
IEEE Robotics Automation Lett. 5, 3259–3266. doi:10.1109/lra.2020.2975723

Lee, E. S., Shishika, D., and Kumar, V. (2020b). “Perimeter-defense game between aerial
defender and ground intruder,” in 2020 59th IEEE Conference on Decision and Control
(CDC) (IEEE), 1530–1536.

Lee, E. S., Shishika, D., Loianno, G., and Kumar, V. (2021). “Defending a perimeter
from a ground intruder using an aerial defender: Theory and practice,” in 2021 IEEE
international symposium on safety, security, and rescue robotics (SSRR) (IEEE),
184–189.

Lee, E. S., Zhou, L., Ribeiro, A., and Kumar, V. (2022b). Learning decentralized strategies
for a perimeter defense game with graph neural networks. arXiv preprint arXiv:2211.01757.

Lee, S., Har, D., and Kum, D. (2016). “Drone-assisted disaster management: Finding
victims via infrared camera and lidar sensor fusion,” in 2016 3rd asia-pacific world congress
on computer science and engineering (APWC on CSE) (IEEE), 84–89.

Lee, Y., and Bakolas, E. (2021). Guarding a convex target set from an attacker in
Euclidean spaces. IEEE Control Syst. Lett. 6, 1706–1711. doi:10.1109/lcsys.2021.3132083

Li, Q., Gama, F., Ribeiro, A., and Prorok, A. (2020). “Graph neural networks for
decentralized multi-robot path planning,” in 2020 IEEE/RSJ Intl Conference on Intelligent
Robots and Systems (IROS) (IEEE).

Li, Q., Lin, W., Liu, Z., and Prorok, A. (2021). Message-aware graph attention networks
for large-scale multi-robot path planning. IEEE Robotics Automation Lett. 6, 5533–5540.
doi:10.1109/lra.2021.3077863

Frontiers in Control Engineering frontiersin.org11

Lee et al. 10.3389/fcteg.2023.1104745

https://doi.org/10.1109/lra.2019.2963823
https://doi.org/10.1109/tsp.2018.2887403
https://doi.org/10.1109/lra.2020.2975723
https://doi.org/10.1109/lcsys.2021.3132083
https://doi.org/10.1109/lra.2021.3077863
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.1104745

Liu, X., Prabhu, A., Cladera, F., Miller, I. D., Zhou, L., Taylor, C. J., et al. (2022).
Active metric-semantic mapping by multiple aerial robots. arXiv preprint arXiv:
2209.08465.

Macharet, D. G., Chen, A. K., Shishika, D., Pappas, G. J., and Kumar, V. (2020).
“Adaptive partitioning for coordinated multi-agent perimeter defense,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

Mellinger, D., and Kumar, V. (2011). “Minimum snap trajectory generation and control
for quadrotors,” in 2011 IEEE international conference on robotics and automation
(IEEE), 2520–2525.

Miller, I. D., Cladera, F., Cowley, A., Shivakumar, S. S., Lee, E. S., Jarin-Lipschitz, L., et al.
(2020). Mine tunnel exploration using multiple quadrupedal robots. IEEE Robotics
Automation Lett. 5, 2840–2847. doi:10.1109/lra.2020.2972872

Mox, D., Calvo-Fullana, M., Gerasimenko, M., Fink, J., Kumar, V., and Ribeiro, A.
(2020). “Mobile wireless network infrastructure on demand,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA) (IEEE), 7726–7732.

Ng, E., Liu, Z., and Kennedy, M., III (2022). It takes two: Learning to plan for human-
robot cooperative carrying. arXiv preprint arXiv:2209.12890.

Nguyen, T., Shivakumar, S. S., Miller, I. D., Keller, J., Lee, E. S., Zhou, A., et al.
(2019). Mavnet: An effective semantic segmentation micro-network for mav-
based tasks. IEEE Robotics Automation Lett. 4, 3908–3915. doi:10.1109/lra.2019.
2928734

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019). Pytorch:
An imperative style, high-performance deep learning library. Adv. neural Inf. Process.
Syst. 32.

Paulos, J., Chen, S. W., Shishika, D., and Kumar, V. (2019). “Decentralization of
multiagent policies by learning what to communicate,” in 2019 International
Conference on Robotics and Automation (ICRA) (IEEE), 7990–7996.

Ruiz, L., Gama, F., and Ribeiro, A. (2021). Graph neural networks: Architectures,
stability, and transferability. Proc. IEEE 109, 660–682. doi:10.1109/jproc.2021.
3055400

Sharma, V. D., Zhou, L., and Tokekar, P. (2022).D2coplan: A differentiable decentralized
planner for multi-robot coverage. arXiv preprint arXiv:2209.09292.

Shishika, D., and Kumar, V. (2020). “A review of multi agent perimeter defense games,” in
International Conference on Decision and Game Theory for Security (Springer), 472–485.

Shishika, D., and Kumar, V. (2018). “Local-game decomposition for multiplayer
perimeter-defense problem,” in In 2018 IEEE Conference on Decision and Control
(CDC) (IEEE), 2093–2100.

Thrun, S., Burgard, W., and Fox, D. (2000). “A real-time algorithm for mobile robot
mapping with applications to multi-robot and 3d mapping,” in Proceedings 2000 ICRA.
Millennium Conference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (IEEE), 321–328. (Cat. No. 00CH37065).

Tolstaya, E., Gama, F., Paulos, J., Pappas, G., Kumar, V., and Ribeiro, A. (2019).
“Learning decentralized controllers for robot swarms with graph neural networks,” in
Conference Robot Learning 2019 (Osaka, Japan: Int. Found. Robotics Res.).

Velhal, S., Sundaram, S., and Sundararajan, N. (2022). A decentralized multirobot
spatiotemporal multitask assignment approach for perimeter defense. IEEE Trans.
Robotics 38, 3085–3096. doi:10.1109/tro.2022.3158198

Wang, Z., and Gombolay, M. (2020). Learning scheduling policies for multi-robot
coordination with graph attention networks. IEEE Robotics Automation Lett. 5,
4509–4516. doi:10.1109/lra.2020.3002198

Xu, J., D’Antonio, D. S., and Saldaña, D. (2022).Modular multi-rotors: From quadrotors
to fully-actuated aerial vehicles. arXiv preprint arXiv:2202.00788.

Yan, R., Duan, X., Shi, Z., Zhong, Y., and Bullo, F. (2022). Matching-based capture
strategies for 3d heterogeneous multiplayer reach-avoid differential games. Automatica
140, 110207. doi:10.1016/j.automatica.2022.110207

Yan, R., Shi, Z., and Zhong, Y. (2019). “Construction of the barrier for reach-avoid
differential games in three-dimensional space with four equal-speed players,” in 2019 IEEE
58th Conference on Decision and Control (CDC) (IEEE), 4067–4072.

Yan, R., Shi, Z., and Zhong, Y. (2020). Guarding a subspace in high-dimensional space
with two defenders and one attacker. IEEE Trans. Cybern. 52, 3998–4011. doi:10.1109/
tcyb.2020.3015031

Zhou, L., Sharma, V. D., Li, Q., Prorok, A., Ribeiro, A., and Kumar, V. (2021). Graph neural
networks for decentralized multi-robot submodular action selection. arXiv preprint arXiv:
2105.08601.

Frontiers in Control Engineering frontiersin.org12

Lee et al. 10.3389/fcteg.2023.1104745

https://doi.org/10.1109/lra.2020.2972872
https://doi.org/10.1109/lra.2019.2928734
https://doi.org/10.1109/lra.2019.2928734
https://doi.org/10.1109/jproc.2021.3055400
https://doi.org/10.1109/jproc.2021.3055400
https://doi.org/10.1109/tro.2022.3158198
https://doi.org/10.1109/lra.2020.3002198
https://doi.org/10.1016/j.automatica.2022.110207
https://doi.org/10.1109/tcyb.2020.3015031
https://doi.org/10.1109/tcyb.2020.3015031
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.1104745

	Graph neural networks for decentralized multi-agent perimeter defense
	1 Introduction
	2 Related work
	2.1 Perimeter defense
	2.2 Graph neural networks

	3 Problem formulation
	3.1 Motivation
	3.2 Hemisphere perimeter defense
	3.3 Optimal breaching point
	3.4 Target time and payoff function
	3.5 Optimal strategies and nash equilibrium
	3.6 Problem definition

	4 Methods
	4.1 Perception
	4.1.1 Intruder features
	4.1.2 Defender features
	4.1.3 Feature extraction

	4.2 Learning and planning
	4.2.1 Graph shift operation
	4.2.2 Graph convolution
	4.2.3 Graph neural network
	4.2.4 Candidate matching
	4.2.5 Permutation equivalence

	4.3 Control
	4.4 Training procedure
	4.4.1 Model architecture
	4.4.2 Graph neural networks details
	4.4.3 Implementation details

	5 Experiments
	5.1 Datasets
	5.2 Metrics
	5.3 Compared algorithms
	5.3.1 Greedy
	5.3.2 Random
	5.3.3 MLP

	5.4 Results
	5.5 Further analysis
	5.5.1 Performance vs. number of expert demonstrations
	5.5.2 Performance vs. perimeter radius
	5.5.3 Performance vs. number of intruders sensed

	5.6 Limitations

	6 Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

