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This review paper deals with the analysis, design, and tuning of dead-time

compensators for stable and unstable multi-input multi-output (MIMO)

processes with multiple time delays. It is well known that, even in the

single-input single-output case, processes with significant dead times are

difficult to control using standard feedback controllers. For MIMO systems,

the study of processes with dead time is more involved, particularly when the

process behavior exhibits different dead times in the different input-output

relationships. Because of this, much research has been conducted in the last

50 years on this subject, with different approaches and proposals of

controllers for covering a variety of objectives. Thus, this paper gives an

overview of this important topic, focusing on the solutions derived from

the Smith Predictor. First, a historical perspective of the different

controllers proposed in the literature is presented. Then, the general

solution of the problem is developed, paying particular attention to

robustness and disturbance rejection properties, because of their

importance and usefulness in industrial processes. All the development is

done in the discrete-time case, which allows direct digital implementation.

Two simulation case studies are presented to illustrate some of the ideas

discussed in the paper, and an experimental case study is used to discuss

aspects of practical implementation.
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1 Introduction

In industry, as well as in other areas, many processes exhibit dead times (or delays) in

their dynamic behavior. In most of the cases, the causes of dead time are energy, mass or

information transportation phenomena, processing time of sensors and reaction time of

actuators. Moreover, apparent dead-time can be perceived in many processes because of
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the dynamic effect of the accumulation of time lags in a number

of simple dynamic systems connected in series (Normey-Rico

and Camacho, 2007).

Even for the case of single-input and single-output (SISO)

systems, the dead time complicates the feedback control design

mainly because: 1) the effects of the control action and the load

disturbances take some time to be felt in the controlled variable;

2) the control action that is applied based on the actual error tries

to correct a situation that originated some time before. These

conditions normally cause two undesirable effects on the closed-

loop performance of simple loops: oscillations in the controlled

and manipulated variables when the designer tries to reduce the

closed-loop settling time, or very sluggish transients when the

tuning avoids these oscillations (Aström and Hägglund, 1995). In

the frequency domain, it is easy to understand the negative effect

of dead time by simply computing the extra decrease in the

system phase introduced by the delay (Normey-Rico and

Camacho, 2008).

The feedback control design is even more complicated in a

general multiple-input and multiple-output (MIMO) system,

because, in this case, the effect of the delay is added to the

coupling effects between the inputs and outputs typically

observed in MIMO plants. Moreover, in the MIMO case, it is

difficult to define a “process delay,” because each signal path

between inputs and outputs may have a different delay

(Skogestad and Postlethwaite, 2005).

One of the most used control strategies for improving the

closed-loop performance of SISO and MIMO dead-time processes

consists of using a predictor structure plus a primary controller.

With the predictor in the loop, the primary controller can “see” an

equivalent system composed by the process and the predictor, and

the equivalent system exhibits no dead time or a smaller dead time

than the one of the process (Normey-Rico and Camacho, 2007).

These structures, which are based on the original idea of Smith

proposed in 1957 (Smith, 1957), are known in the literature as

dead-time compensators (DTCs), and they have been applied with

success to many engineering fields, mainly in industry (Takatsu

et al., 1998).

As expected, MIMO dead-time compensator structures are

more difficult to analyze and tune to obtain efficient solutions.

Note that MIMO-DTC strategies have to cope with nonsquare

systems, different types of disturbances in each one of the

controlled variables, and coupling effects. Moreover, as in the

SISO case, they have to cope with unstable modes and achieve a

desired robustness level. Because of this, many researchers have

been working on dead-time compensators for MIMO plants

during the last years, proposing particular solutions to some

of the cited problems (see for example Ogunnaike and Ray

(1979), Chen et al. (2011); Garrido et al. (2016)), or general

structures capable to achieve a robust stable feedback control

system considering a complete set of MIMO closed-loop

specifications, as for instance, the works of García and

Albertos (2010) and Santos et al. (2014).

This work deals with the analysis, design, and tuning of

MIMODTCs derived from the Smith Predictor when controlling

stable and unstable MIMO processes with multiple delays.

The rest of the paper is organized as follows: Section 2

presents a historical perspective of the research in the topic,

from the original idea of Smith in 1957 to the general MIMO-

DTC solutions studied in the last years. In Section 3 the MIMO-

DTC solutions for stable processes are presented. Section 4

presents MIMO-DTC solutions that can cope with integrating

and unstable processes, obtaining internally stable structures.

The most important aspects related to performance, robustness,

and disturbance rejection are discussed in Section 5. Section 6

presents simulation and experimental case studies, followed by

conclusions in Section 7.

2 Historical perspective—from the
original idea of Smith to the general
multi-input multi-output-dead-time
compensators solutions

As already mentioned, most of the DTCs proposed in the

literature were derived from the original idea of Smith, who

proposed in 1957 one of the most popular dead-time

compensating methods for SISO processes, called the Smith

predictor (SP) (Smith, 1957). The SP is a model-based

controller which separates the process model into two parts,

the fast model (delay-free) and the delay model, and considers in

its structure also two parts, the predictor itself and the so-called

primary controller, which uses the output of the predictor to

compute the control action.With this idea, the SP allows to create

a virtual signal that anticipates the process output behaviour,

which is used to eliminate the delay from the closed-loop

characteristic equation, at least in the nominal case, in which

there is no plant-model mismatch. As a consequence, the design

of the closed-loop controller becomes much easier than in the

original case, which contains the delay in the characteristic

equation. Nowadays, the SP is the best known and most

widely used algorithm for SISO dead-time compensation in

academy and industry. As it was proposed to control only

open-loop stable plants, several works were published after

1957 to allow its use with integrating or unstable processes.

Moreover, many works studied tuning rules of the primary

controller, how to improve robustness or disturbance rejection

of the closed loop, and also its analysis and design in the discrete-

time domain. A review of several of these proposed methods for

the SISO case can be found, for example, in the book chapter

(Palmor, 1996) and in the books (Normey-Rico and Camacho,

2007) and (Visioli and Zhong, 2011).

Considering MIMO processes, the first works that extended

the ideas of the SP considered only the case of stable open-loop

processes. In the work of Alevisakis and Seborg (1973), the

authors studied MIMO stable processes with a single delay,
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that is, all the input-output channels of the processes are assumed

to have the same dead time. For this simple case, the main

properties of the SP are maintained, thus, the virtual output

computed in the predictor anticipates the process output and a

delay-free closed-loop characteristic equation is obtained.

However, as this simple case is in general not very useful in

practice, some years after this work, improved versions of this

MIMO-DTC were presented, extending the results for the case of

multiple delays (Ogunnaike and Ray, 1979; Jerome and Ray,

1986). In the first paper the proposed solution tries to maintain

the delay-free characteristic equation of the closed-loop system,

using a MIMO delay-free model with no delays, however losing

the prediction property, as the obtained virtual signal is no more

an anticipation of the process output. This causes a more

involved tuning procedure of the controller to achieve a

desired performance. The second work proposes a different

fast model, in order to maintain the prediction property,

however, as a consequence, obtaining a closed-loop

characteristic equation with delays. Although this last property

can be seen as a drawback, it is possible to show that with this

choice the closed-loop performance can be improved, primarily

for MIMO processes with bigger delays. Moreover, this approach

gives more flexibility to the control engineer to adequate the

solution to the specific characteristics of the plant, as for example,

to prioritize some controlled variables against the others.

Although this last solution was proposed only for square

MIMO plants, the paper contains a very interesting discussion

of the advantages and drawbacks of the MIMO dead-time

compensation schemes. It is interesting to note that in all

these approaches, the primary controller of the MIMO-DTC

is in general composed by a set of PI or PID controllers. Some

years later, Rao and Chidambaram (2006) and Zhang and Lin

(2006) extended the ideas of the MIMO-SP to non-square stable

MIMO systems with multiple time delays. In Rao and

Chidambaram (2006) the authors considered the case where

the process has more inputs than outputs, and, in the primary

controller, a set of centralized MIMO PI controllers were tuned

using a pseudo inverse of the steady-state gain matrix.

All the previously cited works focused mainly on the

predictor structure. However, other works were oriented to

tuning strategies for the primary controller or robustness

analysis, sometimes for the general case and in other works

for particular models. For example, different decoupling

strategies have been analyzed along the time, optimal

controllers have been proposed, first-order plus dead-time

non-square systems have been analyzed, etc. In the work of

Zhang and Lin (2006), a decoupled MIMO-SP is designed by

factorizing the model, to separate the delay-free model into

minimum phase and non-minimum phase parts, in order to

analytically derive an optimal controller. In (Liu et al., 2007), the

authors present an analytical decoupling scheme for square

MIMO systems, based on an H2 optimal performance

specification. Stability and robustness analysis are also studied

in this work; however, the procedure is valid only for stable

processes. Sánchez-Peña et al. (2009) present a robust

performance analysis of the MIMO-SP, but the study is

limited to models in which the dead times can be factorized

into input and output delays. Therefore, plants with internal

coupling delays cannot be considered. A study of two inverted

decoupling techniques for stable MIMO delayed processes with

non-minimum-phase zeros is presented in Chen et al. (2011),

and PI/PID controllers are designed for decoupled processes.

Moreover, a robustness analysis is performed in the paper and

low bounds of the control parameters are derived to guarantee

closed-loop robust stability. In Mirkin et al. (2011), the authors

convert the dead-time control problem into an equivalent delay-

free problem via loop-shifting arguments, concluding that the

structure of the dead-time compensator should rely upon the

structure of the regulated output and/or the way in which

exogenous signals affect the measurement. In Zheng et al.

(2017), a discrete-time dynamic output feedback control is

designed for systems with multiple dead times, considering

uncertainties. A Lyapunov-Krasovskii function approach is

used together with a system decomposition into two

subsystems, thus facilitating the feedback controller design

only based on the system output. In Bezerra-Correia et al.

(2017), the authors combine the best properties of both DTC

and optimal control for MIMO processes with delay. Using a

state-space optimal approach, they analyze an explicit dead-time

compensation structure used in model predictive control to

impose desired performance and robustness properties to the

closed loop. In Shaqarin et al. (2019), a robust H∞ controller is

designed using the mixed sensitivity loop shaping design.

Decoupling strategies have been extensively studied in the

last years to improve the control performance of controllers for

MIMO delayed systems, not limited to extensions of the MIMO-

SP. In Zhang et al. (2016), an H2 analytical decoupling control

scheme with a MIMO disturbance observer is proposed. The

controller can be used for both stable and unstable MIMO

processes with multiple dead times. The proposed control

scheme can improve the closed-loop behaviour of the system

even under model mismatches and strong external disturbances.

Other advantages are: 1) analytical forms of the controller and

observer can be obtained, which have low orders, 2) the design

procedure is simple, and 3) performance and robustness can be

adjusted easily by tuning the parameters in the designed

controller and observer. In Tang et al. (2018), a strategy based

on a decoupling block plus an SP controller is proposed in order

to reduce the negative effects of network-induced delays in the

stability in MIMO networked control systems. A modified fuzzy

immune feedback control algorithm is used to tune, online, the

PID used in the primary controller, to improve both robustness

and performance. The advantages of the algorithm proposed in

Tang et al. (2018) are that it does not need to measure, estimate,

or identify the network delay. In Chuong et al. (2019), a

simplified decoupling strategy is proposed coupled with a
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MIMO-SP structure. The idea is to solve decoupling realizability

by using a modified particle swarm optimization algorithm. The

controller improves the system performance in terms of the

servomechanism problem.

The SP can be analyzed using the more general structure of

the internal model control (IMC) (Morari and Zafiriou, 1989)

which enables a complete analysis of performance and robustness

of the controller. Because of this, many researchers developed

DTC control strategies and tuning procedures forMIMO delayed

plants using the IMC approach. One of the first works was

(Maciejowski, 1994), where the author analyzes the stability and

robust stability of MIMO-SP considering an IMC approach.

More recently, in Guo and Peng (2011), a MIMO-SP is

proposed for process with right-half-plane zeros. The

proposed strategy uses a decoupling compensation control

method, and the IMC technique is applied to design the SP.

To reduce the order of the obtained controller a sub-optimal

reduction algorithm is proposed, such that the design process of

the controller is simplified. In Chen et al. (2011), the authors

presented an IMC approach of the MIMO-SP for a particular

case, considering the elements of theMIMOmodel as first-order-

plus-time-delay transfer functions. Later, in the work of Jin et al.

(2013), the IMC is applied to an equivalent model of the plant,

obtained using the concept of effective open-loop transfer

function. The idea in this paper is to ease the primary PID

control design, thus avoiding using decoupling strategies as in

previous solutions. In Garrido et al. (2014), a new tuning method

of the main controller of an IMC strategy is proposed based on

the centralized inverted decoupling structure, considering square

MIMO plants. The advantages of the approach are that very

simple general expressions for the controller elements are

obtained and filters can be used to improve the disturbance

rejection without modifying the nominal set-point response.

More general strategies which allow to control unstable

processes and also non-square plants have been proposed in

the last years. An approach for square unstable plants was

presented in García and Albertos (2010). The idea of the

paper is to compute a stable predictor which copes with

multiple delays and to design a controller in two parts, first

using a stabilizing strategy for the delay-free model and then

including extra elements to achieve some output tracking and

regulation requirements. In Flesch et al. (2011), a unifiedMIMO-

DTC for square processes with multiple delays was presented,

and it can be used to control stable, integrating, and unstable

dead-time MIMO processes. The proposed strategy generalizes

the filtered Smith predictor (FSP) controller originally proposed

in Normey-Rico and Camacho (2009) for SISO plants. An

interesting feature of this approach, named MIMO-FSP, is

that it compensates the minimal output dead time of each

output and allows a tuning procedure considering

performance and robustness specifications. An improved

version of the MIMO-FSP was presented in Santos et al.

(2014), that can also be used for non-square plants. In this

work, the use of two different dead-time free models is

analyzed in order to enable more flexibility in the controller

design. Moreover, for open-loop stable processes, a tuning

procedure is proposed to speed-up the closed-loop

disturbance rejection response, which is an important point

that was not studied in many of the previous approaches. A

simplified tuning strategy of the MIMO-FSP was presented in

Santos et al. (2016). In this approach, offset-free control for step

references and disturbances is achieved without explicitly using

integral action in the primary controller, then reducing the

number of tuning parameters.

An important point to be highlighted is that these new works

present results is the discrete-time domain, with control laws that

are implementable without any polynomial approximation of the

dead time. Moreover, in the particular case of the MIMO-FSP, any

control strategy can be used in the primary controller, thus allowing

to combine the predictor properties with some optimal or

decoupling strategies, or even to introduce some practical

aspects such as constraints in the manipulated variables or

varying delays. For example, the case of time-varying dead time

is studied in Normey-Rico et al. (2012) for the MIMO-FSP, using a

delay-dependent Linear Matrix Inequality-based condition to

compute a maximum delay interval and tolerance to model

uncertainties such that the closed-loop system remains stable. In

Garrido et al. (2016), the idea of the MIMO-FSP is used together

with a new method to design a centralised inverted decoupling

structure. The primary controller, which is applied to square stable

or unstable plants, can be obtained with simple general expressions

and also a simple tuning of the filters allows improving the

disturbance rejection responses. In Lima et al. (2016), the idea

of the FSP is combined with a model predictive control strategy to

improve robustness or disturbance rejection properties of the closed

loop. The controller, named filtered dynamic matrix control

(FDMC), is a modification of the well-known Dynamic Matrix

Control widely used in industry. In Santos et al. (2017), theMIMO-

FSP is extended to reject sinusoidal disturbances in steady state.

Using the same transfer matrix description of the plant, the

prediction error filter is re-tuned to deal with this new type of

disturbance. As in the case of the FDMC controller, the filter design

can be used inmodel predictive controllers with inactive constraints

in steady state. In Giraldo et al. (2018), a method to design a

MIMO-FSP for square processes with multiple time delays is

presented based on the decentralized direct decoupling structure.

Under certain realizability conditions, an easy tuning of the primary

controller is presented in the paper, based on the simplification of

the MIMO problem to multiple single loops. More recently, in

Santos et al. (2021), the authors proposed an anti-windup strategy

to be used with the MIMO-FSP predictor for the case of square

plants when the control input saturates. The approach is based on a

causal modified implementation of the primary controller, and

interestingly, the strategy does not add any tuning parameters.

Stability analysis is also presented in the paper using linear matrix

inequality conditions.
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Applications of the predictor ideas of the SP and FSP to

nonlinear systems also appear in literature. The main idea in

these works is to separate the delay from the nonlinear model of

the process and combine an SP or an FSP with a nonlinear

controller, in such a way that the predictor compensates the delay

and the nonlinear controller is only designed for the delay-free

model. For example, in Gálvez-Carrillo et al., (2007), the authors

present the application of a Smith-predictor-based nonlinear

predictive controller to a solar power plant. Chapter 13 of

Normey-Rico and Camacho (2007) is dedicated to analyze the

use of the predictor structure in the nonlinear case, and in Lima

et al. (2015), a robust nonlinear FSP which extends the robustness

properties of the prediction filter to the nonlinear case is

presented.

As can be seen from the previous analysis there is a historical

and conceptual line going from the original SP used to control

SISO stable plants and arriving to the MIMO-FSP which allows

to control even unstable processes with multiple delays. Thus, in

the following sections a review of the main ideas of these

developments are presented, directly in the discrete-time

domain.

3 Simple multi-input multi-output-
dead-time compensators for stable
plants

This section presents the fundamental properties of the DTC

for MIMO stable processes. The original Smith predictor for

SISO systems is briefly revisited to point out some of the MIMO

dead-time compensation challenges.

3.1 A brief review of the single-input and
single-output-Smith predictor

In this work, the DTC analysis and properties are directly

discussed in a discrete-time paradigm as the predictors are

implemented in digital processors with no loss of generality.

Anyway, continuous-time counterparts can be found in related

works (Normey-Rico and Camacho, 2007, 2009).

The SISO SP is illustrated in Figure 1, where P(z) = G(z)z−d

represents the process with dead time, d is the discrete-time dead

time, Pn(z) � Gn(z)z−dn describes a nominal model for P(z),

Gn(z) is a model without delay, also known as fast model, and

C(z) is a linear controller. r(k), q(k), and n(k) are, respectively, the

reference, the load disturbance and the noise signals. If the

modeling error is neglected (Pn(z) = P(z)), the closed-loop

transfer functions from the external signals to the output are

given by

Hyr z( ) � Pn z( )C z( )
1 + Gn z( )C z( ), (1)

Hyq z( ) � Pn z( ) 1 − Pn z( )C z( )
1 + Gn z( )C z( )[ ], (2)

Hyn z( ) � 1 − Pn z( )C z( )
1 + Gn z( )C z( ), (3)

where Hyr(z) � Z{y(k)}/Z{r(k)}, Hyq(z) � Z{y(k)}/Z{q(k)},
and Hyn(z) � Z{y(k)}/Z{n(k)}.

The closed-loop requirements such as robustness margins,

noise attenuation, and disturbance rejection performance are

commonly defined with respect to the Sensitivity Function,

namely S(z), and the Complementary Sensitivity Function,

given by C(z) � 1 − S(z). For linear closed-loop systems, the

Sensitivity Function can be obtained from S(z) � Hyn(z).
Hence, notice that Hyq(z) � Pn(z)S(z), and Hyr(z) � C(z).

The Smith predictor for SISO systems provides three key

properties (Jerome and Ray, 1986), (Normey-Rico and Camacho,

2007, Chapter 5) in the absence of modeling error (Pn(z) = P(z)):

1) dead-time compensation, 2) output prediction, and 3) ideal

dynamic compensation.

The dead-time compensation property, indicated as Property

1, comes from the fact that the delay is removed from the

characteristic equation (1 + Gn(z)C(z) = 0). Hence, C(z) can be

designed to define the closed-loop poles from the fast model given

by Gn(z). In summary, despite the fact that the nominal process is

represented by Pn(z) � Gn(z)z−dn , the closed-loop poles are

defined by the roots of 1 + Gn(z)C(z). This property is useful as

the phase margin is not reduced by z−dn , for instance.
Figure 1 can be used to illustrate the output prediction

property of the SP, identified as Property 2 in this work.

Consider the nominal case without external disturbance, then

Yp(z) = P(z)U(z) + Gn(z)U(z) − Pn(z)U(z), Y(z) = P(z)U(z) with

Gn(z) = G(z), and z−d � z−dn . Hence, Y(z) � Gn(z)z−dnU(z),
and Yp(z) = Gn(z)U(z), such that yp(k) = y(k + d). Once y(k) =

yp(k − d), the nominal set-point tracking responses can be

defined for yp(k) because y(k−d) is a direct delayed version of

yp(k). That is, the property of output prediction states that the

output signal of the predictor is an anticipation of the process

output. Notice that, because of this property, the nominal set-

point tracking response can be designed for the delay-free

FIGURE 1
Block diagram representation of general SISO SP for stable
plants.
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predicted system from u(k) to yp(k), which is also observed in

closed loop from u(k) to y(k + d).

The Property 3 is the ideal dynamic compensation, that has

been used to highlight the achievable performance bounds for

input disturbance rejection. Firstly notice that the output

response is given by Y(z) = Hyr(z)R(z) + Hyq(z)Q(z) + Hyn(z)

N(z). If a theoretical “ideal” controller is defined with an infinity

gain, thenHyr(z)→ z−d,Hyq(z)→ Pn(z)[1 − z−d],Hyn(z)→ 1 − z−d,

so that Y(z) → z−dR(z) + Pn(z)[1 − z−d]Q(z) + [1 − z−d]N(z).

Hence, the delayed response cannot be avoided for reference

changes and disturbance rejection response, which is expected

due to the typical causality constraints. In summary, the

achievable performance bounds depend on the delay length.

It should be highlighted that the SP cannot be used to control

open-loop unstable processes because Hyq(z) � Pn(z)S(z) is

not stable if Pn(z) has poles outside the unit circle. In order to

achieve internal stability, modified SP versions are used, but this

discussion is presented directly for the MIMO case due to the

generality of the MIMO result.

3.2 Multi-input multi-output-Smith
predictor—single delay case

The extension of the SP to the MIMO case with a single delay

is somehow straightforward because the key ingredients are

preserved (Alevisakis and Seborg, 1973). A process with single

delay can be written as

P z( ) �
G11z

−d / G1mz
−d

..

.
1 ..

.

Gn1z
−d / Gnmz

−d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
G11 / G1m

..

.
1 ..

.

Gn1 / Gnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦z−d � G z( )z−d,

(4)
where Gij(z)z

−d is the transfer function from the j-th input to the

i-th output, being Gij(z) a delay-free transfer function and z−d the

single time delay of the system. The matrix G(z) is known as the

delay-free matrix function or fast model.

A model for the delay-free process is defined byGn(z) and, as

in the SISO case, dn is a nominal value for d. It is simple to derive

the nominal closed-loop relationship from the external signals to

the output as

Hyr z( ) � z−dnGn z( )C z( ) I + Gn z( )C z( )[ ]−1, (5)
Hyq z( ) � z−dn I − z−dnGn z( )C z( ) I + Gn z( )C z( )[ ]−1{ }Gn z( ),

(6)
Hyn z( ) � I − z−dnGn z( )C z( ) I + Gn z( )C z( )[ ]−1. (7)

Here Hyr(z) defines the matrix function between the reference

vector and process variable vector, Hyq(z) defines the matrix

function between the load disturbance vector and the process

variable vector, and Hyn(z) defines the matrix function between

the vector of measurement noise and output disturbances and the

process variable vector.

Therefore, the relationships are analogous to the ones

obtained in the SISO case, and the three key properties are

verified for this case.

Hence, despite the fact thatC(z) should be designed to deal with

the MIMO closed-loop poles defined by det(I + Gn(z)C(z)) = 0, the

dead-time compensation challenge is similar to the one faced

in the SISO problem in the case of a single value for the input

delay.

The main conclusion of this initial extension comes from

the fact that the MIMO design challenge for C(z) depends on

the coupling structure of Gn(z). On the other hand, the MIMO

dead-time compensation challenge for the SP is similar to the

SISO case if a single delay is considered. However, from a

practical point of view, the single delay assumption is quite

restrictive.

3.3 Multi-input multi-output-Smith
predictor—multiple delay case

The first extension of SP for MIMO plants with different

delays in each of the input-output pairs was proposed in

Ogunnaike and Ray (1979). The idea of the method was to

remove all the delays from the model of the plant to obtain a

prediction structure which does not contain any delay. This

approach makes the tuning of the primary controller simple

with respect to the definition of the nominal closed-loop

poles, since all the delays are removed from the model which

is considered for the controller design. However, the

prediction property of the SP (Property 2) does not hold

for this case, so it is quite challenging to tune the controller

to satisfy performance criteria. This idea was latter improved

in Jerome and Ray (1986) to keep the prediction property

and is known as generalized multidelay compensator

(GMDC).

The basic idea of GMDC is to write the model of the plant as

the effective time delays for each output and the remaining

dynamics. GMDC is able to compensate for the effective

output delays and the primary controller is responsible for

guaranteeing the desired performance for the remaining

dynamics. Notice that the remaining dynamics may also

contain some time delays in this case, so the tuning of the

primary controller may have to consider a model which still

contains some delays. Consider an extension of the plant model

in (Eq. 4) to consider different delays in each input-output pair

given by

P z( ) �
G11z

−d11 / G1mz
−d1m

..

.
1 ..

.

Gn1z
−dn1 / Gnmz

−dnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (8)

where the definitions are the same as in Eq. 4, except for dij, which

is the discrete-time delay associated with the transfer function

from the j-th input to the i-th output.
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The effective time delay of each output i is di, which is

obtained as the minimum value of the time delays associated with

that particular output, i.e. di � minj�1...m(dij). Thus, defining
L z( ) � diag z−d1 , . . . , z−dn{ }

as the MIMO delay of the plant model P(z), and G(z) as the

model without the common delays (also known as fast model), it

is possible to write the dynamics of the plant model as

P z( ) � L z( )G z( ).

The primary controller can then be tuned to control G(z), which

is given by

G z( ) �
G11z

−d11+d1 / G1mz
−d1m+d1

..

.
1 ..

.

Gn1z
−dn1+dn / Gnmz

−dnm+dn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

if a control structure as the one provided in Figure 2 is used. In

Figure 2, Gn(z) is the nominal fast model, Ln(z) is the nominal

delay matrix, C(z) is the primary controller, and F(z) is a

reference filter. In addition, r(k) is the reference vector, y(k) is

the process variable vector, yp(k) is the vector of model outputs,

q(k) is a vector of load disturbances, and n(k) is a vector of

measurement noise and output disturbances. For this particular

structure, in the nominal case (perfect model), the transfer

function matrices which define the closed-loop response are

given by

Hyr z( ) � Pn z( )C z( ) I + Gn z( )C z( )[ ]−1F z( ), (9)
Hyq z( ) � I − Pn z( )C z( ) I + Gn z( )C z( )[ ]−1{ }Pn z( ), (10)

Hyn z( ) � I − Pn z( )C z( ) I + Gn z( )C z( )[ ]−1. (11)

In order to define closed-loop design requirements and for

comparison with other controllers define, respectively, the

MIMO Sensitive Function and MIMO Complementary

Sensitive Function, as,

S(z) � I − Pn(z)C(z)[I + Gn(z)C(z)]−1, and C(z) �
Pn(z)C(z)[I + Gn(z)C(z)]−1.

In this problem, it should be remarked that the fast model is

given by

Gn z( ) �
Gn,11z

−dn,11+dn,1 / Gn,1mz
−dn,1m+dn,1

..

.
1 ..

.

Gn,n1z
−dn,n1+dn,n / Gn,nmz

−dn,nm+dn,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

Hence, nominal prediction property holds in the absence of

disturbances as Yp(z) = Gn(z)U(z) and Y(z) = Ln(z)Gn(z)U(z). In

other words, yp(k) � [y(k + dn,1) y(k + dn,2) /y(k + dn,n)]′.
However, Property 1 holds partially as the characteristic

equation is defined by det([I + Gn(z)C(z)]) � 0, but Gn(z) is

not a delay-free model. Clearly, the GMDC removes the effective

output delay defined by Ln(z) as the controller design without

DTC must consider det([I + Ln(z)Gn(z)C(z)]) � 0. However,

the advantage of the GDMC depends on the input-output dead-

time for each output. The ideal compensation property

(Property 3) is also preserved by using a theoretical controller

with infinity gain as Y(z)→ Ln(z)F(z)R(z) + Pn(z)[I − Ln(z)]Q(z)

+ [I − Ln(z)]N(z).

Jerome and Ray (1986) have also used the concept of

rearrangement test to define whether it is possible or not to

find a primary controller which at the same time provides a

decoupled and best performance response. A system passes the

rearrangement test if it is possible to place the minimum delay of

each process variable in the main diagonal by only interchanging

rows or columns. In this case, it is possible to compensate for the

delays in all the loops and tune a primary controller which is able

to provide a perfectly decoupled response. Based on this idea,

they show that the control system performance can often be

improved (or at least not degraded) by considering extra time

delays in specific inputs so that the resulting system passes the

rearrangement test.

As happens in the SISO case of the Smith predictor,

GMDC is not able to properly deal with open-loop

processes which are not strictly stable. For integrating

plants, the structure is not able to reject step-like load

disturbances in steady state, while for unstable systems the

whole compensation structure becomes internally unstable.

The extension of the ideas of GMDC for unstable plants is

discussed in Section 4.

3.4 General solution for stable plants

The filtered Smith predictor for MIMO stable processes

(Normey-Rico and Camacho, 2007; Flesch et al., 2011; Santos

et al., 2014) is presented as a general solution for stable

systems due to the design flexibility provided by the

robustness filter Fr(z). The dead-time compensation

properties achieved by the methods described in Ogunnaike

and Ray (1979) and Jerome and Ray (1986) can be recovered

from the implementation structure in Figure 3, where G•(z)

can be either a delay-free model Gf(z) or a model without the

effective output delay, given by Go(z). In this general solution,

the models are given by

FIGURE 2
Block diagram representation of GMDC.
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Go z( ) �
Gn,11z

−dn,11+dn,1 / Gn,1mz
−dn,1m+dn,1

..

.
1 ..

.

Gn,n1z
−dn,n1+dn,n / Gn,nmz

−dn,nm+dn,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
or

Gf z( ) �
Gn,11 / Gn,1m

..

.
1 ..

.

Gn,n1 / Gn,nm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

The nominal closed-loop relationships from the external

signal to the output are given by

Hyr z( ) � Pn z( )C z( ) I + G• z( )C z( )[ ]−1F z( ), (12)
Hyq z( ) � I − Pn z( )C z( ) I + G• z( )C z( )[ ]−1Fr z( ){ }Pn z( ), (13)

Hyn z( ) � I − Pn z( )C z( ) I + G• z( )C z( )[ ]−1Fr z( ). (14)

If G•(z) = Gf(z) is employed in this general structure, then

det([I + Gf(z)C(z)]) � 0 is a delay-free characteristic equation.

However, the prediction property does not hold in the nominal

case because Yp(z) = Gf(z)U(z), Y(z) = Pn(z)U(z), and Pn(z) ≠
L(z)Gf(z) if dn,ij ≠ dn,i for any j. The ideal compensation property

is lost as Pn(z)C(z) ≠ L(z)Gf(z)C(z). The main consequence of

this modified fast model comes from the difficulty to define C(z)

with respect to performance specification as y(k) is not a direct

delayed version of yp(k). Hence, this full dead-time compensation

preserves SP Property 1, but the Property 2 and Property 3

are lost.

The output feedback property and the ideal compensation

properties are directly ensured if G•(z) = Go(z) because Pn(z) =

L(z)Go(z). Then, the GMDC properties are also verified in this

case, such that det([I + Go(z)C(z)]) � 0 is not a delay-free

characteristic equation, as previously discussed.

The proposed general structure is a filtered Smith predictor

for MIMO systems where Fr(z) is a robustness filter that can be

designed to deal with loop-requirement trade-offs, preserving

nominal set-point tracking response. Notice that Hyr(z) does not

depend on Fr(z), but S(z) � I −
Pn(z)C(z)[I + G•(z)C(z)]−1Fr(z) and

C(z) � Pn(z)C(z)[I + G•(z)C(z)]−1Fr(z). Indeed, for open-

loop stable processes, the only internal stability requirement for

Fr(z) is to be stable if the roots of det([I + G•(z)C(z)]) � 0 are

inside the unit circle. This property provides a significant flexibility

with respect to the definition of Fr(z). As the Complementary

Sensitivity Function is directly related to the robustness filter, it

becomes a powerful ingredient to deal with loop-requirement

trade-offs. Conditions to achieve robust stability and

deterministic disturbance rejection are discussed in Section 5.

4 Multi-input multi-output-dead-
time compensators for unstable
plants

The internal stability of the predictors is an important

problem for unstable systems as IMC-based and SP-based

strategies can be interpreted as cancellation-based control

strategies. This problem is widely discussed in the DTC

literature for SISO systems, but the MIMO problem is

commonly neglected. This section presents the analysis of a

unified MIMO-FSP for unstable processes that can be used to

achieve prediction properties and to ensure internal stability.

The general MIMO-FSP can be modified to achieve internal

stability by using the implementation structure presented in

Figure 4, where

S• z( ) � G• z( ) − Fr z( )Pn z( ) (15)
is a stable filter. For analysis purposes, Figure 3 and Figure 4 are

equivalent, but Fr(z) should be designed such that the minimal

representation of S•(z) has no pole outside the unit circle.

The design of Fr(z) in order to achieve internal stability is not

a difficult task once it can be interpreted as a combination of

SISO internal stability conditions. Notice that the elements of

S•(z) are defined by S•,ij(z) = G•,ij(z) − Fr,ii(z)Pn,ij(z), i = 1, .., n, j =

1, ..,m if Fr(z) is defined as a diagonal filter. This problem can be

expressed as a determined system of linear equations where the

number of decision variables is defined by the coefficient of the

numerator of Fr,ii(z). In this case, the robustness filter cannot be

freely defined. This stability condition can be interpreted as a

FIGURE 3
Block diagram representation of general MIMO-FSP for
stable plants.

FIGURE 4
Block diagram representation of general unified MIMO-FSP
for unstable systems.
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loop constraint because a minimum gain is necessary to stabilize

any open-loop unstable systems. The poles of Fr(z) are typically

used as design parameters, but the numerators of the partial

elements of the robustness filter, namely the numerators of

Fr,ii(z), are used to ensure internal stability.

The stabilizing properties of S•(z) can be explained by

comparing the transfer functions of the unified solution for

unstable processes with the general solution for stable systems.

Assume that C(z) is a stabilizing controller such that H1(z) �
Pn(z)[I + C(z)G•(z)]−1 and H2(z) �
Pn(z)C(z)[I + G•(z)C(z)]−1 are stable transfer matrices.

Hence, Hyr(z) = H1(z)F(z) is stable if F(z) is a stable reference

filter. As previously discussed, Hyn(z) = I − H1(z)Fr(z) is also

stable if Fr(z) is defined as a stable robustness filter. The transfer

function from the input-disturbance to the output is similar to

the one derived in the stable case, but it requires some additional

manipulation as follows

Hyq z( ) � Pn z( ) − Pn z( )C z( ) I + G• z( )C z( )[ ]−1Fr z( )Pn z( )
� Pn z( ) I + C z( )G• z( )[ ]−1 I + C z( )G• z( )[ ]

− Pn z( )C z( ) I + G• z( )C z( )[ ]−1Fr z( )Pn z( )
� Pn z( ) I + C z( )G• z( )[ ]−1 + Pn z( )C z( )

× I + G• z( )C z( )[ ]−1 G• z( ) − Fr z( )Pn z( )[ ][
� H1 z( ) +H2 z( )S• z( ).

(16)
This result shows that the stability of S•(z) is required to

ensure the internal stability in the MIMO problem, which is a

direct extension of the SISO FSP result. Details of the complete

proof can be found in Santos et al. (2014). The effects of Fr(z) on

the disturbance rejection and robustness properties are discussed

in Section 5.

5 Disturbance rejection and
robustness

Disturbance rejection performance and robust condition

define a relevant trade-off for practical control problems. The

design conditions to achieve closed-loop stability in the presence

plant-model mismatch and to reject persistent disturbances are

even more challenging in the presence of multiple input-output

delays. This section presents some of the key conditions to

achieve disturbance rejection and robust stability driven to the

MIMO-FSP for either stable or unstable processes.

5.1 Conditions to achieve disturbance
rejection

Firstly, the rejection of constant disturbances is considered

due to the relevance of this loop requirement for several

applications. For presentation generality, assume that n(k) �
Z−1{Pq(z)Z{qg(k)}} is a generalized disturbance signal and that

its effect depends on a certain disturbance model Pq(z). For

instance, if Pq(z) = P(z), then qg(k) can be used to represent q(k),

but if Pq(z) = I, then qg(k) is equivalent to n(k). In this case, the

nominal transfer matrix from qg(k) to y(k) is given by

Hyqg z( ) � I − Pn z( )C z( ) I + G• z( )C z( )[ ]−1Fr z( ){ }Pq z( ). (17)

As the delays do not modify the static gain, then

limz→1‖Pn(z) − G•(z)‖ = 0 and limz→1‖Pn(z)C(z) − G•(z)

C(z)‖ = 0. Hence, a typical solution is to impose that Fr(1) =

I and to include a multivariable integral action in C(z) such that

Pn(1)C(1)[I + G•(1)C(1)]−1 � I and ‖Hyqg(1)‖ = ‖(I − I)

Pq(1)‖ = 0, which ensures constant disturbance rejection for

a stable Pq(z) due to the final value theorem. It should be

remarked that if Pq(z) is not Bounded-Input Bounded-Output

(BIBO) stable, as verified with Pq(z) = Pn(z) if Pn(z) has poles

outside the unit circle, then Fr(z) has to be tuned to eliminate

these poles as previously discussed based on the unified dead-

time compensation structure. Therefore, S•(z) should be stable

to guarantee internal stability and ‖Hyqg(1)‖ = 0 to ensure

constant disturbance rejection. Both conditions can be

handled by the design of Fr(z). The general case can be

solved by defining a filter Fr(z) that guarantees the

elimination of the undesired poles of Pq(z) from a minimal

realization for Hyqg(z).

An interesting interpretation of this solution based on the

integral action of the primary controller C(z) comes from the

fact that if the stability of S•(z) is ensured and the filter static

gain is such that ‖S•(1)‖ = 0, then yp(k) → y(k) in steady state

and the integral action of C(z) ensures the constant disturbance

rejection.

5.1.1 Modified condition to ensure
constant disturbance rejection

Inspired by the ideas presented in Torrico et al. (2013) for

SISO systems, a relaxed condition for constant disturbance

rejection has been proposed for MIMO processes in Santos

et al. (2016). Actually, the integral action may not be directly

imposed by C(z), but by means of a modified steady-state

condition for Fr(1). The new condition is given by: 1) S•(1)

C(1) = I for constant disturbance rejection and 2) F(1) = Fr(1) for

constant set-point tracking. Moreover, if Pn(z) is stable, then

S•(1)C(1) = I can be achieved by imposing

Fr(1) � {Pn(1)C(1)[I + G•(1)C(1)]−1}−1. In these relaxed

conditions, the disturbance rejection problem has been

simplified because the integral action of C(z) is not required

anymore. Notice that the previous approach with integral action

is defined such that {Pn(1)C(1)[I + G•(1)C(1)]−1}−1 � I and

Fr(1) = I, which characterizes a particular solution.
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Once more, if Pq(z) is stable, then ‖Hyqg(1)‖ = ‖(I − I)

Pq(1)‖ = 0, which ensures the constant disturbance rejection

due to the final value theorem. On the other hand, if Pn(z) =

Pq(z) and Pn(z) has integral action, the internal stability

requires that S•(z) should be a BIBO stable matrix and the

modified condition may be expressed as S•(1)C(1) = I. The

BIBO stability of S•(z) imposes the elimination of the

integrating poles of Pq(z) from the disturbance rejection

response.

5.1.2 General conditions to achieve
disturbance rejection

Persistent deterministic disturbances such as sinusoidal

signals and ramp-like disturbances can be handled in the

same final value theorem paradigm. For instance, assume that

qg(k) = A sin(ωTsk + ϕ)I. In order to apply the final value

theorem, then Hyqg(z)Qg(z) should be stable. As a

consequence, the zeros of Hyqg(z) should be placed in the

same position of the poles of Qg(z) over the unit circle.

Hence, a new design condition is imposed to Fr(z) as follows

(Hyqg(z)|z�±e−jωTs � 0 )

I − Pn z( )C z( ) I + G• z( )C z( )[ ]−1Fr z( ){ }∣∣∣∣z�±e−jωTs � 0. (18)

In case of poles with multiplicity greater than one, such as

qq(k) = kA sin(ωTsk + ϕ)I or ramp disturbances, then the

condition is imposed to Hyqg and to its derivatives, where the

derivative order is one degree lower than the multiplicity of the

disturbance poles.

5.1.3 Disturbance rejection performance
The unified structure of the filtered Smith predictor has been

defined such that the open-loop unstable poles of Pn(z) are

avoided in the transfer matrix from q(k) to y(k). This idea,

that has been used to stabilize the predictor for open-loop

unstable processes, can be also applied to avoid slow open-

loop poles to appear in the disturbance rejection response.

This solution can be implemented by defining Fr(z) such that

the undesired poles of the disturbance model are eliminated from

Hyqg(z).

Once more, the transfer function from the generalized

disturbance to the output is given by

Hyqg z( ) � S z( )Pq z( ), (19)

where S(z) � I − Pn(z)C(z)[I + G•(z)C(z)]−1Fr(z) and

C(z) � Pn(z)C(z)[I + G•(z)C(z)]−1Fr(z). Hence, the

Complementary Sensitivity Function and the Sensitivity

Function, as a consequence, can be directly shaped by Fr(z).

As a result, the disturbance rejection response can be improved,

but the cost to pay comes from the typical trade-off between

disturbance rejection performance and robustness.

5.2 Robustness

The robustness analysis can be performed using the standard

unstructured description (Normey-Rico and Camacho, 2007).

Assume that the model uncertainty can be described by

P z( ) � Pn z( ) + ΔP z( ), (20)
where ΔP(z) is a stable unknown transfer matrix that represents

plant-model mismatch (Skogestad and Postlethwaite, 2005).

Moreover, the uncertainty model can be rewritten as follows1

ΔP ejΩ( )�W2 ejΩ( )Δ ejΩ( )W1 ejΩ( ), �σ Δ ejΩ( )( )≤1, ∀Ω ∈ 0,π[ ].
(21)

In the Eq. 21, the functions W1(e
jΩ) and W2(e

jΩ) give the spatial

and frequency structure of the uncertainty.

Now, defineY(z) = Pn(z)U(z) +ΔP(z)U(z),Q(z) =ΔP(z)U(z)

such that: 1) Q(z) = ΔP(z)U(z) and 2) U(z) = Huq(z)Q(z). The

transfer matrix Huq(z) is given by U(z) = −C(z)Fr(z)Q(z) − C(z)

G•(z)U(z). Then, M•(z) = Huq(z) is given by

M• z( ) � − I + C z( )G• z( )[ ]C z( )Fr z( ). (22)

The robust stability condition can be derived from the Δ −M

structure as depicted in Figure 5. Hence ‖Δ‖∞‖M(z)‖∞ < 1,

where M(z) = W1(z)M•(z)W2(z). Alternatively, the condition

may be given by

�σ M ejΩ( )( )< 1, ∀Ω ∈ 0, π[ ], (23)

for block diagonal perturbations. Notice that M(z) = −W1(z)[I +

C(z)G•(z)]C(z)Fr(z)W2(z), such that a low-pass frequency response

for Fr(z) may be directly used to reduce the loop gain at a given

frequency range in order to achieve the robust stability criterion.

If the system is open-loop unstable, the internal stability

condition implicitly imposes design constraints for Fr(z) as a

minimum gain is required to stabilize the prediction. Moreover,

low-pass robustness filters slow down disturbance rejection

performance even for open-loop stable processes. Hence, the

FIGURE 5
Δ − M structure for robustness analysis.

1 The notation �σ(X) represents the maximum singular value of matrix X.
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trade-off between disturbance rejection and robustness should be

taken into account.

For presentation simplicity, the additive uncertainty

description has been used in order to illustrate the robustness

filter impact with respect to a robust stability criterion, but this

type of simplified uncertainty description is not suitable to deal

with unstable additive uncertainty terms. For the general

problem, other types of uncertainty descriptions such as the

multiplicative input, the multiplicative output and their inverse

counterparts can be derived from the definitions presented by

Skogestad and Postlethwaite (2005, Chapter 8). The proposed

criterion is conservative because it spreads the uncertainty over

the whole transfer matrix before defining amagnitude bound, but

it is widely used in the robustness analysis of MIMO plants

(Skogestad and Postlethwaite, 2005) and the robustness filter

effect can be directly highlighted.

6 Case studies

This section presents three case studies. In the first one, a

SISO simulated unstable process is considered, to illustrate

some details of the filter implementation. In the second

simulation study, a MIMO plant is used in order to

illustrate some of the discussed points related to the

predictor structure and disturbance rejection response.

Finally, in the third one, experimental results are presented

to show the applicability of the dead-time compensation

strategy in practice.

6.1 single-input and single-output
unstable process

In this study the FSP is tuned to control an unstable process

with transfer function given by

P z( ) � 0.2214z−10

z − 1.221
,

and model Y(z) = P(z)[U(z) + Q(z)], where U(z) is the

manipulated variable, Q(z) is the disturbance, and Y(z) is the

process output. The sampling time is Ts = 0.2 s. To achieve zero

steady-state error for step references, a PI controller C(z) and a

reference filter F(z) are used in the primary controller of the

FSP. The tuning of the primary controller is not the focus of this

case study, so in order to obtain a stable closed-loop system

Y(z)/R(z), being R(z) the reference signal, C(z) and F(z) can be

tuned as

C z( ) � 2.657z − 2.496
z − 1

, F z( ) � 0.0606z
z − 0.9394

.

Thus, the closed-loop transfer function in the nominal

case is:

Y z( )
R z( ) �

0.0359z
z2 − 1.633z + 0.6689

z−10,

with two poles: z = 0.8166 + 0.0449j and z = 0.8166 − 0.0449j, plus

the poles which characterize the delay. The step response does

not present overshoot and has a setting time of about 7 s after the

delay is elapsed.

In this case, the prediction filter Fr(z) has to be tuned to

obtain a closed-loop disturbance rejection transfer function Y(z)/

Q(z) without the open-loop pole of the model at z = 1.221, which

is outside the unit circle. Moreover, the condition Fr(1) = 1 must

be met to achieve the rejection of step-like disturbances in steady

state. A simple first-order filter with unity steady-state gain

given by

Fr z( ) � z − a

z − b

1 − b

1 − a
,

is enough to achieve both these conditions, where b is the free

parameter to define the settling time of the responses and a is

computed for the condition 1 − z−dFr(z) = 0 for z = 1.221 and the

nominal delay d = 10. Note that this condition is directly derived

from the SISO expression of S• in (15), given by S(z) = Gn(z)(1 −

z−dFr(z)), which must be stable. Thus, all the poles of Gn(z)

outside the unit circle must be cancelled with the roots of the

numerator of 1 − z−dFr(z). In this case, tuning b = 0.915 to obtain

a closed-loop time response with settling time of approximately

7 s gives a = 0.9914. Thus, the resulting prediction filter is

Fr z( ) � 9.843z − 9.758
z − 0.915

.

For the controller implementation, the output prediction

yp(z) is computed using:

Yp z( ) � S z( )U z( ) + Fr z( )Y z( ),

FIGURE 6
Unstable SISO system: disturbance response in closed-loop.
Control action in dotted line and process output in solid line.
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where S(z) = Gn(z)(1 − z−dFr(z)) = Gn(z)z
−d(zd − Fr(z)) is stable

thanks to the imposed conditions in Fr(z). Note that S(z) must be

implemented eliminating the polo-zero cancellation at z = 1.221,

as this value is a root of both the numerator and denominator of

S(z). Thus, S(z) can be written as S(z) � Ns(z)
(z−0.915)z10, being Ns(z) =

[z10 + 0.3064z9 + 0.3743z8 + 0.4572z7 + 0.5584z6 + 0.6820z5 +

0.8330z4 + 1.0174z3 + 1.2427z2 + 1.5178z − 7.9893] the quotient

of the polynomial division when eliminating the root at z = 1.221.

The closed-loop response of the system is show in Figure 6

for a step disturbance of amplitude 1 applied at t = 0. As can be

seen, the closed-loop system is stable, the disturbance is rejected

in steady state, and the settling time is, as expected, about 7 s.

Note that as the system has a delay of 2 s, the response is not

affected by the disturbance in the first 2 s and then the system is

in open loop from t = 2 s to t = 4 s, since a control action taken at

t = 2 s only affects the system response after t = 4 s. Thus, the

settling time of about 7 s is measured from t = 4 s to t = 11 s (for

95% of attenuation).

6.2 Multi-input multi-output integrating
plant

Particularly, this case study considers the simplified MIMO-

FSP. For this purpose, a challenging example of a three-stage

evaporator system, already studied by several authors (Normey-

Rico and Camacho 2007); (Santos et al. 2017), is chosen. A

MIMO model can represent this process with two inputs, two

outputs, and multiple dead times as

Pn s( ) �

3.5 e−s

s

−e−5s
2s + 1

2 e−7s

1.5s + 1
−e−5s

3.2s + 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Pq s( ) �

3.5 e−3s

s

−4.5 e−2s

2s + 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (24)

where the time is in minutes. The inputs are the juice and steam

flows, while the outputs are the level and temperature in the

storage tank. For the control design, a discrete-time model is

given by

Pn z( ) �

0.7 z−5

z − 1
−0.0952 z−25

z − 0.9048

0.2497 z−35

z − 0.8752
−0.0606 z−25

z − 0.9394

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (25)

where Ts = 0.2 min is used. Note that the output disturbance in

this case is n(z) = Pq(z)q
g(z), where Pq(z) is the discrete-time

model obtained from Pq(s) considering step type disturbances.

As already mentioned, one of the advantages of the simplified

MIMO-FSP is that a simple primary controller C(z) can be used.

In this case, for simplicity, this controller is chosen as a diagonal

static gain. It is tuned to stabilize both the nominal full DTC and

output DTC fast models (Gf(z) and Go(z)). Note that these two

models have, for this case study, the same elements in the

diagonal, and different delays in the non-diagonal elements.

The reference filter F(z) is also a static gain that is tuned to

obtain Hyr(1) = 1, then

C �
0.2 0

0 −0.2
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, F �

1 0

0 6

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (26)

The design of the robustness filter depends on the

characteristic of the disturbance to be attenuated. In this

study, constant and sinusoidal plus constant disturbances are

considered in two different subsections. The objective is to

illustrate the tuning in these two cases and to analyse different

aspects of the closed-loop behavior.

6.2.1 Constant disturbance
This subsection presents comparative results of the simplified

MIMO-FSP considering both full DTC and output DTC fast models

and also different tuning of the robustness filters. In the first case, the

filter Fr1(z) was used in the two DTCs to accelerate the disturbance

rejection response; and in the second case, again for the twoDTCs, a

slow pole was used in Fr2(z) in order to achieve a more robust

solution (Santos et al., 2014). Note that in general, the filter tuning

has to satisfy a trade-off between robustness and disturbance

rejection response (Santos et al., 2014), thus it is expected a

better robustness in case 2. In this particular case, the used filters are

Fr1 z( ) �
1 + 12.143

z − 1( )
z

0

−14.286 z − 1( )
z

6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Fr2 z( ) �
1 + 0.6071

z − 1( )
z − 0.95( ) 0

−0.7143 z − 1( )
z − 0.95( ) 6

0.05z
z − 0.95( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(27)

It is worth mentioning that for this particular case of constant

disturbance, is possible to use the same robustness filter to satisfy

the disturbance rejection properties for both the full and output

DTC fast models. This is possible because the two models have the

same transfer function in the element (1, 1) of the fast model, which

is the one with the integrative mode. And, as the filter is block

diagonal, the internal stability condition is achieved tuning Fr,11(z).

Figure 7 shows the simulation results. Two step changes were

applied to the references r1 and r2 at t = 0 min and t = 20 min,

respectively. Then, a constant disturbance qg(t) = −0.02 was

applied at the input of Pq(s) at t = 50 min. It can be seen that

both controllers have similar performance for the first setpoint

change. In the second setpoint, the process coupling affected the

FSP with the full DTC fast model more severely, originating an

undershoot of 37% on y1(t). In comparison, the output DTC

presented an overshoot of 18%. As expected, the robustness

filters do not affect the nominal setpoint response. Regarding
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disturbance rejection, in the case of the more aggressive filter

Fr1(z) (Figure 7A), the output y1(t) of the output DTC

presented a better response with no overshoot. However,

the performance of the full DTC, for the case of Fr2(z) (see

Figure 7B), was better for the same output. Finally, the

disturbance rejection of the second output y2(t) is quite

similar for both controllers.

This example shows that the process coupling and different

dead times can deteriorate the setpoint response of the controller

with the full DTC fast model. Thus, a reference filter may be

necessary to improve the setpoint response. Furthermore, there is

no general rule for disturbance attenuation because it is difficult

to specify the effect of the uncompensated delays of the fast

models in the responses. Thus, specific tuning rules of the

MIMO-DTC is an open research topic.

6.2.2 Constant plus sinusoidal disturbances
In this subsection, the simplified FSP with output DTC fast

model is compared to a model-based predictive control (MPC)

implementation, which is a common choice for dealing with

MIMO processes with coupling. The robustness filter is

computed to obtain the desired disturbance rejection

characteristics. In this case, the process is supposed to be

subject to a disturbance signal which is composed of a

constant part plus a sinusoidal part with a 0.7 rad/min

frequency. In this case, the obtained filter Fr(z) for internal

stability and sinusoidal disturbance rejection is computed

using the method proposed in (Santos et al., 2017), giving

Fr z( ) �
1+ z−1( ) −2.7288z+2.8503( )

z−0.9( )2
−7.0075 z−1( )

z−0.9

z−1( ) −6.0903z+5.9474( )
z−0.9( )2 6+ −14.9620 z−1( )

z−0.9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(28)

Note that the robustness filter has the same static gain as F(z),

which is necessary to obtain an integral action. In addition, for a

fair comparison, all the poles of the filter Fr(z) are set to be equal

to the MPC proposed in Santos et al. (2017). In order to perform

the simulations, step changes were applied in the reference r1 at

t = 10 min and in r2 at t = 50 min; a constant disturbance of

amplitude −0.2 was applied at t = 120 min, and a sinusoidal

disturbance defined by 0.2 sin(0.7t) was introduced at t =

180 min.

As shown in Figure 8, for this tuning, the MPC has a

slightly better setpoint response because it attenuates better

the process coupling using a stronger control action. In this

case, the disturbance rejection response is slightly better in

the simplified FSP for both constant and sinusoidal

disturbances, despite the simplified FSP having filters with

lower order than the adaptive MPC. It is fair to mention that

the MPC uses an adaptive filter that estimates the frequency

of the sinusoidal disturbance online, which causes an

additional transient in the disturbance rejection responses.

This last topic is out of the scope of this paper, but further

details about the adaptive approach can be found in (Santos

et al., 2017). Furthermore, this example shows that despite

the MPC having a great ability to deal with complex MIMO

time-delayed processes, the MIMO-FSP might give a similar

performance.

6.3 Control of a neonatal intensive care
unit

This section presents a practical implementation of a

MIMO-DTC for controlling the temperature (T) and relative

humidity (RH) of a neonatal intensive care unit (NICU)

prototype. The objective here is to illustrate, in a real case,

FIGURE 7
Three-stage evaporator system: constant disturbance. (A) Results for the robustness filter Fr1(z); (B) Results for the robustness filter Fr2(z);
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the implementation of the MIMO-FSP, using the fast model

Go(z) in the predictor structure and considering tuning aspects

for a robust behavior.

A picture of the NICU prototype and its schematic

representation are shown in Figure 9. The manipulated

variables of the NICU are the power of a heating resistor

and a humidifier, which are controlled through a driving

circuit. A fan circulates the heated and humidified air

through an acrylic canopy to obtain uniform humidity and

temperature in the NICU dome. The linear model of the process

with a sampling time Ts = 12 s is given by Y(z) = Pn(z)U(z),

where

Pn z( ) �

0.6065 z−4

z − 0.9754
−0.1678 z−17

z − 0.9879

−0.05795 z−15

z − 0.9742
0.08129 z−14

z − 0.9821

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (29)

The output vector is given by Y � [RH T]′ and the input

vector is U � [uH uR]′, being uH the control signal that

manipulates the humidifier and uR the one that manipulates

the heating resistor.

For this case study, a diagonal PI controller C(z) is

proposed, which is tuned based on the fast model, obtained

by extracting the effective delay z−4 in the first output and the

effective delay z−14 in the second output. The obtained primary

controller is

C z( ) �

0.0421 z − 0.9691( )
z − 1

0

0
0.5934 z − 0.985( )

z − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (30)

while the robustness filter is defined by

Fr z( ) �

0.3883z2 −0.7503z+0.3625
z−0.98( )2 0

0
0.01516z2 −0.0217z+0.0069

z−0.98( )2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(31)

In this case, as the model is a simple representation of the real

process, a robust tuning is used. Thus, the PI controllers do not

accelerate the closed-loop responses and low-pass filters with two

poles are used in the diagonal of the MIMO filter to obtain a

robust closed-loop system. Moreover, this low-pass characteristic

of the filters is important to attenuate the effect of the noise in the

control signal.

Figure 10 shows an experiment with the proposed controller.

Two setpoint changes were applied in the relative humidity and

temperature setpoints to test the performance of the controller.

In addition, it is worth mentioning that the unmodeled dynamics

and the environmental conditions act as unknown disturbances.

In Figure 10, the relative humidity (in blue) and temperature (in

red) signals are at the top, while the controls signals uH (in blue)

and uR (in red) are at the bottom. Note that the controller has a

good performance, since the process outputs track the step-like

references, even in the presence of unknown environmental

disturbances and the coupling between the process variables.

In addition, the relative humidity and temperature measurement

noises are attenuated by the prediction filter and they do not

affect the control signals. Furthermore, as linear controllers are

used, an undesired overshoot occurs in the temperature during

the first setpoint change. This effect, called windup, originated

because the control signal u2 saturates. This effect can be

eliminated using an anti-windup technique, such as the one

used in Santos et al. (2021), which generalizes the ideas in Flesch

et al. (2017). However, that is not in the scope of this case study.

FIGURE 8
Three-stage evaporator system: constant plus sinusoidal disturbances.
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7 Future research topics

As it has been analyzed in previous sections, the MIMO-FSP

gives a control structure capable of dealing with stable and unstable

MIMO plants with multiple delays, considering, simultaneously,

several closed-loop specifications, such as disturbance rejection,

robustness, and performance. All these advantages are mainly

related to the predictor structure used in the controller, and to

the flexibility of the predictor filter. However, from the practical

control point of view, tuning aspects can be further studied. The

better choice of the fast model is an important subject for research.

Although, in general, the use of Go(z) in the predictor gives good

closed-loop results, there are some particular type ofMIMOprocess,

with very different delays in their elements, that can be controlled

with better performance usingGf(z) as fast model. This point can be

analyzed in a more general form, in order to evaluate the advantages

and drawbacks of the two options and to determine which process

characteristics should be considered in the decision. Another

important research point is the optimal tuning of the primary

controller and filters, considering a set of specifications.

This paper is based on Smith-predictor concepts for

processes with multiple delays that are described by input-

output transfer matrices. Input-output models are widely used

in practical problems due to the identification simplicity. An

interesting topic for further investigation is the extension of the

DTC properties for nonlinear input-output descriptions such as

Hammerstein, nonlinear autoregressive moving average with

exogenous input (NARMAX), and Volterra models.

The networked control systems have introduced some

interesting control challenges, such as networked induced

delay, packet disorder, and data dropout. The multivariable

problem with dead-time compensation in the presence of a

single-input time-varying delay has already been investigated

in a related work (Normey-Rico et al., 2012). However, the study

of the conservativeness of the robust stability criteria for systems

with time-varying delay deserves further investigation.

Moreover, adaptive control strategies for system with

networked induced delay and the case of multiple time-

varying delays may also be interesting topics for future works.

FIGURE 10
Experimental results of relative humidity and temperature
control in a NICU.

FIGURE 9
NICU prototype picture and scheme.
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8 Conclusion

This work presented a historical and technical overview of

the design of dead-time compensators for MIMO processes

with multiple dead times. It was shown how the original idea

of the Smith Predictor, presented in 1957, was used in a

modified form, to propose a controller capable to control

MIMO stable and unstable processes satisfying a set of closed-

loop specifications. It was also shown that the key point in the

analysis is the correct design of the predictor structure, that

has to be defined to guaranty internal stability of the closed-

loop system, and to offer enough degree of freedom for tuning,

looking for a trade-off between robustness and performance.

This overview emphasized that the MIMO-DTC challenge

depends on the internal delay structure, as different output

delays may increase significantly the compensation

difficulties. A unified discussion was provided such that

disturbance rejection and robustness requirements can be

directly handled by using any of the MIMO-FSP

alternatives. The main conclusion is that the MIMO filtered

Smith predictor-based controller is a generalized solution that

can be used to deal with multiple loop requirements due to

great flexibility provided by the robustness filter.
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