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Functional electrical stimulation (FES)-induced cycling is a rehabilitation

strategy that activates lower-limb muscles to achieve coordinated pedaling

in individuals with movement disorders. An electric motor is included in-the-

loop assisting the rider as needed to prolong exercise duration and mitigate

muscle fatigue. Power tracking objectives have been prescribed for motorized

FES-cycling, wheremuscles and the electricmotor are assigned to track desired

cadence (speed) and torque trajectories. However, predetermined desired

trajectories can yield poor cycling performance since the functional capacity

of each individual is unknown. In particular, when muscles are tasked to track a

desired torque, a dynamic approach is well-motivated to adjust the torque

demand for the rider in real-time (e.g., a constant torque demand may be

unfeasible throughout a cycling session since muscles fatigue). In this paper,

input-output data is exploited using a finite-time algorithm to estimate the

target desired torque leveraging an estimate of the active torque produced by

muscles via FES. The convergence rate of the finite-time algorithm can be

adjusted by tuning selectable parameters. The cycle-rider system is modeled as

a nonlinear, time-varying, state-dependent switched system to activate lower-

limb muscles and an electric motor. To achieve cadence and torque tracking,

nonlinear robust tracking controllers are designed for muscles and motor. A

robust sliding mode controller is designed for the electric motor to track a

desired constant cadence trajectory. Moreover, an integral torque feedback

controller is designed to activate quadriceps, hamstrings, and gluteus muscle

groups to track the desired torque trajectory computed by the finite-time

algorithm. A Lyapunov-based stability analysis is developed to ensure

exponential tracking of the closed-loop cadence error system and global

uniformly ultimate bounded (GUUB) torque tracking. A discrete-time

Lyapunov-based stability analysis leveraging a recent tool for finite-time

systems is developed to ensure convergence and guarantee that the finite-

time algorithm is Hölder continuous. The developed tracking controllers for the

muscles and electric motor and finite-time algorithm to compute the desired

torque are implemented in real-time during cycling experiments in seven able-

bodied individuals. Multiple cycling trials are implemented with different gain
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parameters of the finite-time torque algorithm to compare tracking

performance for all participants.

KEYWORDS

finite-time control, nonlinear control systems, Lyapunov methods, functional
electrical stimulation, cycling

1 Introduction

There are approximately 17,730 new spinal cord injury (SCI)

cases each year that affect individuals by limiting their mobility

and independence, and diminishing their quality of life

Kirshblum and Lin (2018); Hornby et al. (2020).

Rehabilitation technologies have been developed in the past

decades to restore mobility and improve the quality of life of

individuals with paralysis. Powered rehabilitationmachines, such

as exoskeletons andmotorized exercise machines, are designed to

assist individuals to improve their gait kinematics, metabolic and

cardiorespiratory responses, balance, and mobility Hornby et al.

(2020); Field-Fote and Roach (2011); Hong et al. (2020); Kressler

et al. (2018); Kressler and Domingo (2019); Sale et al. (2018).

Further, functional electrical stimulation (FES) is a therapeutic

approach that evokes artificial muscle contractions by applying

electrical stimuli across skeletal muscles, which can provide

improvements in muscle strength, blood flow, bone mineral

density, and range of motion Doucet et al. (2012); Reed

(1997); Peckham and Knutson (2005). FES has been

combined with electrical motors to develop hybrid

rehabilitation machines that can mitigate muscle fatigue and

prolong the benefits of muscle stimulation by exploiting the

electric motor’s torque reliability for locomotion Ho et al. (2014);

Chang et al. (2017); Nataraj et al. (2017); Alibeji et al. (2017);

Chang et al. (2022), upper-limb rehabilitation McCabe et al.

(2015); Rouse et al. (2018), and FES-cycling Bellman et al. (2017);

Duenas et al. (2019); Ghanbari et al. (2019); Chang and Duenas

(2019); Chang et al. (2020). Motorized FES-cycling has been

recommended for lower-limb rehabilitation in individuals with

limited function who otherwise would not be able to engage in

physical activity, since stationary cycling reduces the risks of

falling (e.g., compared to assisted walking). However, the highly

nonlinear, uncertain muscle dynamics pose technical challenges

for designing closed-loop FES feedback controllers Lynch and

Popovic (2008). Moreover, FES accelerates the onset of muscle

fatigue Winter (2009); Downey et al. (2017). Therefore,

innovative control designs are needed to improve the

performance of hybrid machines for cycling.

Cadence and power tracking are two main control objectives

for FES-cycling, which have motivated the design and evaluation

of controllers leveraging different techniques. Robust controllers

have been designed and implemented to track desired cadence

trajectories with and without motorized assistance Bellman et al.

(2017); Bellman et al. (2016); Kawai et al. (2019); Farhoud and

Erfanian (2014). Adaptive-based control methods involving

switched dynamics have been recently introduced to

compensate for model uncertainties and improve tracking

performance using iterative learning Ghanbari et al. (2019),

repetitive learning Duenas et al. (2019), and concurrent

learning Casas et al. (2020) approaches. Power tracking

controllers were designed to track predetermined desired

torque trajectories using impedance and admittance

techniques Chang et al. (2022); Cousin et al. (2019), Cousin

et al. (2020) and a model-based feedback approach Hunt et al.

(2004). However, existing power tracking controllers usually

implement predetermined desired torque trajectories and thus

are prone to experience degraded performance due to the time-

varying muscle dynamics and fatigue. Limited torque tracking

performance may require manual adjustments of the desired

torque demand, which is not practical in clinical settings. Thus,

technical challenges remain to develop control methods that can

adjust the desired torque trajectory in real-time to improve

power tracking, while capturing the muscle force-producing

ability and guaranteeing stability.

A potential strategy to improve power tracking in FES-

cycling is to adjust the desired torque target based on

collected input-output data. For example, powermeters are

usually integrated in lower-limb cycles to measure the applied

torque about the crank. However, the torque measurements

provided by powermeters include the collection of passive and

active torque contributions by the rider. Therefore, recent studies

on FES-cycling have calculated estimates of the active torque

generated by muscles to segregate their torque contributions

about the crank Cousin et al. (2020). Another potential strategy

to quantify active torque produced by muscles in real-time is

using an ultrasound imaging sensor approach Sheng et al. (2020).

This approach enables the estimation of the muscle dynamics

and can provide surrogate signals to explicitly quantify muscle

fatigue, which could be exploited as a feedforward control term

or to modify the electric motor assistance for cycling. However,

validation of the approach in Sheng et al. (2020) for cycling is still

needed to ensure robust measurements. Impedance and

admittance controllers for FES-cycling have implemented an

indirect torque approach in which changes in the rider’s

torque influence the cadence trajectory or vice versa

(i.e., changes in cadence impact the torque trajectory) Chang

et al. (2022); Cousin et al. (2019); Cousin et al. (2020). However, it

remains unclear how to exploit estimates of the active muscle

torque to adjust the desired torque trajectory in real-time

independently and without affecting the cycle’s cadence. In

addition, the approach to adjust the torque demand needs to
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guarantee stability of the closed-loop torque error system and

have fast convergence (e.g., finite-time convergence) to capture

the rider’s time-varying ability to generate active torque (e.g., due

to muscle fatigue).

Finite-time control techniques are well-studied in control

systems to guarantee convergence to an equilibrium in finite time

and provide robustness with respect to disturbances. Thus,

control performance can be improved by leveraging finite-

time stability tools to obtain a faster rate of convergence

compared to traditional asymptotic results. Stability results for

continuous autonomous systems, non-autonomous (i.e., time-

varying systems), switched, and hybrid systems have been

reported in Bhat and Bernstein (2000); Romero and

Benosman (2021); Haddad et al. (2008); Garg and Panagou

(2019). Finite-time stability results have been extended for

adaptive parameter estimation Garg et al. (2018),

discontinuous (using Filippov solutions) and impulsive

systems Hui et al. (2009); Nersesov and Haddad (2008). A

finite-time method has been integrated with extremum

seeking to maximize or minimize a cost function and achieve

real-time optimization with a fast convergence rate Poveda and

Krstic (2020); Guay and Benosman (2021). Recently, a discrete

finite-time framework has leveraged input-output data to learn

uncertain dynamics and guarantee robustness and nonlinear

stability Sanyal (2021). However, it is an open problem to

explore the feasibility of finite-time control tools to improve

torque tracking performance and ensure fast convergence

(i.e., provide performance guarantees) in the nonlinear,

uncertain FES-cycling system with additive disturbances and

input switching across lower-limb muscles.

In this paper, cadence and torque controllers are designed for

power tracking using a motorized FES-cycling system. The

contribution in this paper is the design, analysis and

experimental implementation of closed-loop controllers to

dynamically adjust the desired active torque produced by the

rider’s muscles and to track cadence and torque objectives tasked

to the electric motor and muscles, respectively. The motivation is

to update the desired active torque per crank cycle leveraging a

finite-time control technique as a tool to customizing the torque

trajectories for each participant while guaranteeing stability of

the FES-cycling system. The cycle-rider system is modeled as a

nonlinear, time-varying, state-dependent switched dynamical

system. To capture the time-varying muscle capacity to evoke

active torque, a finite-time torque control algorithm is developed

to adjust the desired torque in real-time by leveraging estimates

FIGURE 1
Schematic of the muscle stimulation patterns based on the crank angle to yield forward pedaling. The custom stimulation regions for each
muscle group are calculated based on the effectiveness to transfer torque about the crank as in Bellman et al. (2017). The crank cycle is segregated
into FES and non-FES regions. Within the FES regions, muscles are stimulated to achieve the desired torque tracking objective. Within the non-FES
regions, FES is not applied due to the low effectiveness to produce active torque. The electric motor is activated during the entire crank cycle to
achieve the cadence tracking objective.

FIGURE 2
Motorized FES-cycling test bed. (A) Current-controlled
muscle stimulator. (B) Brushed DC motor. (C) Surface Electrodes.
(D) Power meter and encoder. (E) Torque Analysis Box.
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of the active torque produced by muscles. The finite-time torque

controller leverages input-output data and is designed in

discrete-time to adjust the peak torque demand per crank

cycle, and thus converge in finite-time. This torque strategy

departs from existing cycling studies that implement

predetermined desired torque trajectories that may require

manual tuning as the rider fatigues. A robust sliding-mode

controller using an integral torque signal is designed to apply

FES to the hamstrings, quadriceps, and gluteus muscle groups to

track the desired torque trajectory. Similarly, a robust sliding-

mode controller is designed for the electric motor to achieve the

desired cadence tracking objective. A Lyapunov-based stability

analysis is developed to ensure exponential cadence tracking and

a GUUB result for torque tracking. A discrete-time Lyapunov-

based analysis is used to ensure the finite-time torque controller

that generates the desired trajectory is Hölder continuous.

Experimental results in seven able-bodied individuals are

presented to examine the feasibility of the developed methods.

TABLE 1 Tracking results for each participant1: RMS cadence tracking error, average of cadence tracking error _e, and average of torque tracking error
eτ .

β λ Subject RMS cadence
error (rpm)

_e (rpm) eτ (nms)

0.1 0.1 S1 0.88 ± 0.53 0.00 ± 0.88 12.01 ± 5.38

S2 2.15 ± 1.22 -0.16 ± 2.14 12.23 ± 11.79

S3 1.76 ± 0.99 -0.07 ± 1.75 22.28 ± 12.79

S4 1.93 ± 1.02 0.10 ± 1.93 12.18 ± 7.80

S5 1.31 ± 1.00 0.03 ± 1.65 7.98 ± 3.81

S6 1.58 ± 0.78 -0.03 ± 1.58 33.33 ± 20.63

S7 2.05 ± 1.22 -0.11 ± 2.05 43.54 ± 26.87

0.3 0.1 S1 1.21 ± 0.67 -0.13 ± 1.20 39.26 ± 20.30

S2 1.26 ± 0.76 -0.14 ± 1.26 24.40 ± 11.29

S3 1.62 ± 0.93 -0.09 ± 1.62 30.06 ± 14.90

S4 1.93 ± 1.10 0.00 ± 1.93 18.23 ± 8.22

S5 1.72 ± 1.01 0.12 ± 1.71 33.09 ± 21.07

S6 1.91 ± 1.14 -0.07 ± 1.91 68.47 ± 46.68

S7 2.40 ± 1.30 0.08 ± 2.40 106.33 ± 70.57

0.3 0.3 S1 0.88 ± 0.51 -0.02 ± 0.88 12.38 ± 5.85

S2 1.21 ± 0.74 -0.17 ± 1.19 33.69 ± 25.25

S3 1.54 ± 0.88 -0.01 ± 1.54 11.28 ± 6.97

S4 1.80 ± 0.97 -0.03 ± 1.80 18.72 ± 8.99

S5 1.39 ± 0.90 0.06 ± 1.39 9.34 ± 6.26

S6 0.95 ± 0.53 0.03 ± 0.95 14.53 ± 11.18

S7 1.17 ± 0.73 -0.07 ± 1.16 31.05 ± 21.01

0.5 0.1 S1 0.87 ± 0.51 -0.05 ± 0.87 46.81 ± 25.41

S2 1.63 ± 1.00 -0.24 ± 1.61 66.39 ± 36.29

S3 1.23 ± 0.67 0.03 ± 1.23 38.69 ± 18.96

S4 2.06 ± 1.18 -0.09 ± 2.06 39.09 ± 18.54

S5 1.74 ± 0.94 0.07 ± 1.74 25.92 ± 14.51

S6 2.13 ± 1.25 0.01 ± 2.13 75.79 ± 49.15

S7 1.57 ± 1.05 -0.02 ± 1.57 31.79 ± 15.53

Mean (S1-S7) 1.48 -0.03 32.82

STD2(S1-S7) 0.91 1.58 19.50

1 Reported as mean ± standard deviation (STD).
2 Reports the mean over the standard deviations.
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Cycling trials are implemented with different control gains in the

finite-time torque controller to illustrate the FES-cycling

performance. A discussion on the obtained experimental

results and the future work are described subsequently.

2 Cycle-rider dynamic model with
input switching

A single degree-of-freedom stationary cycle and rider can be

modeled as Bellman et al. (2017).

M q( )€q + C q, _q( ) _q + G q( ) + P q, _q( ) + d t( )
� τe q, _q, t( ) + τm q, _q, t( ), (1)

where q: R≥t0 → Q, _q: R≥t0 → R, and €q: R≥t0 → R are the

measurable crank angle, measurable crank angular velocity,

and unmeasurable angular acceleration, Q ⊆ R denotes the set

of crank angles, and t0 ∈ R≥0 is the initial time; M: Q → R>0
denotes the combined cycle-rider inertia; C: Q × R → R and

G: Q → R denote the Centripetal-Coriolis and gravitational

effects, respectively; P: Q × R → R denotes the effect of

passive viscoelastic and damping forces in the rider’s joints;

and d: R≥t0 → R denote the lumped disturbances applied to

the system (e.g., involuntary leg forces and muscle spasms), and

any other unmodeled effects. The torque applied by the electric

motor and produced by FES-induced muscle contractions are

denoted by τe: Q × R × R≥t0 → R and τm: Q × R × R≥t0 → R,

respectively. FES is applied to the quadriceps, hamstrings and

gluteal muscle groups in a pattern that facilitates effective torque

transmission about the crank Bellman et al. (2014). The torque

produced by muscles and the lumped switched muscle control

effectiveness are defined as

τm q, _q, t( ) ≜ Bσ q, _q, t( )um q, _q, t( ), (2)
Bσ q, _q, t( ) ≜ ∑

m∈M
Bm q, _q, t( )σm q( ), (3)

respectively, where the FES control input each muscle is denoted

by um: Q × R × R≥t0 → R and designed in Section 3.3. The

subscript σ ∈ S, where S is a finite set, indicates the index of

Bσ and switches according to the crank angle. The individual

muscle control effectiveness Bm: Q × R × R≥t0 → R>0 is defined

as in Bellman et al. (2016), ∀m ∈ M, where the setM includes all

the stimulated muscle groups. The state-dependent switching

signal for each muscle group is denoted as σm: Q → {0, 1},
∀m ∈ M. Figure 1 illustrates an example of the muscle

stimulation patterns based on the crank angle.

Cycles are outfitted with powermeters that measure the net

torque contributions about the crank. Hence, direct

measurements of the active torque contributions by muscles

are not readily available. Thus, an estimate of the active

torque produced by muscles is obtained similarly to Cousin

et al. (2020) for the subsequent control design. The

measurable torque τ: R≥t0 → R obtained from the powermeter

contains active torque and passive torque from the cycling

system. Therefore, the estimation of the active torque

τ̂m: Q × R × R≥t0 → R is defined as follows

τ̂m q, _q, t( ) � τ t( ) − τpassive q, _q( ), (4)

where τpassive: Q × R → R is the baseline measurement of the

passive torque (i.e., the torque required to drive the cycle-rider

FIGURE 3
Cadence tracking performance depicted for Subject 1 (S1). The cadence trajectory smoothly approached a steady speed (50 RPM) until t = 15
with motor only. Then, within the interval t = [15, 25], FES was integrated and set to um = 40μs. The closed-loop finite-time and muscle torque
controllers were activated at t= 25 and remained active until the end of the experiment t= 180. The blue curve illustrates the desired cadence and the
red curve shows the actual cadence. The gain parameters in (Eq. 20) are selected as β = 0.3 and λ = 0.3.
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systemwithout applying FES) recorded in a pretrial cycling test at

constant cadence. The active torque τm in (Eq. 2) is defined as

τm q, _q, t( ) � τ̂m q, _q, t( ) + ϵ t( ), (5)

where ϵ ∈ R>0 is an upper bound of active torque estimation

error.

The torque applied by the electric motor about the crank is

defined as

τe q, _q, t( ) ≜ Beue q, _q, t( ), (6)

where Be ∈ R>0 is the control effectiveness of the motor, and

ue: Q × R × R≥t0 → R is the control input for the motor

designed in Section 3.1.

The derivation of the kinematics and dynamics of the

switched FES-cycling system in (Eq. 1) have been introduced

in Bellman et al. (2017); Bellman (2015). The following

properties and assumption of the switched system introduce

lower and upper bounds for each term in (Eq. 1), which will be

exploited in the subsequent control design and stability analysis.

Property 1. The positive inertiaM(q) satisfies the inequalities

cm ≤ M(q) ≤ cM, where cm and cM are known positive constants

Lewis et al. (2004).

Property 2. |C(q, _q)|≤ cc| _q|, where cc is a known positive

constant Lewis et al. (2004).

Property 3. |G(q)| ≤ cg, where cg is a known positive constant

Lewis et al. (2004).

Property 4. |P(q, _q)|≤ cp1 + cp2| _q|, where cp1 and cp2 are

known positive constants Ferrarin and Pedotti (2000); Sharma

et al. (2009); Schauer et al. (2005); Bellman et al. (2017).

Property 5. 1
2
_M − C � 0 by skew-symmetry Lewis et al.

(2004).

Property 6. The lumped muscle switching control

effectiveness is bounded as Bm ≤Bσ ≤ �Bm,∀σ ∈ S, where Bm

and �Bm are known positive constants Bellman et al. (2017).

Property 7. The control effectiveness of motor is bounded as

B e ≤Be ≤ �Be,∀σ ∈ S, where B e and �Be are known positive

constants Bellman et al. (2017).

Assumption 1. |d(t)| ≤ cd, where cd is a known positive

constant.

3 Control development

The control design is segregated into cadence tracking

control objective, finite-time control algorithm to generate the

desired torque trajectory, and torque tracking control objective.

The first objective is to design a cadence controller for the electric

motor to track a desired constant cadence trajectory. The second

objective is to design a discrete-time finite-time controller that

generates the target amplitude for the desired torque trajectory.

The last objective is to design a torque controller for the muscles

via FES to track the desired torque trajectory.

3.1 Cadence tracking control

The measurable angular position tracking error e: R≥t0 → R

and filtered tracking error r: R≥t0 → R are defined as.

FIGURE 4
The integral-like torque tracking error eτ in (Eq. 22) is
depicted for Subject 4 (S4) during the cycling trial with gain
parameters in (Eq. 20) selected as β = 0.3 and λ = 0.1. The tracking
error starts to be computed and integrated at t = 25.

FIGURE 5
Torque tracking performance for Subject 4 (S4) during the
cycling trial with gain parameters in (Eq. 20) selected as β = 0.1 and
λ= 0.1. The light blue curve illustrates the desired torque τd and the
red curve shows the estimated active torque τ̂m . Themean of
the estimated active torque τ̂m is computed using a 5 s moving
window and depicted in solid blue. The mean of the estimated
active torque illustrates the time-varying trend of the torque
produced by muscles and captures the influence of muscle
fatigue.
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e t( ) ≜ qd t( ) − q t( ), (7)
r t( ) ≜ _e t( ) + αe t( ), (8)

where α ∈ R>0 is a selectable positive control gain and

qd, _qd, €qd: R≥t0 → R are bounded desired crank trajectories. For

simplicity of notation, the explicit dependence of time, t, is hereafter

suppressed unless required for clarity of exposition. After taking the

time derivative of (Eq. 8), pre-multiplying by M, substituting for

(Eqs 1, 6, 7), and performing some algebraic manipulation yields

FIGURE 6
The desired torque estimation error ef, i.e., the discrete finite-time tracking error, is depicted for Subject 4 (S4) using four different gain
parameter combinations in (Eq. 20) corresponding to the four cycling trials. (A,C,B) figures implement λ = 0.1 with β = 0.1, 0.3, 0.5, respectively,
depicting the differences in decay rate after the initial peak. (C,D) figures also provide a basis for comparison between for λ=0.1 and λ=0.3 for β=0.3
for illustrating the differences in decay rate following the initial peak.

FIGURE 7
Electric motor and muscle stimulation inputs for Subject 1 (S1) during a 5-s window in the cycling trial with gain parameters in (Eq. 20) selected
as β = 0.5 and λ = 0.1. The (A) shows the motor current computed by ue. The (B) depicts the pulse widths generated by um and applied to the
quadriceps, hamstrings, and gluteus muscle groups for the left and right legs.
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M _r � χ − Beue − τm − e − Cr, (9)

where the auxiliary signal χ: R≥t0 → R is defined as

χ ≜ M €qd + α _e( ) + C _qd + αe( ) + G + P + d + e. (10)

The upper bound for the auxiliary signal in (Eq. 10) can be

obtained by using Properties one to four, Assumption 1 as

χ ≤ c1 + c2 z‖ ‖ + c3 z‖ ‖2, (11)

where c1, c2, c3 ∈ R>0 are positive constants and the composite

error signal z: R≥t0 → R2 is defined as

z ≜ e r[ ]T. (12)

Given the open-loop error system in (Eq. 9), the cadence

control input for the electric motor ue can be designed as

ue � k1r + k2 + k3 z‖ ‖ + k4 z‖ ‖2 + k5|um|( )sgn r( ), (13)

where k1, k2, k3, k4, k5 ∈ R>0 are positive control gains, and the

signum function is sgn(·): R → [−1, 1]. The cadence control

input in (Eq. 13) includes a feedback term and robust control

terms to reject the auxiliary signal in (Eq. 10) and compensate for

the muscle torque cross-term. The closed-loop error system can

be obtained by substituting the control input (13) into the open-

loop error system in (Eq. 9) as

M _r � χ − e − Cr − τm

− Be k1r + k2 + k3 z‖ ‖ + k4 z‖ ‖2 + k5|um|( )sgn r( )( ). (14)

3.2 Finite-time control

The purpose of the finite-time controller is to compute the

target amplitude of the desired torque trajectory. The

implementation of arbitrary or predetermined torque

trajectories is susceptible to yield suboptimal cycling

performance since the rider’s capacity is uncertain and time-

varying (e.g., after a neurological disorder, people retain different

levels of residual function). In addition due to the FES-induced

muscle fatigue, motivation exists to update the desired torque

amplitude each cycle and eliminate the need to perform manual

adjustments. The discrete finite-time controller is designed as

follows.

The desired torque trajectory τd: R≥t0 × R → R is

designed as

τd t, q( ) � A ti( )f q( ), (15)

where ti ∈ R≥t0, i ∈ N denotes the ith time the crank passes q =

0°(i.e., crank cycle index), A: R≥t0 → R denotes the amplitude of

the desired torque trajectory, and f: Q → R is a normalized

bounded profile of the desired torque that depends on the crank

angle. The initial amplitude A (t0) for the desired torque is

selected as a positive constant, hence τd is guaranteed to be

bounded during the first cycle. The desired torque estimation

error ef: R≥t0 → R can be defined as

ef ti( ) ≜ A ti( ) − τpeak ti( ), (16)

where τpeak is the measurable peak active torque generated by

muscles during the last crank cycle and defined as

τpeak ti( ) ≜ max τ̂m t( )( ),∀t ∈ ti−1, ti[ ), (17)

where the estimate of the active torque τ̂m is obtained

using (Eq. 4).

Taking the forward difference of (Eq. 16) (i.e., ΔΩ(ti)
≜Ω(ti+1) − Ω(ti)) yields

Δef ti( ) � ΔA ti( ) − Δτpeak ti( ). (18)
The update law to generate the torque amplitude is designed as

ΔA ti( ) � D ef ti( )( ) − 1( )ef ti( ) + Δτpeak ti( ), (19)

where D: R≥t0 → R is defined as in Sanyal (2021).

D ef ti( )( ) � e2f( )β − λ

e2f( )β + λ
, (20)

β ∈ (0, 1), and λ ∈ R>0 is a selectable positive constant.

Substituting (Eqs 19, 20) into (Eq. 18) and performing some

algebraic manipulations yields the closed-loop torque amplitude

error system

Δef � −λ D ef( ) + 1( )ef
e2f( )β . (21)

3.3 Torque control tracking

The purpose of the torque controller is to track the desired

torque trajectory in the FES-regions as depicted in Figure 1. To

quantify the torque control objective, an integral-like error signal

eτ : R≥t0 → R can be defined as

eτ t( ) � ∫t

t0

τd ϕ( ) − τ̂m ϕ( )dϕ, (22)

where τd is the desired torque trajectory defined in (Eq. 15).

Taking the time derivative of (Eq. 22), setting the

initial conditions to zero, and substituting for (Eqs 2, 5)

yields

_eτ � τd − Bmum + ϵ. (23)
The muscle control input can be designed as

um � k6eτ + k7sgn eτ( ), (24)

where k6, k7 ∈ R>0 are selectable positive control gains. The

closed-loop torque error system can be obtained by

substituting (Eq. 24) into (Eq. 23) as
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_eτ � τd − Bm k6eτ + k7sgn eτ( )( ) + ϵ. (25)

4 Stability analysis

The stability of cadence and torque tracking controllers that

activate the electric motor and apply FES to muscles, respectively,

can be examined independently. Theorem 1 shows that given the

closed-loop cadence error system in (Eq. 14), the cadence

controller in (Eq. 13) achieves exponential tracking. Theorem

2 shows that the closed-loop error system in (Eq. 21) using the

discrete finite-time controller in (Eq. 19) is stable and Hölder

continuous in discrete time. Theorem 3 shows that given the

closed-loop torque error system in (Eq. 25), the torque controller

in (Eq. 24) achieves GUUB tracking.

4.1 Cadence tracking

Theorem 1. Given the closed-loop error system in (Eq. 14), the

controller in (Eq. 13) ensures exponential tracking in the sense

that

z t( )‖ ‖≤



λ2
λ1

√
z t0( )‖ ‖exp −ψ

2
t − t0( )( ), (26)

provided the following sufficient gain conditions are satisfied

k2 ≥
c1
B e

, k3 ≥
c2
B e

, k4 ≥
c3
B e

, k5 ≥
�Bm

B e

. (27)

Proof. Let V: R × R × R≥t0 → R≥0 be a nonnegative,

continuously differentiable function defined as

V � 1
2
e2 + 1

2
Mr2, (28)

which satisfies the following inequalities

λ1 z‖ ‖2 ≤V z, t( )≤ λ2 z‖ ‖2, (29)

where λ1, λ2 ∈ R>0 are known positive bounding constants,

and z is defined as in (Eq. 12). The control input in (Eq. 13) has

the discontinuous signum function (i.e., sliding-mode); hence,

the system’s trajectories cannot be solved in a classical sense.

Let z(t) be a Filippov solution to the differential

inclusion _z ∈ K[h](z), where K[·] is defined as Paden and

Sastry (1987) and h is defined using Eqs 8, 14 as h ≜ [ h1 h2 ],
where h1 ≜ r − αe and h2 ≜ χ − e − Cr − τm − Be(k1r + (k2
+k3‖z‖ + k4‖z‖2 + k5|um|)K[sgn(r)]). Hence, the time

derivative of (Eq. 28) exists almost everywhere (a.e.),

i.e., for almost all time. Based on (Fischer et al., 2013,

Lemma 1), the time derivative of (Eq. 28), _V(z, t) ∈a.e. _~V(z, t),
where _~V is the generalized time derivative of (Eq. 28) along the

Filippov trajectories of _z � h(z) and is defined as in Fischer

et al. (2013) as _~V ≜ ⋂ξ∈zVξ
TK[ _e _r 1 ]T(e, r, t). Since V (z, t) is

continuously differentiable in z, zV = {∇V}, thus
_~V ⊂
a.e.[ e r ]K[ _e _r ]T. Therefore, after taking the time

derivative, the generalized time derivative of (Eq. 28) can

be expressed as _~V ⊂
a.e.
e _e +Mr _r + 1

2
_Mr2. After substituting (Eqs

7, 8, 14), cancelling common terms, and applying Property 5,

the generalized time derivative of (Eq. 28) can be expressed as

_~V⊂
a.e. − αe2 + rχ − rτm

− rBe k1r + k2 + k3 z‖ ‖ + k4 z‖ ‖2 + k5 um| |( )K sgn r( )[ ]( ). (30)

The generalized time derivative of (Eq. 28) can be upper

bounded by substituting (Eqs 2, 11), and using Properties

6–7 as

_~V ≤
a.e. −αe2 − k1B er

2 + c1 − k2B e( )|r| + c2 − k3B e( )|r| z‖ ‖
+ c3 − k4B e( )|r| z‖ ‖2 + �Bm − k5B e( )|r‖um|.

(31)

Provided the gain conditions in (Eq. 27) are satisfied, the

inequality in (Eq. 31) can be further upper bounded as

_~V≤
a.e. − αe2 − k1B er

2. (32)

The upper bound in (Eq. 29) can be substituted into (Eq. 32)

to yield

_~V≤
a.e. − ψ ~V, (33)

where ψ ≜ 1
λ2
min(α, k1B e). Leveraging (Eqs 29, 33), the result in

(Eq. 26) can be obtained. Using (Eqs 28, 33), V ∈ L∞, hence,

e, r ∈ L∞, which implies that z ∈ L∞, and thus q, _q ∈ L∞.

4.2 Finite-time control

Theorem 2. Given the closed-loop error system in (21), the

update law in (19) ensures (21) is Hölder continuous in

discrete time with exponent 1
1−δ in the sense that

Vf ti+1( )≤ v − i + 1( )η( ) 1
1−δ , (34)

where v ∈ R>0 is defined as

v ≜
Vf t0( )

ε
, (35)

and ε, δ, η ∈ R>0 are positive constants.

Proof.Let Vf: R × R≥t0 → R≥0 be a positive definite, decrescent

and radially unbounded Lyapunov function defined as

Vf ti( ) � 1
2
e2f ti( ). (36)

Taking the first order forward difference

(i.e., Δ(ab) � aΔb + bΔa) of (Eq. 36) yields

ΔVf ti( ) � ef ti( )Δef ti( ). (37)

After substituting the closed-loop error system in (Eq. 21)

into (Eq. 37), the following expression is obtained
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ΔVf ti( ) � −λ D ef ti( )( ) + 1( ) e2f ti( )( )1−β, (38)
which can be further expressed as

Vf ti+1( ) − Vf ti( ) � −γVδ
f ti( ), (39)

where δ ≜ 1 − β and γ: R≥0 → R≥0 is a positive definite function

of Vf(ti) that satisfies the condition that there exists an ε ∈ R>0
such that

γ Vf ti( )( ) ≜ 2λ D ef ti( )( ) + 1( )≥ η ≜ ε1−δ ,∀Vf ti( )≥ ε. (40)

Leveraging the result in Sanyal (2021) and the fact that

Vf(ti+1) ≤ Vf(ti) from (Eq. 39), the following inequality can be

obtained to provide an upper bound for all cycles.

Vf ti+1( ) − Vf t0( ) � Vf ti+1( ) − Vf ti( ) + Vf ti( ) − Vf ti−1( )
+/ + Vf t1( ) − Vf t0( ) (41)

≤ − η Vδ
f ti( ) +/ + Vδ

f t0( )( ) (42)
≤ − i + 1( )ηVδ

f ti+1( ). (43)
Re-arranging the previous inequality yields

Vf ti+1( )≤ Vf t0( )
Vδ

f ti+1( ) − i + 1( )η⎛⎝ ⎞⎠ 1
1−δ

(44)

≤ v − i + 1( )η( ) 1
1−δ . (45)

SinceVf ∈ L∞, ef ∈ L∞. Since an initial bounded desired torque

amplitude A (t0) is assigned to the torque controller for the first

cycle and um ∈ L∞ from Theorem 3, then τpeak, A ∈ L∞.

Further, Δτpeak,ΔA ∈ L∞.

4.3 Torque tracking

Theorem 3. Given the closed-loop error system in (Eq. 25), the

controller in (Eq. 24) ensures GUUB tracking in the sense that

eτ t( )≤




























e2τ t0( )e−ψτ t−t0( ) + 2E

ψτ

1 − e−ψτ t−t0( )( )
√

, (46)

provided the following sufficient gain condition is satisfied

k7 ≥
�τd
B m

. (47)

Proof. Let Vτ : R × R≥t0 → R≥0 be a nonnegative, continuously

differentiable function defined as

Vτ � 1
2
e2τ . (48)

Let eτ(t) be a Filippov solution to the differential inclusion
_eτ ∈ K[h](eτ), where K[·] is defined as Paden and Sastry

(1987) and h ≜ h3 is defined by using (Eq. 25) as

h3 ≜ τd −K[Bm](k6eτ + k7K[sgn(eτ)]) + ϵ. The control input

in (Eq. 24) includes the discontinuous signum function and

the closed-loop error system in (Eq. 25) has the lumped

switched stiffness control effectiveness. Hence, the time

derivative of (Eq. 48) exists almost everywhere (a.e.), i.e., for

almost all time. After substituting for (Eq. 25) and using similar

arguments as in the proof of Theorem 1, the generalized time

derivative of (Eq. 48) can be expressed as

_~Vτ ⊂
a.e.
eτ τd −K Bm[ ] k6eτ + k7K sgn eτ( )[ ]( ) + ϵ( ). (49)

An upper bound for the previous expression can be obtained

by using Property 6 and substituting the upper bound of τd to

yield

_~Vs ≤
a.e. − Bmk6e

2
τ + �τd − Bmk7( )|eτ | + eτ |ϵ|. (50)

Provided the gain condition in (Eq. 47) is satisfied, the

inequality in (Eq. 50) can be further upper bounded as

_~Vτ ≤
a.e. − ψτ

~Vτ + E, (51)

where ψτ ≜ Bmk6 and E ≜ eτ|ϵ|. Using (Eqs 48, 51), Vτ ∈ L∞,

hence, eτ ∈ L∞. Thus, um ∈ L∞ implies ue ∈ L∞.

5 Experimental results

Experiments are provided to demonstrate the performance

of the designed controllers developed in (Eqs 13, 19, 24). The

control inputs are commanded as stimulation intensities

(i.e., pulse width control) to activate the quadriceps, gluteus,

and hamstrings muscle groups and as currents to the electric

motor. Seven able-bodied individuals (six males aged 19–29 years

and one female aged 19 years) participated in the FES-cycling

protocol at Syracuse University. Written informed consent

was obtained from each participant, as approved by the

Institutional Review Board (IRB) at Syracuse University. The

participants were instructed and reminded through the cycling

protocol to avoid voluntarily contributing to the pedaling

task. Individuals were not informed of the desired cadence or

torque trajectories.

5.1 Experimental setup

Testing was performed using a recumbent cycle (Sun Seeker

ECO-TAD SX) mounted on an indoor trainer and adapted with

orthotic boots as shown in Figure 2. A brushed 24 VDC electric

motor was mounted to drive the chain. An optical encoder (H1,

US Digital) was mounted at the crank to measure the crank

position and a SRM Science Road Wireless Power Meter with a

custom Torque Analysis Box measured and broadcasted the

torque data. An arduino Mega is used to convert the torque

measurements sent by the Torque Analysis Box to a digital signal

that can be used as feedback for the torque controller. The
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controllers were implemented on a desktop computer (Windows

10 OS) running a real-time target (QUARC 2.6, Quanser) via

MATLAB/Simulink 2018a (MathWorks Inc.) with a sample rate

of 1 kHz. The Quanser QPIDe DAQ board was used to read the

encoder signal and the digital torque signal from the Arduino,

and to control the motor driver (Advanced Motion Controls)1

operating in current-controlled mode. A current-controlled

stimulator (RehaStim, Hasomed GmbH) delivered biphasic,

symmetric, rectangular pulses to the participant’s quadriceps,

gluteus, and hamstrings muscle groups. Self-adhesive PALS®

electrodes (3 by 5 inches)2 were placed on each muscle group

in both legs. The stimulation current amplitude and stimulation

frequency were fixed at 80 mA and 60 Hz, respectively, for all

muscles. As safety measures, the participant had access to an

emergency stop button and software stop conditions were

implemented to limit the amount of motor currents to

comply with the hardware limits, and muscle stimulation

intensities to prevent uncomfortable stimulation intensities.

Measurements of the participant’s legs were recorded to

compute the switching signals for each muscle group based on

the rider’s kinematic effectiveness [i.e., define the FES regions in

Figure 1 as in Bellman et al. (2016)].

5.2 Experimental protocol and control
gains selection

A pretrial was performed at the same constant cadence as

in the cycling experiments to record passive torque data

τpassive used in (Eq. 4) for each participant without applying

FES. The desired cadence trajectory _qd smoothly approached a

steady state value of 50 revolutions per minute (RPM) during a

time interval of 15 s, t ∈ [0, T1], T1 = 15. During this interval,

the electric motor brought the rider to the desired speed and

FES was not applied to muscles. A transition time interval of

10 s, t ∈ [T1, T2], T2 = T1 + 10 is used to gradually integrate FES

in the experiment until reaching the steady state FES regions.

Within this transition interval, the FES inputs were set to um =

40μs to familiarize the rider with applied FES. Finally after the

transition period, both the cadence and torque controllers

were activated and remained active until the end of the

experiment, i.e., for t > T2 and t ≜ 180 s. All cycling

experiments were implemented for 3 min. Each participant

completed four cycling trials to implement different

combinations of the gain parameters in (Eq. 20) and

determine feasibility of the finite-time torque algorithm.

The order of the cycling trials was randomized. As

described in the IRB protocol, rest breaks of 10 min were

provided in between cycling trials. The control gains

introduced in (Eqs 13, 19, 24) were selected as follows: k1 =

3.5, k2 = 0.5, k3 = 0.01, k4 = 0.001, k5 = 0.01, α = 0.1, β = {0.1,

0.3, 0.5}, λ = {0.1, 0.3}, k6 ∈ [0.2, 0.3], k7 ∈ [5, 15]. The desired

torque profile f(q) in (Eq. 15) is defined as f(q) � 1
2 (sin(2q −

π
2) + 1) and the initial value of the desired torque amplitude is

set at A (t0) = 8 Nm.

5.3 Tracking results

Table 1 summarizes the root-mean-squared (RMS) cadence

error, average of the instantaneous cadence error, and average of

the integral torque errors for all subjects and their corresponding

gain parameters implemented in (Eq. 20). The experimental

results were analyzed starting at t = T2, which is the time the

system reached the desired steady-state cadence and the closed-

loop muscle and motor controllers were activated. The kinematic

tracking performance for participant S1 is illustrated in Figure 3,

where the desired cadence is depicted in blue and the actual

cadence is depicted in red. The torque tracking error eτ is

presented in Figure 4, which remains bounded during the

experiment. The torque tracking performance is illustrated in

Figure 5, where the desired torque is depicted in light blue, the

estimated active torque is depicted in red, and the average

estimated active torque with a moving window of 5 s is

depicted in solid blue. The average estimated active torque

illustrates the evolution of the torque produced by muscles

during the experiment, which is an indirect measure of

muscle fatigue (i.e., naturally the torque produced by muscles

decay due to FES-induced fatigue). Figure 6 shows the desired

torque estimation error ef (also referred as the finite-time

tracking error) across each crank cycle for different

combinations of the gain parameters in (Eq. 20). Figure 7

shows the electric motor input command ue and the muscle

stimulation inputs um for both legs in during the last 5 s of a

cycling trial.

5.4 Statistical analysis

Friedman tests were performed at a significance level of α =

0.05 to test for statistically significant differences in tracking

performance between the four cycling trials (i.e., four groups)

each with different gain parameters as reported in Table 1. The

Friedman tests on the response of the four cycling trials indicated

that there were no statistically significant differences in the RMS

cadence error (p-value = 0.1053) and mean cadence tracking

error (p-value = 0.9043). Alternatively, a Friedman test indicated

that there was a statistically significant difference between the

four cycling trials in the mean torque tracking error (p-value =

0.0134).

1 The servo drive was provided in part by the sponsorship of Advanced
Motion Controls.

2 Surface electrodes for the study were provided compliments of
Axelgaard Manufacturing Co., Ltd.
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6 Discussion

The experimental results demonstrate the feasibility of the

developed controllers in (Eqs 13, 24) to track the desired

cadence with an electric motor and torque trajectory by

applying FES to activate lower limb muscles. The finite-

time control algorithm developed in (Eqs 19, 20) adjusts

the torque demand in real-time to cope and capture the

rider’s time-varying ability to generate active torque. As

depicted in Figure 3, the developed motor cadence

controller is able to maintain the rider’s speed within a

range of less than ±1 RPM. In Figure 4, the integral torque

tracking error remains bounded during the cycling trial

showing a feasible interaction between the desired torque

demand (computed by the finite-time torque algorithm)

and the active torque produced by muscles, which depicted

in Figure 5. The developed cadence controller yields an

average cadence tracking error of −0.03 ± 1.58 RPM across

all participants. Cadence tracking performance is influenced

by the interaction with the muscle torque controller. Thus, the

motor cadence (presented in Figure 7) compensates for the

active torque generated by muscles, which act as a disturbance

in the cadence control loop. The influence of the muscle

torque into the cadence tracking objective can be quantified

by the RMS cadence error included in Table 1.

The developed torque tracking controller achieves an

average torque tracking error of 32.82 ± 19.50 Nms across

all participants. As depicted in Figure 4, the integral-like

torque tracking signal eτ started to integrate the error at t =

T2 = 25, when the torque tracking controller is activated. The

torque tracking error started to build up at the beginning (e.g.,

up to approximately 45 s) since the finite-time controller was

adjusting the desired torque to capture the rider’s ability to

generate active torque (i.e., the finite-time controller leverages

estimates of the active muscle torque τ̂m). The integral torque

tracking error decreased for periods during the cycling trial

(e.g., around 45–70 s) and overall remain bounded. The

estimation of the active torque and the desired torque

trajectory are shown in Figure 5. The rider showed signs of

muscle fatigue throughout the experiment, evidenced by decay

in the active torque generated, which may have resulted in

increased torque tracking error (e.g., during 80–100 s in

Figure 4. However, the developed finite-time controller

kept adjusting the desired torque trajectory based on the

rider’s torque input data to cope with muscle fatigue. The

ability to adapt the desired torque trajectory is an important

contribution in the present cycling study because the

implementation of predetermined desired torque

trajectories as in [Duenas et al. (2020)] would likely yield

increased tracking errors and induce overstimulation of

already fatiguing muscles. Figure 7 shows the FES inputs

applied to the muscles ensuring consistent torque output

while preventing high stimulation values that are typical

for power tracking experiments implementing predefined

torque trajectories [Duenas et al. (2020)]. Thus, cycling

trials with predetermined trajectories will require manual

adjustments of the torque demand to cope with the muscle

fatigue, where such manual tuning is not needed in the present

paper. In addition, incorporating the ability to adapt the

desired torque trajectory in real-time holds the potential to

extend the duration of the cycling trial.

Stability is guaranteed by the developed stability analyses

and illustrated during the cycling trials despite muscle input

switching and the nonlinear cycle-rider dynamics. A

challenge for the implementation of FES-cycling

experiments is related to the muscle activation dynamics.

The active torque generated by FES-induced muscle

contractions is influenced by the inherent muscle

electromechanical delay (EMD). The time-varying EMD is

approximately 100–300 ms Downey et al. (2017) and

degrades the muscle torque tracking performance. A

recent study has developed an input delay compensator to

inject a delay-free input in the closed-loop error system to

compensate for the muscle input delay Alibeji et al. (2018).

However, constructive delayed control compensation

requires additional control design and stability analysis,

which is beyond the scope of this paper. In this paper, the

motivation was to adjust the desired torque trajectory using

the finite-time controller leveraging estimates of muscle

active torque (thus capturing the muscle activation

dynamics) to improve the cycling tracking performance.

The controllers in (Eqs 13, 24) include sliding-mode

control terms to compensate for model uncertainty and

disturbances in the FES-cycling dynamics to guarantee

exponential and GUUB tracking, respectively. However,

discontinuous control leverages high frequency that can

accelerate the rate of muscle fatigue and lead to potential

chattering effects. Future work includes the design of

adaptive-based learning controllers to estimate the critical

parameters in the model and thus mitigate the use of sliding-

mode control techniques.

The finite-time control technique enables the tuning of the

desired torque trajectory (i.e., the torque peak amplitude) by

selecting the gain parameters β, λ in (Eq. 20) to tune the

controller’s rate of convergence and the range of the update

law in (Eq. 19). Figure 6 presents the performance of the finite-

time controller during the four cycling trials for participant

S4. The rate of convergence in experiments can be tuned by

tuning the control gains in (Eq. 20) as proven in the stability

analysis in Theorem 2. In Figure 6, the number of crank cycles

needed to reduce the initial peak error and drive error ef to

reach a steady error are around 30, 40, and 55 for β = 0.1, 0.3,

0.5, respectively with a fixed λ = 0.1 (as depicted in the top left,

bottom left, and top right figures, respectively). For a fixed

value of β = 0.3, it takes around 30 crank cycles to reach a

steady error with λ = 0.3 (bottom right figure) and around
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40 crank cycles to reach a steady error with λ = 0.1 (bottom left

figure). The experimental results demonstrate that the

developed finite-time controller has the ability to adjust the

rate of convergence of desired torque trajectory, which

validates the result in the stability analysis during real-time

cycling experiments.

The statistical analysis in Section 5.4 indicates that the tuning

of finite-time control parameters in (Eq. 20) yields a statistically

significant difference in torque tracking, but not in cadence

tracking. This is an expected result since the electric motor is

controlled to independently regulate the cadence performance

with fixed control gains in (Eq. 13) across cycling trials for all

participants. Alternatively, the finite-time controller exploits the

rider’s torque data and generates the desired active torque

trajectory. Thus, changing the control parameters β, λ in (Eq.

20) across the cycling trials yields significant differences in the

torque tracking performance quantified by the mean torque

tracking error eτ . This implies that the developed finite-time

approach is able to customize the desired active torque for the

participants in real-time. The sliding-mode control term in (Eq.

13) compensates for the muscle torque input τm that appears in

the closed-loop cadence error dynamics in (Eq. 14) (i.e., mitigates

the influence of torque tracking in the cadence loop). Therefore,

the tuning of finite-time control gains that directly influence the

closed-loop torque error dynamics does not yield a statistically

significant difference in cadence tracking performance. Future

work involves determining how to optimize the selection of the

torque control parameters based on a target cycling duration or

comfort.

The obtained cycling performance in seven able-able-bodied

individuals shows the feasibility of the developed cadence and

torque tracking controllers to account for the differences in leg

function (e.g., muscle strength, muscle mass, etc.) and achieve

satisfactory pedaling rates. The control strategy holds the

potential to improve rehabilitative cycling in individuals with

different levels of lower-limb function and mobility since each

individual will inherently need a different level of assistance. In

particular, the controller exploits estimates of the active muscle

torque to capture the rider’s time-varying ability for power

tracking. This control feature is beneficial for FES-cycling and

rehabilitation applications to customize the desired trajectories in

real-time. Future work includes the implementation of the

developed cycling strategy in individuals with movement

disorders such as people with chronic SCI who could benefit

from the lower-limb exercise. Since the control method is able to

adapt the torque demand in real-time, it is envisioned that long-

duration cycling trials could be implemented without the need to

manually adjust the torque demand and prevent early

termination of the cycling experiment.

7 Conclusion

Motorized FES-cycling combines the benefits of FES and

the assistance provided by an electrical motor to achieve

consistent, stable lower-limb motion. This paper developed

and implemented power tracking controllers and

demonstrated their feasibility in cycling experiments. A

cadence controller is designed for the motor to track a

desired constant cadence. FES is applied to the lower-limb

muscle groups using an integral-like torque tracking error

signal. A discrete finite-time algorithm is developed to

generate the desired torque trajectory based on input-output

data leveraging estimates of the rider’s active muscle torque.

Thus, the finite-time control method capture the rider’s ability

to produce active torque in real time cycling experiments.

Lyapunov-based stability analyses are presented to guarantee

an exponential cadence tracking and a GUUB torque tracking

results. A discrete-time Lyapunov-based stability analysis is

used to ensure the finite-time algorithm that generates the

desired torque trajectory is Hölder continuous and

convergence is obtained in a finite number of crank cycles.

Experimental results in seven able-bodied individuals are

obtained during four cycling trials. Each cycling trial

implemented a different combination of the gain parameters

of the finite-time torque algorithm. As shown in the stability

analysis, tuning the gain parameters in the finite-time algorithm

resulted in changes in the rate of convergence quantified in the

number of crank cycles. Future work includes the

implementation of cycling experiments with people with SCI.

Future control innovations include designing controllers that

compensate for the EMD and explicitly compensate for muscle

fatigue during power tracking cycling experiments.
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