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In this paper, we consider the problem of power scheduling of a sensor that transmits over
a (possibly) unknown Gilbert-Elliott (GE) channel for remote state estimation. The sensor
supports two power modes, namely low power, and high power. The scheduling policy
determines when to use low power or high power for data transmission over a fading
channel with temporal correlation while satisfying the energy constraints. Although error-
free acknowledgement/negative-acknowledgement (ACK/NACK) signals are provided by
the remote estimator, they only provide meaningful information about the underlying
channel state when low power is utilized. This leads to a partially observable Markov
decision process (POMDP) problem and we derive conditions that preserve the optimality
of a stationary schedule derived for its fully observable counterpart. However,
implementing this schedule requires knowledge of the parameters of the GE model
which are not available in practice. To address this, we adopt a Bayesian framework
to learn these parameters online and propose an algorithm that is shown to satisfy the
energy constraint while achieving near-optimal performance via simulation.
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1 INTRODUCTION

Remote estimation is a key component in the evolution of wireless applications from conventional
wireless sensor networks (WSNs) to the Internet-of-Things (IoT) and the Industry 4.0 (Lee et al.,
2015; Alam et al., 2017). The wide adoption of wireless sensors in modern control environments is
motivated by the advancements in sensor technology, which facilitate the use of small and low-cost
sensors with high computational capabilities, as well as the significant improvements in
communication technologies. Along with these technological advancements come a plethora of
new and foreseeable applications in areas such as intelligent transportation systems, environmental
monitoring, smart factories, etc. (Park et al., 2018).

The main challenges in the adoption of wireless sensors in control and remote estimation arise
from the characteristics of the wireless medium. More specifically, fluctuations in the received signal
strength are inevitable in wireless communication which can lead to loss of transmitted packets thus
deteriorating the estimation quality. Although using higher transmission power can negate this to
some extent, wireless sensors are often powered by batteries which necessitates using low power for
transmission to preserve energy. This is mainly motivated by the placement of wireless sensors in
inaccessible environments or other limitations that restrict easy replacement of the on-board
batteries (Singh et al., 2020). Moreover, transmission with low power is desirable when
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interference among users can exacerbate the packet dropout
probability in several wireless standards (Pezzutto et al., 2021).
Consequently, it is imperative to design efficient transmission
power schedules which take into consideration the time-varying
nature of the wireless channels for allocating the limited available
energy to achieve desirable estimation performance.

There are many works on the remote estimation problem over
fading channels which are mainly concerned with the efficient use
of the limited bandwidth without taking into consideration any
energy constraints. The problem is often solved by designing
offline (Yang and Shi, 2011; Zhao et al., 2014; Han et al., 2017) or
time-varying (Wu S. et al., 2018; Eisen et al., 2019; Chen et al.,
2021; Farjam et al., 2021; Forootani et al., 2022) sensor selection
policies. Designing power control schemes for energy-aware
scheduling policies over fading channels has also been
receiving attention (Leong et al., 2018). For instance, an event-
based sensor data scheduling method was proposed in (Wu et al.,
2013) to satisfy an average communication rate and the
minimum mean square error estimator was derived. Adjusting
the transmission power of the sensor based on the states of the
plant in a manner that preserves the Gaussianity of local estimate
innovation was investigated for the single and multi-sensor
scenarios in (Wu et al., 2015) and (Li et al., 2018),
respectively. For the linear quadratic Gaussian control
problem, approximate dynamic programming was employed
in (Gatsis et al., 2014) to design transmit power policies that
also take power consumption into consideration. The scenario in
which the sensors have energy harvesting capabilities has been
considered in (Knorn and Dey, 2017; Knorn et al., 2019).

One drawback of the aforementioned works is that they ignore
the effect of shadow fading which can lead to burst error and
temporal correlation of the channel gains over time. This
phenomenon is typical in industrial environments where large
moving objects can obstruct the communication path (Quevedo
et al., 2013). Such effects can be captured bymodeling the channel
as a two-state Markov chain which is known as the Gilbert-Elliott
(GE) channel (Gilbert, 1960; Elliott, 1963). Although this model is
a better representative of the environments where wireless
sensors would be deployed in industrial application, it has
received less attention than the memoryless channel model in
control literature. A limited number of works have considered the
GE model for bandwidth-limited sensor selection (Farjam et al.,
2019; Leong et al., 2020), the stability problem (Wu J. et al., 2018;
Liu et al., 2021), and sensor power allocation for remote
estimation (Qi et al., 2017).

In this work, we consider the transmission power scheduling
of a battery-powered smart sensor monitoring a dynamical
system. This sensor transmits its local estimates to a remote
estimator via a GE channel and it can operate in two power
modes: low power and high power. When the high power setting
is utilized the data packet will be successfully received by the
remote estimator regardless of the channel condition. However, if
the data packet is transmitted with low power, it will be dropped if
the channel condition is bad. For a similar setup, (Qi et al., 2017)
proposed the optimal scheduling policy, provided that the
channels states are fully observable and the channel
parameters are known a priori. We consider a more realistic

setup where the channel state cannot be observed when the data
packet is transmitted with high power. Furthermore, we lift the
restrictive assumption of a priori knowledge of channel
parameters and propose a learning method for achieving near-
optimal performance. Our main contributions can be
summarized as follows.

• We lift the assumption that the channel state can be always
inferred from the ACK/NACK messages from the remote
estimator. This assumption is reasonable when low power is
selected for transmission since the sensor can infer the
channel state from the ACK/NACK signal. However,
using high power always results in successful
transmission and thus the underlying channel state
cannot be inferred from the ACK/NACK signal. We
show that the resulting problem is a partially observable
Markov decision process (POMDP). Furthermore, we
establish the conditions that guarantee the optimality of
the schedule developed for the fully observable counterpart
in this new setting.

• We make the realistic assumption that the transition
probabilities of the GE channel are unknown when the
system is initiated and adopt a Bayesian framework for
learning them. We then propose a heuristic posterior
sampling method based on this framework to ensure that
the problem is computationally tractable. The algorithm is
shown to achieve near-optimal performance while
guaranteeing that the energy constraint is satisfied.

A preliminary version of this work appeared in Farjam et al.
(2020). Compared to that, here we provide a clearer and more
extensive presentation of the methodology. We have included the
formal Markov decision process (MDP) formulation and
justification of the optimality of the stationary schedule. This
is reminiscent of the approach in the original work for the always
observable case (Qi et al., 2017) and it contributes to the
completeness and clarity of the presentation of our results. We
have included a discussion on the stability of the estimation under
the proposed schedules, as well as the detailed derivation of the
Bayesian framework and thorough discussions on the
performance of the adopted learning methodology.

The remainder of the paper is organized as follows. In Section
2, we provide the system model and formulate the problem of
interest. In Section 3, we present the optimal scheduling policy
for the fully observable case and derive the conditions that
preserves optimality of this schedule with partial observations.
In Section 4, a learning method based on Bayesian inference is
proposed for near-optimal scheduling with respect to the energy
constraint. In Section 5 we evaluate the performance of the
proposed methods and finally we draw conclusions in Section 6.

Notation: Vectors and matrices are denoted by lowercase and
uppercase letters, respectively. Sn+ is the set of n by n positive semi-
definite matrices. The transpose, inverse, and trace of a square
matrix X are denoted by XT, X−1, and tr(X), respectively. E{·}
represents the expectation of its argument and P{·} denotes the
probability of an event. The n-fold composition of function f(·) is
denoted by fn(·) and f0(X) = X, and g◦f(·) ≜ g[f(·)]. The n by n
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identity matrix is represented by In and σmax(X) denotes the
spectral radius of a matrix X.

2 PROBLEM FORMULATION

2.1 Plant
We consider a discrete-time linear time-invariant system which is
represented by

xk+1 � Axk + wk,
yk � Cxk + vk,

where xk ∈ Rn is the state, yk ∈ Rm is the output measured by the
sensor,A and C are known time-invariant matrices of appropriate
dimensions. The Gaussian random vectors wk ∈ Rn and vk ∈ Rm

represent the process and measurement noise, respectively, which
are zero-mean and their covariance matrices are given by W and
V, respectively. Furthermore, the initial state x0 is also a Gaussian
random vector with covariance P0 and it is uncorrelated with wk

and vk.
Let I s

k � {y0, y1, . . . , yk} denote the measurement history
available at the sensor at time k. The sensor is capable of pre-
processing the raw measurements before transmitting it to the
remote estimator for improving the estimation. By utilizing the
measurement history, the sensor can compute the minimum
mean square error (MMSE) state estimate, i.e., x̂s

k ≜ E{xk|I s
k},

by running a local Kalman filter and the error covariance is given
by Ps

k ≜ E{(xk − x̂s
k)(xk − x̂sk)T|I s

k}. To determine the error
covariance, first we define functions h, g: Sn+ → Sn+ as

h X( ) ≜ AXAT +W, (1)
g X( ) ≜ X −XCT CXCT + V[ ]−1CX. (2)

By assuming that the pairs (A, W1/2) and (A, C) are controllable
and observable, respectively, the availability of the entire
measurement history ensures that Ps

k is convergent. More
specifically, the steady-state error covariance, denoted by �P, is
the unique positive semi-definite solution of g◦h(�P) � �P. By
initializing the local filter from P0, Ps

k converges to �P
exponentially fast. Thus, we assume that the Kalman filter has
already entered steady-state at the sensor side.

2.2 Wireless Communication
The information exchange between the sensor and remote
estimator is supported by a wireless communication channel.
This channel is modeled as a two-state Markov chain which is
also known as the Gilbert-Elliott (GE) channel (Gilbert, 1960;
Elliott, 1963). This model can capture the effects of shadow fading
and burst error and is more general than the more commonly
adopted model of i.i.d. packet dropouts, i.e., memoryless channel.

Thus, the GE model is more accurate for industrial environments
since the presence of large moving objects in such environments
means intermittent obstruction of the radio links which leads to
burst error and time correlated channel gains (Quevedo et al.,
2013). The channel according to the GE model can be in two
states, namely a good (G) or bad (B) state as illustrated in
Figure 1. The transition probabilities from G to B and B to G
are denoted by p and q, respectively. Note that 0 ≤ p, q ≤ 1 and we
further assume that q ≤ 1 − p, i.e., positively correlated channels.

At each time k, the battery-powered sensor transmits a data
packet containing x̂s

k over the channel to be received at the
estimator. We assume that the transmitter at the sensor
supports two power levels denoted by δ and Δ, where δ < Δ.
Let A ≜ {0, 1} and ak ∈ A denote the action space and the action
at time k. The selected transmission power at the sensor can then
be defined as

ak � 1, x̂s
k is transmitted with energyΔ,

0, x̂s
k is transmitted with energy δ.

{ (3)

When transmission is done with low power (δ), the data packet is
dropped if the channel is B, otherwise it is successfully received at
the estimator side. However, when the high power is utilized (Δ),
data transmission is guaranteed to be successful regardless of the
state of the channel. This scenario is in accordance with the
reliable data flow offered by commercial sensors when using their
highest energy level (Xiao et al., 2006). Since a sufficiently high
transmission power results in a high Signal to Noise Ratio (SNR)
regardless of the channel condition, the energy level Δ can be
determined such that this assumption holds.

2.3 Remote Estimation
We assume that instantaneous packet acknowledgements-/
negative-acknowledgements (ACK/NACKs) are available
through an error-free feedback channel and let γk ∈ {0, 1}
represent it, i.e., γk = 1 if transmission is successful and γk = 0
otherwise. Moreover, let θ denote the scheduling scheme adopted
by the sensor that determines ak in Eq. 3. The available
information at the estimator at k can then be described by

I k θ( ) � γ0, x̂
s
0γ0, γ1, x̂

s
1γ1, . . . , γk, x̂

s
kγk{ }.

The MMSE state estimate and error covariance at the remote
estimator are given by

x̂k θ( ) ≜ E xk|I k θ( ){ } � Atk x̂s
k−tk ,

Pk θ( ) ≜ E xk − x̂k( ) xk − x̂k( )T|I k θ( ){ } � htk �P( ),
where tk ≜ k − maxt≤k{t : γt = 1} is the time elapsed since the last
successful packet reception and the function h(·) is defined in Eq. 1.

2.4 Problem of Interest
Our aim is to find a power scheduling scheme to achieve the best
estimation performance while the energy constraint imposed by
the limited capacity of the sensor’s battery is satisfied. To this end,
we choose the trace of the error covariance matrix at the remote
estimator as the performance metric. By considering the
performance over the infinite horizon, the average expected

FIGURE 1 | The two-state Markov chain of the GE channel model.
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value of this metric for a given schedule θ is considered as the
objective

Pa θ( ) � lim sup
T→∞

1
T
E ∑T−1

k�0
tr Pk θ( )( )⎧⎨⎩ ⎫⎬⎭. (4)

The average energy cost incurred by implementing θ is given by

Ja θ( ) � lim sup
T→∞

1
T
E ∑T−1

k�0
1 − ak( )δ + akΔ

⎧⎨⎩ ⎫⎬⎭.

Assuming that the energy budget determined by the expected
operational time of the sensor is given by L (δ ≤ L ≤ Δ), we can
formulate our problem of interest as.

PROBLEM 1.

min
θ

Pa θ( ),
subject to Ja θ( )≤ L.

(5)

3 SCHEDULINGOVER AKNOWNCHANNEL

In this section, we address the scheduling problem over a known
GE channel. This refers to the scenario in which the transition
probabilities of the underlying Markov chain, i.e., p and q, are
known. Assuming that the channel state is observed at every time
step k, Problem 1 can be solved by considering the equivalent
constrained MDP formulation as shown in (Qi et al., 2017).
Knowledge of the actual channel state is reasonable when low
power is utilized for transmission since the ACK/NACK signal can
be used to determine the channel state. More specifically, reception
of ACK can be construed as the channel state being G while NACK
corresponds to B. However, since using the high power would
always result in successful transmission, the actual channel state
remains unobserved since transmission is always followed with
ACK. Although this issue can be overcome by assuming that
instantaneous Channel State Information (CSI) acquisition is
available, the relatively small coherence time of the channel due
to fast fading renders this solution invalid. To address this, we
consider that the channel state remains unobserved whenever the
sensor uses its high power setting which leads to a POMDP
problem. We first present the structure of the optimal policy
derived for the constrained MDP problem and then prove that
the results can provide the optimal solution to the POMDP
problem under certain conditions.

3.1 Optimal Schedule for the Fully
Observable Case
By assuming that the channel state is always observed regardless
of the chosen transmission power, Problem 1 can be transformed
into a constrained MDP. The state space of this MDP is given by
S � {G, B} × {�P, h(�P), h2(�P), . . . }. Recall that if the channel state
is G, data transmission is certainly successful. Therefore, the states
{G, hi(�P)} with i ≥ 1 can be excluded from the state-space as they
are non-existent. Consequently, we can rewrite the state-space as

S � {h−1(�P), h0(�P), h(�P), . . .}, where h−1(�P) corresponds to the
case where the channel is G and the error covariance is given by
h−1(�P) ≜ �P. Furthermore, for i ≥ 0 we use hi(�P) to refer the case
of channel state being B with i consecutive packet dropouts. The
non-zero transition probabilities, P, for a given action a ∈ A are
as follows:

P h−1 �P( )|h−1 �P( ), a{ } � 1 − p,
P h0 �P( )|h−1 �P( ), a{ } � ap,
P h �P( )|h−1 �P( ), a({ } � 1 − a( )p,
P h−1 �P( )|hi �P( ), a{ } � q,

P �P|hi �P( ), a{ } � a 1 − q( ),
P hi+1 �P( )|hi �P( ), a{ } � 1 − a( ) 1 − q( ),

where i ≥ 0. Furthermore, we denote the immediate cost and the
immediate cost related to the constraint by R(hi(�P), a) �∑hj(�P)∈Shj(�P)P{hj(�P)|hi(�P), a} and d(hi(�P), a) � (1-a)δ + aΔ,
respectively. The constrained MDP (CMDP) over the infinite
horizon can now be described by the tuple (S,A,P{·|·, ·}, R, d).

Solving Problem 1 is equivalent to finding the optimal policy
for the CMDP with the objective being minimization of the
average cost, i.e., lim supT→∞

1
TE{∑T−1

k�0R(Pk, ak)}, subject to the
constraint lim supT→∞

1
TE{∑T−1

k�0d(Pk, ak)}≤ L. Since R(hi(�P), a)
and d(hi(�P), a) are bounded below, the optimal solution of
Problem 1 is a stationary schedule Altman (1999). Let μ =
(μ−1, μ0, μ1, . . . ) denote the optimal stationary schedule,
where μi ∈ [0, 1] is the probability of the sensor using Δ for
transmission when was hi(�P) at the last time step. By
investigating the stationary distribution of Markov chain
induced by adopting μ, it is proved in (Qi et al., 2017) that
the optimal scheduling policy is given by

μ � 0−1, . . . , 0ip−1, μip , 1ip+1( ) (6)
where ip is the state of the chain where the sensor switches to high
power with probability μip which is given by

μip �

E − 1 + E 1 − q( )2[ ] 1 − q( )ip
1 + E 1 − q( )2[ ]q 1 − q( )ip−1 , if ip > 0,

E 1 − 1 − q( )2[ ] − 1

Eq 1 − q( ) , if ip � 0,

p E − 1/q( ), if ip � −1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(7)

where E = [(p + q)(L − δ)]/[pq (Δ − δ)].
Essentially, the policy in Eq. 6 implies that optimal

performance is achieved when the sensor continuously
transmits with low power δ until the Markov chain reaches
state ip. At this state, the sensor switches to high power Δ
with probability μip . This switching probability is determined
by upperbounding the average energy consumption by L and is
derived in closed form Eq. 7. Finally, if transmission at ip is
unsuccessful and the chain transitions to ip + 1, the sensor utilizes
high power with probability 1 which ensures that the error
covariance reduces to �P at the remote estimator.
Consequently, the state of the chain returns to h−1(�P) or
h0(�P), depending on whether the state of the communication
channel is G or B, respectively.

Frontiers in Control Engineering | www.frontiersin.org April 2022 | Volume 3 | Article 8610554

Farjam and Charalambous Power Allocation Over GE Channels

https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles


3.2 Scheduling With Partial Observations
We now consider the more realistic case where the sensor has
only partial observations of the channel state. More specifically,
whenever it transmits with high power Δ, i.e., ak = 1, the state of
the GE channel cannot be inferred since high power transmission
is always successful regardless of the channel state. We will show
how the knowledge of channel parameters p and q can be used to
exploit the optimal schedule in Eq. 6 for optimal scheduling
despite the partial observations.

Let belief be defined as the probability of the channel being in
G and at a given time k and denote it by bk. If low power δ is
utilized, i.e., ak = 0, the channel state at k is observed and the belief
at k + 1 is obtained by

bk+1 � 1 − p, if sk � G,
q, if sk � B,

{
where sk ∈ {G, B} denotes the channel state at k. Although the
exact channel state at k would be unknown to the sensor when ak
= 1, i.e., high power transmission, it will still be able to keep track
of the belief as

bk+1 � bk 1 − p( ) + 1 − bk( )q.
Problem 1 can be formulated as an equivalent POMDP that

can be converted to a corresponding MDP with the belief as a
state, since bk is a sufficient statistic for decision making given the
past action history and observation history (Kaelbling et al.,
1998). Nevertheless, without resorting to value iteration
methods for solving this problem, we show that under certain
conditions, the schedule in Eq. 6 can be applied for optimal
performance.

In essence, when ip ≥ 1 in Eq. 6, the policy μ can be applied for
solving the POMDP despite the lack of channel state observations
when high power is used. If the sensor transmits with high power
at k, the state of the chain returns to h−1(�P) or h0(�P), depending
on whether the channel is in state G or B, respectively. Since ip ≥ 1
and after successful transmission we have i < 1, policy Eq. 6
ensures that a successful transmission is always followed by low
power transmission. In other words, the sensor will transmit with
low power at k + 1 (ak+1 = 0) regardless of the exact state of the
chain. Consequently, the sensor can determine the state of chain
at k + 1 from the ACK/NACK signal of its low power
transmission at k + 1. Hence, the missing observations when
i ∈ { − 1, 0} have no effect on the performance of this policy for the
POMDP scenario and it leads to the same result as the MDP
counterpart.

As long as ip ≥ 1, the schedule in Eq. 6 is optimal for the
resulting POMDP problem considered here, and it can be
successfully applied as discussed. Next, we derive the
condition which guarantees that ip ≥ 1 by using the following
the result of the following lemma (Qi et al., 2017, Lemma 4.1):

LEMMA 1. Define a schedule �μ(�i) such that

�μ �i( ) � 0−1, 00, . . . , 0�i, 1�i+1( ). (8)
Under this schedule, Ja(�μ(�i)) is a monotonically decreasing
function of �i and for �i≥ 1

Ja �μ �i( )( ) � δ + pq Δ − δ( )
p + q( ) 1 − q( )1−�i − 1 − q( )2[ ]. (9)

By comparing �μ(�i) with the schedule in Eq. 6, since μip ≤ 1 by
definition, it readily follows that Ja(�μ(�i))≥ Ja(μ(ip)) for all �i � ip.
Therefore, from Eq. 9 we obtain that ip ≥ 1 and thus θp(ip) if the
energy budget satisfies

δ ≤ L≤ δ + pq Δ − δ( )
p + q( ) 1 − 1 − q( )2[ ]. (10)

Remark 1. Although the schedule Eq. 6 is optimal and applicable
for the POMDP problem only when the the energy budget
satisfies (10), we can apply the schedule Eq. 8 with �i � 1 when
the constraint Eq. 10 is violated. Adopting this policy results in
suboptimal performance due to its lower energy consumption
than the given budget L, which guarantees that the energy
constraint is satisfied.

Remark 2. The Kalman filter is always stable, i.e., the expected
value of the error covariance at the estimator is bounded, as long
as L > δ. Since the error covariance at the remote estimator
shrinks to �P when high power is used, L > δ ensures that ip <∞ in
Eq. 6 and thus the error covariance is bounded by hi

p((�P))<∞.
In case L = δ, then the sensor will always transmit with low power
and the expected error covariance can grow to infinity. In such
scenarios, it is proved that the filter is mean-square stable if and
only if q> 1 − 1/σ2max(A) (Liu et al., 2021).

4 SCHEDULING OVER AN UNKNOWN
CHANNEL

In this section, we extend the result of Section 3.2 so that it is
applicable in more practical scenarios where the transition
probabilities of the underlying GE model are unknown. As
discussed, so long as the energy budget satisfies Eq. 10 the
policy given in Eq. 6 is optimal for the POMDP problem.
Implementing this policy requires calculating μip as per Eq. 7
which assumes a priori knowledge of p and q in the GE model.
This is, however, a very strong assumption which restricts
implementation in practice. We address this by assuming that
the transition probabilities are unknown when the system is
initiated and propose a method for learning them online. We
first briefly introduce the Bayesian framework that is the core
concept in the learning algorithm and then propose a heuristic
posterior sampling algorithm for solving Problem 1 in a
computationally tractable manner.

4.1 A Bayesian Framework
In Bayesian inference, the prior of an uncertain quantity is the
probability distribution that would express one’s beliefs about the
quantity in question before new data about it becomes available.
The uncertain quantities in this work are the transition
probabilities of the GE model, i.e., p and q, which will be
referred to as channel parameters hereon. If the posterior
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distribution of these quantities is in the same probability
distribution family as their prior probability distribution, the
prior and posterior are then called conjugate distributions, and
the prior is called a conjugate prior for the likelihood function.
The unknown transition probabilities are within the interval [0,
1] and they can be viewed as random variables consisting of the
number of successes in Bernoulli trials with unknown probability
of success p and q. Since Beta distribution is the conjugate prior
for Bernoulli distributions, we assume the prior distribution of
the channel parameters follow the Beta distribution, which is
parameterized by Φ ≜ [ϕ1, ϕ2, ϕ3, ϕ4] ∈ Z4

+ that we refer to as
posterior count henceforth. Since the probability distribution of p
and q are independent we can write

P p, q;Φ( ) � P p; ϕ1, ϕ2( )P q; ϕ3, ϕ4( ),
where

P p; ϕ1, ϕ2( ) � pϕ1−1 1 − p( )ϕ2−1
B ϕ1, ϕ2( ) , (11)

P q; ϕ3, ϕ4( ) � qϕ3−1 1 − q( )ϕ4−1
B ϕ3, ϕ4( ) , (12)

where B(·) denotes the Beta function.
Using these prior distributions highly facilitates the posterior

update. More specifically, after new observations are made, the
posterior update can easily be done by updating the posterior
counts (ϕ1, ϕ2) for p and (ϕ3, ϕ4) for q. For instance, consider that
the channel state is G and Φ = [3, 1, 2, 3]. The next three
observation of the channel are G, B and B in consecutive order.
More specifically, the channel stays G, then transitions to B, and
finally stays B which can happen with probabilities 1 − p, p and 1
− q, respectively. Consequently, the updated posterior count is
easily obtained by Φ = [3 + 1, 1 + 1, 2, 3 + 1]. Without loss of
generality, we will assume that the initial posterior count isΦ = [1
1 1 1] meaning that the channel parameters p and q are between
zero and one with equal probabilities and P{p, q} � 1.

Let zk ∈ {G, B,V} denote the observation at time k, where zk =V
corresponds to not observing the channel state. Therefore, if ak =
0 (low power transmission), zk ∈ {G, B}, and if ak = 1 (high power
transmission), the channel state remains unobserved, i.e., zk = V.
We denote the observation history as zk = {z1, . . ., zk} which is
sufficient for inferring the action history. In addition, the channel

state history is crucial for the following framework which is
denoted by sk = {s1, . . ., sk}.

When the observation at time k is given by zk = V, the channel
state could be either G or B, i.e., sk ∈ {G, B}. Hence, multiple
channel state histories can lead to the same observation history.
We denote the set of all these possible channel state histories by S
(zk−1) which is defined as

S zk−1( ) ≜ sk−1|st � zt,∀t ∈ τ|zτ ≠ V{ }{ }.
In addition, multiple state histories could result in the same
posterior count. For instance, consider sk−1 ∈ S (zk−1) and sk =
{sk−1, sk} which consists of c1, c2, c3, and c4 number of transitions
from G to B, G to G, B to G, and B to B, respectively. Therefore,

P sk|p, q( )P p, q( ) � P sk|p, q( ) � pc1 1 − p( )c2qc3 1 − q( )c4 .
Since the posterior count is independent of the order of
occurrence of the state transitions, multiple state histories can
lead to the same posterior count. We define appearance count,
denoted by Ψ(Φ, S(zk−1), sk), as the total number of state histories
up to k which lead to the same posterior count Φ from the initial
condition Φ = [1 1 1 1].

We consider the joint probability distribution of the state and
channel parameters given the observation history,
i.e., P(sk, p, q|zt−1), which can be fully described by the
posterior count and appearance count as

P sk, p, q|zk−1( )P zk−1( ) � ∑
sk−1

P zk−1, sk|p, q{ }P p, q{ } � ∑
sk−1∈S zk−1( )

P sk|p, q{ }P p, q{ }
� ∑

Φ
Ψ Φ, S zk−1( ), sk( )pϕ1−1 1 − p( )ϕ2−1qϕ3−1 1 − q( )ϕ4−1,

(13)

where P(zk−1) is the normalization term. When a new
observation is made, the posterior is updated recursively as
(Zou et al., 2016)

P sk+1, p, q|zk( ) � ∑
sk

P sk, p, q|zk−1( )P sk+1, zk|sk, p, q( )/
P zk|zk−1( ).

(14)

When ak = 0, the sensor transmits with low energy δ and the state of
the channel is observed, i.e., sk = G or sk = B. Consequently, the
number of posteriors remains constant according to (14). However,
when ak = 1 and high power is utilized, we obtain zk = V which
means that sk ∈ {G, B}. Hence, the summation in Eq. 14 is taken
over both possible channel states which increases the number of
possible posteriors. Therefore, with each high power transmission
the number of possible posterior counts increases which inevitably
grows to infinity. Figure 2 demonstrates how the posterior count
and appearance count are updated based on the observations and
the effect of ak = 1 on the growth of possible posterior counts.

4.2 Learning the Channel Parameters for
Scheduling
The presented Bayesian framework enables us to incorporate the
uncertainty in the channel parameters in the decision making
process. More specifically, prior to transmission at each time k the

FIGURE 2 | An example of how the posterior counts and appearance
counts are updated for high power transmission is used for two consecutive
steps which increases the number of possible posteriors.
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probability distribution of the channel parameters is updated with
respect to the available state and observation history up to k − 1.
The estimated parameters are then used to evaluate Eq. 7 to
obtain the optimal schedule Eq. 6. Then the sensor adopts this
schedule for adjusting the transmission power which yields a new
observation at k. Repeating this procedure over time increases the
accuracy of the learned channel parameters and thus the
readjusted schedule. There are, however, several challenges
that need to be addressed for implementing this idea in practice.

First, as aforementioned, with each high power transmission
the number of possible posterior counts grows and thus this
number inevitably goes to infinity over time. A common
approach to avoid this problem is to ignore the posterior
update with high power transmission which leads to a
constant number of posterior counts. This approach is not
applicable in our problem since it assumes that the underlying
two-state Markov chain of the channel remains frozen at those
times, as it is in rested bandit problems (Maghsudi and Hossain,
2016). We instead adopt the idea of approximate belief
monitoring (Ross et al., 2011; Zou et al., 2016). This method
allows us to take into consideration the possible state changes
during high power transmissions, while it ensures computational
tractability. Essentially, the number of posterior counts kept in
the update stage are limited to a constant number K. Moreover,

the kept posterior counts are drawn randomly with respect to
their appearance count.

The next challenge arises from the dependency of the
uncertain channel parameters, optimal schedule and the
resulting average energy consumption. The exploration/
exploitation dilemma in the presented framework is addressed
by applying the schedule in Eq. 6, which is derived based on the
average energy constraint. Without explicitly including this
constraint in the algorithm, a policy is derived which
minimizes the trace of the expected error covariance based on
the current posterior distribution of the state and parameters of
the channel obtained via the aforementioned Bayesian
framework. This tends to leverage the exploration/exploitation
toward a better estimation performance at the cost of higher
energy consumption and less accurate p and q. To overcome this,
we explicitly enforce the energy constrain by utilizing a feedback
mechanism in the algorithm as described in Algorithm 1.

We define ξG ≜{[ϕ1, ϕ2, ϕ3, ϕ4], Ψ, Π} as the set of information
on the posteriors of the channel being in G and let Π denote the
joint probability distribution Eq. 13, which is set to 0.5 initially.
Each posterior count in ξG can transition into G or B with
probability of 1 − p and p, respectively, where p is the mean
of the corresponding Beta distribution (p = ϕ1/(ϕ1 + ϕ2)).
Similarly, we define ξB for the posterior counts associated with
the channel state B and the corresponding transition probabilities
are determined based on their respective q = ϕ3/(ϕ3 + ϕ4). These
operations are shown by the two procedures on Line 19 and Line
23. After the update, these sets are merged which is shown by the
operator ∪ , such that Ψ and Π of the items with identical
posterior counts are summed and then only K posteriors are
kept as shown in Line 17 and Line 17, respectively.

To ensure that exploration/exploitation is performed in a
manner that the average energy consumption of the returned
policy is L, the following corrections are made at each time step k:

• First, the average energy consumed in previous steps is
computed in Line 4.

• The average energy constraint for the desired policy is then
determined according to Line 4 and it is denoted by Ĵ. The
values of p and q are obtained as a weighted average of the
mean of their Beta distribution with respect to their
appearance count.

FIGURE 3 | Average energy consumption (A), and average trace of error covariance (B), when L = 1.5.

FIGURE 4 | Evolution of the learned channel parameters in comparison
with the actual values p = 0.3 and q = 0.5.
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• The values of Ĵ, and the estimated values for p and q are
utilized to determine the policy at k.

This method guarantees that the energy constraint is
satisfied regardless of the accuracy of the learned
parameters and leads to near-optimal performance as
shown in Section 5.

Algorithm 1. Joint learning and scheduling design.

5 NUMERICAL RESULTS

To evaluate the performance of our proposed scheduling
methods, we consider a dynamical system with the following
parameters

A � 1.2 0.6
0 1

[ ], C � Q � 1 0
0 1

[ ], R � 0.3 0
0 0.3

[ ].
We assume that the parameters of the underlying GE channel
connecting the sensor to the remote estimator are p = 0.3 and q =
0.5. With these parameters, it is to calculate the critical recovery
rate of the channel as qc = 1–1/1.22 = 0.3 and since q > qc the filter
is stable even if the sensor constantly transmits with low power.
The following results have been obtained for the scenario in
which the high power and low power transmission energies are Δ
= 10 and δ = 1, respectively.

First, we consider the case where the energy constraint is given
by L = 1.5. Substituting the aforementioned values in Eq. 7 yields
μip � 0.1034 with ip = 2 and subsequently the optimal schedule is
μ = (0, 0, 0, 0.1034, 1). Figure 3 depicts how adopting this
schedule, denoted by MDP (p, q), affects the average trace of the
error covariance and the average energy consumption. This
corresponds to the case where the channel parameters are
known and the states are always observed regardless of the

FIGURE 5 | Average energy consumption (A), and average trace of error covariance (B), when L = 2.

FIGURE 6 | Average energy consumption (A), and average trace of error covariance (B), when L = 3.35.
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transmission power setting. Lifting the assumption of observable
channel states in high power mode results in the POMDP
problem which is denoted by POMDP (p, q). From Lemma 1
the condition for optimality of the MDP schedule is determined
as 1 ≤ L ≤ 3.25. Since this condition is satisfied, adopting the same
schedule is expected to yield the optimal performance similar to
the case with full channel state observations which is verified by
the simulations.

Next, we lift the assumption of known channel parameters,
i.e., p and q, and consider two separate scenarios. In the first one,
denoted by MDP (p̂, q̂), the channel states are assumed to be
observable even with the high power transmissions. The second
scenario, denoted by POMDP (p̂, q̂), corresponds to the case
considered in Section 4, i.e., unknown channel parameters and
missing state observations when high power is utilized. As
Figure 3 shows, our proposed learning method in both
scenarios satisfies the energy constraint and results in near-
optimal performance.

An interesting observation is that MDP (p̂, q̂) slightly
outperforms POMDP (p̂, q̂). This can be explained by the
availability of uninterrupted observation of channel state
transitions which can considerably reduce the uncertainty over
the transition probabilities, i.e., channel parameters. Figure 4
how these parameters are learned over time for both scenarios. As
expected, learned p and q converge the their true values faster for
the MDP case which leads to better performance. Nevertheless,
true values of p and q are eventually learned accurately for the
POMDP scenario as well thus leading to near-optimal average
performance.

To investigate the frequency of partial observations, we next
consider the energy constraint to be raised to L = 2. A higher
energy budget naturally means that the sensor is able to utilize the
high power mode more frequently. Consequently, channel state
transitions will be observed less frequently thus leading to less
accurate estimates of the channel parameters. Using this new
constraint we obtain μip � 0.0323 and ip = 1, i.e., the optimal
schedule is μ = (0, 0, 0.0323, 1). Therefore, whenever the chain
enters h(�P) it switches to high power with probability one, while
in the previously discussed example it would utilize high power
with probability 0.1034 at this state and with probability one at
h2(�P). As the results depicted in Figure 5 demonstrate, MDP (p,
q) and POMDP (p, q) both achieve optimal performance since the
optimality condition 1 ≤ L ≤ 3.25 is satisfied. Moreover, adopting
Algorithm 1 for learning the channel parameters and thus the
schedule when p and q are unknown a priori results in near-
optimal performance. However, due to the smaller number of
observed channel state transitions, the parameters are learned
with higher uncertainty which leads to a slightly bigger
optimality gap.

Next, we consider how violation of the optimality condition
Eq. 10 in Lemma 1 affects performance. Recall that for the chosen
system parameters Eq. 10 yields 1 ≤ L ≤ 3.25 and thus we let L =

3.35. By assuming that the state of the channel is observable in
case of high power transmission, the policy Eq. 6 can be
implemented for achieving optimal performance for both
known and unknown channel parameters. For the POMDP
case, however, we adopt the suboptimal policy proposed in
Remark 1. As Figure 6 demonstrates, this results in worse
performance in terms of the error covariance compared with
the MDP counterpart. Nevertheless, this is expected, as the
suboptimal policy of Remark 1 guarantees lower energy
consumption than the specified budget while enabling
adoption of a deterministic policy. Moreover, as it can be seen
from Figures 3, 5, 6, as the energy budget increases, the error
covariance at the estimator decreases thus leading to better
performance.

6 CONCLUSION

We considered the power scheduling of a battery-powered
smart sensor with two power modes for remote state
estimation over a GE channel. We presented the optimal
schedule with full state observation and known channel
parameters. When the channel states are only partially
observable (only observable with low power transmission),
the scheduling problem can be formulated as a POMDP for
which we provided the optimal solution and derived the
conditions that guarantee its optimality. When in addition to
the partially available observations the channel parameters are
also unknown, we showed that Bayesian inference can be used to
learn these parameters. We then proposed a computationally
tractable method to implement this idea in a manner that
ensures the energy constraint is met while achieving near-
optimal performance.
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