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This paper considers the conversion problem from unstructured linear time-invariant (LTI)
controllers to observer-structured LTI controllers, whose structure is similar to but not
exactly the same as the so-called “Luenberger observer–based controllers,” for linear
parameter-varying (LPV) plant systems. In contrast to Luenberger observer–based
controllers, observer-structured LTI controllers can be defined and constructed even if
the plant systems are given as LPV systems. In the conversion problem, the state-space
matrices of the observer-structured LTI controller are parameterized with those of the given
unstructured LTI controller, one free matrix, and a state transformation matrix. We also
show a method to obtain the optimal state transformation matrix with respect to the
convergence of the discrepancy between the plant state and the observer-structured
controller state for a stochastically defined non-zero initial plant state. Several toy examples
are included to illustrate the effectiveness and the usefulness of observer-structured LTI
controllers, and the utility of the proposed conversion parametrization.
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1 INTRODUCTION

It is well-known that H∞ control is a powerful tool for controlling plant systems with uncertainties
(Zhou et al., 1996). At first, the Riccati equation–based synthesis approach is proposed (Doyle et al.,
1989); however, the plant systems should satisfy several assumptions (the so-called “standard
assumption”), and this restriction diminishes their applicability and usability. On this issue, after the
paper by Sampei et al. (1990) which tacklesH∞ controller synthesis with output feedback controllers
in terms of linear matrix inequality (LMI), many research studies on LMI-based H∞ controller
synthesis have been conducted (Gahinet and Apkarian, 1994; Iwasaki and Skelton, 1994; Masubuchi
et al., 1998), and the applicability and usability ofH∞ control have been extended. However, it is also
well-known that H∞ controllers have a complicated structure; that is, H∞ controllers have no special
structures as H2 controllers whose structure is composed of LQR controllers and observers. Due to
this property, on-site engineers have a difficulty to understand the structure ofH∞ controllers as well
as the meaning of the figures of the state-space matrices of the designed H∞ controllers.

On this issue, Alazard has explored a new horizon in the studies of Alazard and Apkarian (1999)
and Alazard (2012). In the study by Alazard and Apkarian (1999), for LTI plant systems with no
direct feedthrough, the authors have proposed a conversion method from a priori designed
unstructured LTI controllers to Luenberger observer–based LTI controllers by finding
appropriate state transformation matrices for the controllers. Furthermore, in the study of
Alazard (2012), the method in the study of Alazard and Apkarian (1999) is extended to the case
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in which a direct feedthrough exists. In those papers, the
dimensions of the controllers are not restricted to be the same
as those of the plant systems; that is, even if the dimensions of the
controllers are different from those of the plant systems,
appropriate state transformation matrices which render the
unstructured LTI controllers to Luenberger observer–based
controllers can be found by solving the generalized non-
symmetric and rectangular Riccati equation. In summary, LTI
controllers (including H∞ controllers) for LTI plant systems can
be equivalently represented as Luenberger observer–based
controllers using the methods in those papers. This
achievement is very helpful for on-site engineers because a
priori designed unstructured LTI controllers can be converted
to well-known Luenberger observer–based controllers without
deteriorating control performance as long as the plant systems are
LTI systems. As an application example, the converted controllers
can be used as “virtual sensors” (Goupil et al., 2014) for plant
health monitoring, fault detection, etc., without any additional
controllers or observers because the state of the converted
controllers, i.e., Luenberger observer–based controllers,
estimates the plant state faithfully. Some application examples
can be found in the study of Alazard (2012). By considering the
above, it is concluded that the conversion from unstructured LTI
controllers to observer-based controllers is useful.

Although the methods in the studies of Alazard and Apkarian
(1999) and Alazard (2012) are effective and attractive, there is a
drawback that the methods cannot be applied to plant systems
which are given as linear parameter-varying (LPV) systems. This is
because Luenberger observer–based controllers need the nominal
state-space matrices of the plant systems; however, as demonstrated
by Peaucelle et al. (2017), Sato (2018), etc., the use of the nominal
state-space matrices of plant systems does not always lead to the
optimalH∞ control performance. This fact poses a simple question:
“Under the supposition that LPV plant systems can be interpreted
to be composed of their nominal LTI plant systems and norm
bounded variations, do the methods in the studies of Alazard and
Apkarian (1999) and Alazard (2012) give the state transformation
matrices which minimize the discrepancies between plant systems’
state and converted controllers’ state even for LPV plant systems?”
This question motivates us to try to extend the methods in the
studies of Alazard and Apkarian (1999) and Alazard (2012) to the
case in which the plant systems are given as LPV systems, and also
to try to find the counterpart conversion method for LPV plant
systems. That is, our addressed problem in this paper is the
counterpart problem in the studies of Alazard and Apkarian
(1999) and Alazard (2012) for LPV plant systems. To this end,
we first propose observer-structured LTI controllers whose structure
is similar to but not exactly the same as the so-called Luenberger
observer–based controllers. By using the observer-structured
controllers, we then propose a method producing appropriate
state transformation matrices which convert the a priori
designed unstructured LTI controllers to observer-structured LTI
controllers. As a consequence, even if plant systems are given as
LPV systems, we can use the converted controllers obtained by our
proposed method as “virtual sensors” (Goupil et al., 2014) for plant
health monitoring, fault detection, etc., without any additional
controllers or observers.

This paper is structured as follows: In Section 2, we first give
definitions of an LPV plant system with a direct feedthrough and
strictly proper LTI controllers (an unstructured controller
designed a priori and an observer-structured controller), then
show our parameterization of the observer-structured controller
with the state-space matrices of the unstructured controller, one
free matrix and a state transformation matrix, and finally clarify
the relation between our method and the method in the study of
Alazard (2012) for the case that plant systems are given as LTI
systems with direct feedthrough, and the dimensions of the
controllers are the same as those of the LTI plant systems. In
Section 3, we propose a method to obtain the optimal state
transformation matrix, which gives the minimum convergence of
the discrepancy between the plant state and the observer-
structured controller state for a stochastically defined non-zero
initial plant state, in terms of parameter-dependent linear matrix
inequality (LMI). In Section 4, several toy examples are
introduced to illustrate our contributions (i.e., proposition and
parameterization of observer-structured controllers, and
proposition of design method for state transformation
matrices minimizing the estimation errors), and finally, we
give concluding remarks in Section 5.

We summarize the notation used in this paper. 0 and In,
respectively, denote a compatibly dimensional zero matrix and
an n × n identity matrix; Rn, Rn×m, and Sn+, respectively, denote
the sets of n-dimensional real vectors, n × m real matrices, and
n × n positive-definite real matrices; He X{ } is a shorthand
notation of X + XT for a square matrix X; “sym” in a matrix
denotes an abbreviated element by its symmetry; for a square
matrix X, Tr(X) denotes its trace. In this paper, we address the
continuous-time (CT) case as well as the discrete-time (DT)
case simultaneously; therefore, the operator δ [·] is used to
denote the time-derivative in the CT case and one-step shift
operator in the DT case. That is, δ [x] in the CT case denotes
d
dtx(t) for the current time t, and δ [x] in the DT case denotes
x(k + 1) for the current step number k. Similarly, Φ in

inequalities denotes δ[·] 1
1 0

[ ] for the CT case and −1 0
0 δ[·][ ] for

the DT case.

2 PROPOSED PARAMETERIZATION

2.1 Linear Parameter-Varying Plant System
Let us suppose that the stabilization problem of the following LPV
plant system is addressed:

G θ( ): δ x[ ]
y

[ ] � A θ( ) B θ( )
C θ( ) D θ( )[ ] x

u
[ ], (1)

where x ∈ Rn denotes the state, y ∈ Rny denotes the
measurement output, u ∈ Rnu denotes the control input, and
matricesA(θ), B(θ), C(θ), andD(θ) are supposed to be compatibly
dimensional real matrices which are dependent on parameters
θ � [θ1, . . . , θl]T. The parameters can be scheduling parameters
as well as uncertainty parameters. Here, it is supposed that all
parameters are independent from each other. It is also supposed

Frontiers in Control Engineering | www.frontiersin.org August 2022 | Volume 3 | Article 8045492

Sato and Sebe Conversion to Observer-Structured Controllers

https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles


that the existing regions of parameters and their derivatives (CT
case) or deviations per single sampling period (DT case) are
bounded. Thus, the following are supposed with a priori given
polytopes Λi:

θi, δ θi[ ]( ) ∈ Λi, i � 1, . . . l( ). (2)
Then, the following is also supposed:

θ, δ θ[ ]( ) ∈ Λ ≔ Λ1 ×/×Λl. (3)

2.2 Unstructured Linear Time-Invariant
Controller
We next define an unstructured LTI controller which has already
been designed:

CG:
δ xc[ ]
u

[ ] � Ac Bc

Cc 0
[ ] xc

y
[ ], (4)

where xc ∈ Rnc denotes the state, and matrices Ac ∈ Rnc×nc ,
Bc ∈ Rnc×ny and Cc ∈ Rnu×nc are constant matrices. Note that
the dimension of the controller, i.e., nc, might be different
from that of the plant system; that is, it can be possible that
nc ≠ n holds in our proposed parameterization.

Then, the closed-loop system comprising G(θ) and CG is
straightforwardly derived as follows:

GG
cl θ( ): δ x[ ]

δ xc[ ][ ] � A θ( ) B θ( )Cc

BcC θ( ) Ac + BcD θ( )Cc
[ ]︸������������︷︷������������︸

AG
cl

θ( )

x
xc

[ ]. (5)

2.3 Observer-Structured Linear
Time-Invariant Controller
We next define an observer-structured LTI controller inspired by
Sato (2020a). In the DT case, only predictor form (Alazard, 2012)
is considered hereafter:

CO:
δ xo[ ] � Aoxo + Bou − L y − Coxo −Dou( ),
u � Kxo,

{ (6)

where xo ∈ Rnc denotes the state, and not only matrices
L ∈ Rnc×ny , K ∈ Rnu×nc but also matrices Ao ∈ Rnc×nc ,
Bo ∈ Rnc×nu , Co ∈ Rny×nc , Do ∈ Rny×nu are to be determined.

Then, the closed-loop system comprising G(θ) and CO is
straightforwardly derived as follows:

GO
cl θ( ): δ x[ ]

δ xo[ ][ ]
� A θ( ) B θ( )K

−LC θ( ) Ao + BoK + LCo − L D θ( ) −Do( )K[ ]︸��������������������︷︷��������������������︸
AO
cl

θ( )

x

xo

[ ]. (7)

Remark 1. As is obvious, the controller CO does not have the
same structure as the so-called “Luenberger observer–based
controller” does. However, if there are no parameters in the

LPV plant system, that is, the LTI plant system G is supposed
instead of the LPV plant systemG(θ), then settingAo, Bo,Co, and
Do to be A, B, C, and D, respectively, makes the controller CO to
be identical to the conventional “Luenberger observer–based
controller.” Therefore, the controller CO is referred to as the
observer-structured controller due to the structural similarity
between the observer-structured controller CO and the
“Luenberger observer–based controller.”

2.4 Parameterization of
Observer-Structured Linear Time-Invariant
Controller
By comparing GG

cl(θ) and GO
cl(θ) under the consideration of the

freedom of the state transformation xo = T−1xc with a non-
singular matrix T, it is easily confirmed that the two systems are
equivalent if the following equations hold:

KT −1 � Cc,
−TL � Bc,
T Ao + BoK + LCo + LDoK( )T−1 � Ac.

⎧⎪⎨⎪⎩ (8)

The last equation in Eq. 8 is equivalently represented as
follows:

Inc −Bc[ ]︸����︷︷����︸
YB

TAoT−1 TBo

CoT−1 Do
[ ]︸�������︷︷�������︸

XO

Inc
Cc

[ ]︸��︷︷��︸
YC

� Ac. (9)

Then, we give one of our main results.

Theorem 1. The matrix XO ∈ R(nc+ny)×(nc+nu) satisfying Eq. 9 is
parameterized as in Eq. 10 with one free
matrix Z(θ) ∈ R(nc+ny)×(nc+nu):

XO � Y†
BAcY

†
C + Z θ( ) − Y†

BYBZ θ( )YCY
†
C, (10)

where matrices with superscript “†” denote the corresponding
Moore–Penrose inverse matrices.

Proof 1. The corresponding assertion for constant matrices is
easily proved by using Theorem 2.3.1 in the study of Skelton et al.
(1998), and thus, our claim is also easily proved. However, for
completeness, we give the detailed proof.

We now prove that the following two statements are
equivalent:

1) There exists a solution satisfying Eq. 9, and all the solutions
are parameterized as in Eq. 10.

2) YBY
†
BAcY

†
CYC � Ac

We first prove that 2) holds when 1) holds. Multiplying YBY
†
B

and Y†
CYC to both the sides of Eq. 9 from the left and the right,

respectively, leads to YBY
†
BYBXOYCY

†
CYC(� YBXOYC) �

YBY
†
BAcY

†
CYC. From Eq. 9, YBXOYC is obviously identical to

Ac. Thus, 1) 0 2) is proved.
Next, we prove that 1) holds when 2) holds. To this end, we

first confirm that XO in Eq. 10 is the solution of Eq. 9.
Multiplying YB and YC to the left-hand side of Eq. 10 from
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the left and the right, respectively, leads to YBXOYC. The
same manipulation to the right-hand side of Eq. 10 leads
to YBY

†
BAcY

†
CYC + YBZ(θ)YC − YBY

†
BYBZ(θ)YCY

†
CYC, which

is equivalent to YBY
†
BAcY

†
CYC. Thus, when 2) holds, YBXOYC(�

YBY
†
BAcY

†
CYC) � Ac is derived; then, it is confirmed that XO

in Eq. 10 is the solution of Eq. 9.
We finally confirm that all solutions of Eq. 9 are

parameterized as XO as in Eq. 10. To this end, we replace
Ac in Eq. 10 by the left-hand side of Eq. 9, and then the
following is derived:

XO � Y†
BYBXOYCY

†
C + Z θ( ) − Y†

BYBZ θ( )Y†
CY

†
C.

This equation always holds as long as Z(θ) is set as XO. Thus,
eachXO satisfying Eq. 9 has each corresponding parameterization
matrix Z(θ); that is, all solutions of Eq. 9 are parameterized as in
Eq. 10. We have thus proved that the two statements, 1) and 2),
are equivalent.

As it is easily confirmed that 2) holds from Eq. 9,
i.e., YBY

†
BAcY

†
C YC � YBY

†
BYBXOYCY

†
CYC � YBXOYC � Ac

holds, the assertion in Theorem 1, i.e., 1), is now proved. □
From Eqs 8–10, the following parameterization of the

state-space matrices of CO is straightforwardly derived
with the state-space matrices of CG in Eq. 4, one free
matrix Z(θ), and a non-singular state transformation
matrix T:

K � CcT,
L � −T−1Bc,
Ao Bo

Co Do
[ ] � T−1 0

0 Iny
[ ]

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Y†

BAcY
†
C + Z θ( ) − Y†

BYBZ θ( )YCY
†
C( ) T 0

0 Inu
[ ].

(11)
Remark 2. As the left-hand sides and the right-hand sides of
all equations in Eq. 11 are, respectively, constant and
parameter-dependent, in general, complicated constraints
consequently arise for Z(θ). A simple solution to escape
from the complicated constraints is to set Z(θ) to be
constant, i.e., Z(θ) = Z. This setting reduces the generality;
however, it also reduces numerical complexity when
obtaining the state-space matrices Ao, Bo, Co, and Do in
the next section.

Note that matrices Ao, Bo, Co, and Do have freedom as in the
last equation of Eq. 11; however, they must satisfy Eq. 9,
i.e., the last equation of Eq. 8. That is, we would like to
emphasize that even if they are chosen as desired matrices
within the parameterization of Eq. 11, the input–output
property of CO is the same as that of CG. Therefore, the
essential freedom of the conversion from CG to CO is only
the state transformation represented by T.

In the next section, we propose a design method to obtain
the optimal state transformation matrix with respect to the
convergence of the discrepancy between the plant state and

the observer-structured controller state for a stochastically
defined non-zero initial plant state, and then we also propose
a method to obtain matrices Ao, Bo, Co, and Do as close to as
the designated matrices within the parameterization of the
last equation of Eq. 11.

2.5 Relation Between Our Method and
Existing Method for Linear Time-Invariant
Plant Systems
In this subsection, we clarify the relation between our method and
the method in the study of Alazard (2012) for LTI plant systems.
For simplicity, nc is supposed to be equal to n; that is, only full-
order controllers are considered. In the DT case, only predictor
form (Alazard, 2012) is considered.

2.5.1 Brief Review of Existing Method in the Study of
Alazard (2012)
Now, it is supposed that the plant system is given as an LTI system:

G:
δ x[ ]
y

[ ] � A B
C D

[ ] x
u

[ ], (12)

where x ∈ Rn denotes the state, y ∈ Rny denotes the
measurement output, u ∈ Rnu denotes the control input, and
matrices A, B, C, and D are supposed to be compatibly
dimensional constant matrices.

We define the observer-based controller as

CL:
δ x̂[ ]�Ax̂ + Bu −L y − Cx̂ −Du( ),

u �Kx̂,
{ (13)

where x̂ ∈ Rn denotes the observer state and matricesL ∈ Rn×ny

and K ∈ Rnu×n are, respectively, the observer gain and the state-
feedback gain.

The closed-loop system comprising G and CL is expressed as
follows:

GL
cl:

δ x[ ]
δ x̂[ ][ ] � A BK

−LC A + BK +LC
[ ]︸�����������︷︷�����������︸

AL
cl

x
x̂

[ ]. (14)

In order to make the closed-loop systemGL
cl identical toG

G
cl(θ)

in Eq. 5 for an LTI plant system G in Eq. 12, the state
transformation x̂ � T−1xc with a non-singular matrix
T ∈ Rn×n is considered. Then, the following conditions are
straightforwardly derived:

K � CcT

−L � T−1Bc

A + BK +LC � T−1 Ac + BcDCc( )T

⎧⎪⎨⎪⎩ (15)

If an appropriate T is found, then K and L are, respectively,
given asCcT and −T−1Bc. Then, the remaining task is to find the
state transformation matrix T satisfying

TA +TBCcT − BcC � (Ac + BcDCc)T,
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i.e.,

T −In[ ] A BCc

BcC Ac + BcDCc
[ ] In

T
[ ] � 0. (16)

The solution of Eq. 16 can be obtained by the following
method (Alazard, 2012):

• Choose n closed-loop eigenvalues which are the eigenvalues
of A + BK.

• Find n-dimensional invariant subspace, i.e., matrices
U1, U2 ∈ Rn×n such that

A BCc

BcC Ac + BcDCc
[ ] U1

U2
[ ] � U1

U2
[ ]Λ,

where the eigenvalues of Λ ∈ Rn×n are the selected eigenvalues in
the previous step.

• If the matrix U1 is confirmed to be non-singular, then the
state transformation matrix is obtained as T � U2U−1

1 .

By following the procedure for obtainingT shown above, the
unstructured controller CG can be converted to the Luenberger
observer–based controller CL with K � CcT and L � −T−1Bc.

2.5.2 Comparison of OurMethodWith ExistingMethod
Comparing CO in Eq. 6 and CL in Eq. 13 concludes that if
matrices Ao, Bo, Co, and Do are set as A, B, C, and D, respectively,
and gain matrices K and L are also set asK andL, respectively,
then CO is identical to CL. That is, the observer-structured
controller CO encompasses the Luenberger observer–based
controller CL.

Furthermore, if the state transformationmatrix T is set asT in
the method of Alazard (2012), then the two closed-loop systems,
i.e., GO

cl and GL
cl, are also identical to each other. Thus, if the

observer-based controller CL can be obtained from the
unstructured controller CG by appropriately defined T, then it
is always possible to have the same controller within the
expression of observer-structured controller CO by setting T to
be identical to T.

In summary, the observer-structured controller encompasses
the expression of Luenberger observer–based controller, and
the transformation from CG to CO also encompasses the
corresponding one from CG to CL. Thus, we conclude that the
observer-structured controller is a kind of generalization of the
Luenberger observer–based controller, and the conversion from
CG to CO is also a kind of generalization of the one from CG to CL.

3 OBSERVER-STRUCTURED
CONTROLLER WITH OPTIMAL
ESTIMATION ERROR FOR NON-ZERO
INITIAL PLANT STATE

In this section, we give a formulation to obtain the optimal state
transformation matrix with respect to the convergence of the

discrepancy between the plant state and the observer-structured
controller state for a stochastically defined non-zero initial plant
state.

We first define performance output to be evaluated. Now,
the dimension of the unstructured controller is not always the
same as that of the LPV plant system. We thus select nsl state
variables of the LPV plant system to be estimated by the
observer-structured controller and set the vector containing
them as xsl which is expressed as xsl � Cslx with an
appropriately defined constant matrix Csl ∈ Rnsl×n.
Similarly, the corresponding vector in the observer-
structured controller is defined as xosl which is expressed as
xosl � Csloxo with an appropriately defined constant matrix
Csl0 ∈ Rnsl×nc .

Then, using GO
cl(θ), we define the following system with

performance output z defined as xsl − xosl:

(17)

Here, CO
cl � [Csl −Cslo ].

By considering that if xsl and xosl are close to each
other, then it can be concluded that xosl of the observer-
structured controller CO plays as a good estimation of xsl
of the LPV system G(θ), and we now define the
following problem in which the estimation error between
the LPV plant state and the converted controller state is
minimized.

Problem 1. For GO
cl(θ) in Eq. 17, obtain the minimal

positive scalar γ and the corresponding non-singular matrix T
satisfying

∫∞

0
zTzdt< γ, ∀ θ, δ θ[ ]( ) ∈ Λ CT( ),

∑∞

k�0z
Tz< γ, ∀ θ, δ θ[ ]( ) ∈ Λ DT( ).

⎧⎪⎨⎪⎩ (18)

Here, it is supposed that the initial plant state x(0) is set as a
stochastic variable which satisfies E[x(0)] = 0 and E[x(0) x(0)T] =
In and that the initial controller states xc(0) and xo(0) are both
set as 0.

To address this problem, we define the following system which
is composed of GG

cl(θ) with the performance output z defined
in GO

cl(θ):

(19)

Note that the following hold, since xo = T−1xc is applied to
GO
cl(θ) to derive Eq. 8:

In 0
0 T

[ ]AO
cl θ( ) In 0

0 T−1[ ] � AG
cl θ( ),

CO
cl

In 0
0 T−1[ ] � CG

cl θ( ).

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(20)

Then, the following theorem is proposed for Problem 1.
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Theorem 2. If Eq. 21 is solved affirmatively, then GO
cl(θ)

calculated with T � T −1 satisfies Eq. 18 with the optimized γ:
min

γ,T ∈Rnc × nc ,P θ( )∈Sn+nc+
γ s.t.(22), (23), and(24), (21)

γ>Tr In 0[ ]P θ( ) In
0

[ ]( ), ∀ θ, δ θ[ ]( ) ∈ Λ, (22)
P θ( ) ≻ 0, ∀ θ, δ θ[ ]( ) ∈ Λ, (23)

In+nc AG
cl(θ)T[ ] Φ ⊗ P(θ)( ) In+nc

AG
cl(θ)[ ] sym

Csl −CsloT[ ] −Insl
⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦ ≺ 0, ∀(θ, δ[θ]) ∈ Λ.

(24)

Proof 2. As the upper-left block of the left-hand side of Eq. 24 is
negative-definite, the following are confirmed for all
combinations of (θ, δ[θ]) ∈ Λ:

d
dt
P θ( ) + He P θ( )AG

cl θ( ){ } ≺ 0 CT( ),
−P θ( ) + AG

cl θ( )TP θ+( )AG
cl θ( ) ≺ 0 DT( ).

⎧⎪⎪⎨⎪⎪⎩ (25)

Since the positivity ofP(θ) is ensured in Eq. 23, the stability of
GG

cl(θ) is confirmed.
Note that Eq. 24 is equivalent to the following for all

combinations of (θ, δ[θ]) ∈ Λ:

In+nc AG
cl(θ)T[ ] Φ ⊗ P(θ)( ) In+nc

AG
cl(θ)[ ] + CT

sl

−T TCT
slo

[ ]
× Csl −CsloT[ ] ≺ 0. (26)

After T � T −1 is set, multiplying xT
ac
(≔ [xT xT

c ]T) and its
transpose to Eq. 26 from the left and the right, respectively,
leads to the following inequality for all combinations of
(θ, δ[θ]) ∈ Λ:

zTz + d
dt

xT
ac
P θ( )xac( )< 0 CT( ),

zTz − xT
ac
P θ( )xac + δ xT

ac
[ ]P θ+( )δ xac[ ]< 0 DT( ).

⎧⎪⎪⎨⎪⎪⎩ (27)

Then, the satisfaction of Eq. 18 is confirmed after
consideration of the stability of GG

cl(θ) and Eq. 22. □

Remark 3. If T is singular, then a small perturbation to T is to be
conducted to obtain non-singular T , similarly to Masubuchi et al.
(1998). In particular, if Cslo is set as a row full-rank rectangular
matrix, then T has freedom, which has no effect on the
performance index γ, and thus, there is a possibility to have
singular T . In this case, a small perturbation to T is necessary to
obtain non-singular T .

In general, inequality Eq. 24 is not parametrically affine;
thus, some relaxation methods (e.g., sum-of-squares (Chesi
et al., 2003; Parrilo, 2003), Polya’s theorem–based relaxation
(de Oliveira and Peres, 2007), and slack-variable approach
(Peaucelle and Sato, 2009)) should be applied to be
solved numerically. However, such relaxations usually
increase the numerical complexity. On this issue, if the

state-space matrices of the LPV plant G(θ) are supposed
to be multi-affine with respect to parameters (Amato
et al., 2005; Peacelle and Ebihara, 2018; Sato, 2020b) and
the parameter-dependent decision matrix in Theorem 2,
i.e., P(θ), is also set as multi-affine with respect to
parameters, then the multi-affine property [i.e., Lemma 3 in
the study of Sato (2020b)] can be used for Theorem 2
after extended/dilated LMI technique (de Oliveira et al.,
1999; Peaucelle et al., 2000; Pipeleers et al., 2009) is
applied to maintain the numerical complexity as small
as possible while conservatism in solving LMIs is also
kept small.

To this end, the following assumption is now made.

Assumption 1.All the parameter-dependent state-space matrices
of G(θ) in Eq. 1 are supposed to be multi-affine with respect to θi;
that is, they are represented as follows:

Γ θ( ) � ∑ θα11 . . . θαll Γα1 ...αl , αi � 0, 1{ }, (28)
where Γα1...αl is the coefficient matrix.

Then, the following lemma is straightforwardly derived
from Theorem 2 with the use of extended/dilated LMI
technique (de Oliveira et al., 1999; Peaucelle et al., 2000;
Pipeleers et al., 2009) and multi-affine property [i.e., Lemma
3 in the study of Sato (2020b)].

Lemma 1. Under Assumption 1, if Eq. 29 is solved affirmatively
with multi-affine P(θ), then GO

cl(θ) calculated with T � T −1 (if
necessary, a small perturbation in Remark 3 is conducted)
satisfies Eq. 18 with the optimized γ:

min
γ,T∈Rnc×nc ,P θ( )∈Sn+nc+ ,H∈R2 n+nc( )× n+nc( )

γ s.t.(30), (31), and(32), (29)

γ>Tr In 0[ ]P θ( ) In
0

[ ]( ), ∀ θ, δ θ[ ]( ) ∈ ver Λ( ), (30)
P θ( ) ≻ 0, ∀ θ, δ θ[ ]( ) ∈ ver Λ( ), (31)

He H AG
cl(θ) −In+nc[ ]{ }

+I2(n+nc) Φ ⊗ P(θ)( )I2(n+nc)( ) sym

Csl −CsloT[ ] 0[ ] −Insl
⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦ ≺ 0, ∀(θ, δ[θ]) ∈ ver(Λ).

(32)
In inequalities (Eqs 30–32), ver(·) denotes the vertex set.
The proof is omitted as it is straightforward in consideration of

the following relation:

[In+nc AG
cl θ( )T] 0
0 Insl

[ ] left − hand side of(32)( )
×

In+nc
AG

cl θ( )[ ] 0

0 Insl

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦

� [In+ncAG
cl θ( )T] Φ ⊗ P θ( )( ) In+nc

AG
cl θ( )[ ] sym

Csl −CsloT[ ] −Insl
⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦.
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If the initial plant state is given as a deterministic (but
unknown) variable instead of a stochastic variable, and its
region is supposed to be in a polytope X0, then the following
method is applicable instead of Lemma 1.

Lemma 2. Under Assumption 1, if Eq. 33 is solved affirmatively
with multi-affine P(θ), then GO

cl(θ) calculated with T � T −1 (if
necessary, a small perturbation in Remark 3 is conducted) satisfies
Eq. 18 with the optimized γ for all x(0) ∈ X0:

min
γ,T ∈Rnc ×nc ,P θ( )∈Sn+nc+ ,H∈R2 n+nc( )× n+nc( )

γ s.t.(34) and (32), (33)

γ [x 0( )T 0]P θ( )
sym P θ( )[ ] ≻ 0, ∀ θ, δ θ[ ]( ) ∈ ver Λ( ),

∀x 0( ) ∈ ver X0( ).
(34)

By using Lemma 1 or Lemma 2, we can obtain an optimal
constant state transformation matrix T for Problem 1.
Although the essential freedom for the conversion from CG

to CO is the state transformation matrix T, we still have
freedom for the state-space matrices (i.e., Ao, Bo, Co, and
Do) in an observer-structured controller CO. To address this
issue, we propose the following problem to obtain the state-
space matrices Ao, Bo, Co, and Do as close to as the designated
ones after obtaining T. In our proposed optimization problem
shown below, we set Z(θ) in Eq. 10 to be constant Z by
considering Remark 2.

Problem 2. If Eq. 35 is solved affirmatively, then all the elements
of the state-space matrices in the observer-structured controller
CO satisfy ϒdes

i,j − &&&&&&
η/Wi,j

√
≤ϒi,j ≤ϒdes

i,j + &&&&&&
η/Wi,j

√
.

min
η,Z∈R(nc+ny )× nc+nu( )

η s.t.
η ϒi,j − ϒdes

i,j

sym W−1
i,j

⎡⎢⎣ ⎤⎥⎦ ≻ 0

i � 1, . . . , nc + ny, j � 1, . . . , nc + nu( ),
(35)

where ϒi,j represents the (i, j) element of the right-hand
side of the last equation of Eq. 11 with constant

Z, i.e., T−1 0
0 Iny

[ ](Y†
BAcY

†
C + Z − Y†

BYBZYCY
†
C) T 0

0 Inu
[ ], ϒdes

i,j

represents its designated figure assigned by the designer, and
Wi,j represents the weighting coefficient for (ϒi,j − ϒdes

i,j )2.
In the problem above, (ϒi,j − ϒdes

i,j )2 is overbounded by η/Wi,j.
Similarly, it can be possible to overbound the sum of
Wi,j(ϒi,j − ϒdes

i,j )2, i.e., ∑i,jWi,j(ϒi,j − ϒdes
i,j )2.

We would like to emphasize that even ifϒi,j can be set as the same
figure as ϒdes

i,j , the state-space matrices of CO satisfy Eq. 9. Thus, the
input–output property of CO is the same as that of CG. This will be
confirmed by toy examples in the next section.

4 NUMERICAL EXAMPLES

Several toy examples are introduced to clearly illustrate our
contributions. To this end, we first confirm that our
conversion method from CG to CO, i.e., Eq. 11,
encompasses the method from CG to CL proposed in the
study of Alazard (2012) for LTI plant systems and full-

order unstructured LTI controllers. We next show the
effectiveness of our method for state transformation
matrices, i.e., Lemma 2, and our method for obtaining a
priori designated matrices as the state-space matrices in
CO, i.e., solving Eq. 35 in Problem 2. We finally show the
effectiveness of Lemma 1 in CT and DT cases.

4.1 Confirmation of Relation Between the
Method in the Study of Alazard (2012) and
Our Method
We first confirm the relation of our method and the method in
the study of Alazard (2012) using the following CT LTI plant and
CT unstructured LTI controller. The controller is designed to
assign the closed-loop poles at −7, −5, −3 ± i; that is, a stabilizing
controller is designed:

.

By following the procedure in the study of Alazard (2012), if
the poles −3 ± i are set to be the eigenvalues of A + BK, then the
following state transformation matrix, and observer and state-
feedback gains are correspondingly obtained:

T � 1 −1
0 1

[ ], L � −12 −36[ ]T, K � −11 −6[ ].
The state-space representation of CL is consequently obtained as
follows:

We now obtain K and L in Eq. 11 by setting T � T. Then, the
observer gain and the state-feedback gain in CO are obtained as
follows:

L � −12 −36[ ]T, K � −11 −6[ ].
Obviously, they are the same as the result obtained by the

method in the study of Alazard (2012) because T is set asT. That
is, it is confirmed that our method is identical to the method in
the study of Alazard (2012).

Next, we obtain matricesAo, Bo, Co, andDo in Eq. 11with several
Z, i.e., constant Z due to an LTI plant system and LTI controller. To
this end, Y†

B and Y†
C are, respectively, set as YT

B(YBYT
B)−1 and

(YT
CYC)−1YT

C, andmatrix Z is set as Z = 100 × I3 (case a), Z = 0 (case
b), and Z � −[1 1 1]T[1 1 1] (case c). Then, the matrix XO is
obtained as follows:

Case a :
71.80 18.12 2.25
−18.83 111.94 4.26
1.12 5.12 0.65

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
Case b :

−0.36 0.25 −0.24
−0.25 0.17 −0.17
0.22 −0.17 0.40

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
Case c :

−1.10 −0.98 −0.15
−1.08 −0.98 −0.47
−0.55 −1.37 0.32

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.
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Although the matrix XO above has corresponding figures in
accordance with different Z, Ao + BoK + LCo + LDoK is calculated

as
54 37
152 102

[ ] in all three cases. It is also confirmed that this

matrix is the same as T−1AcT.
That is, we have confirmed that our parameterization encompasses

the formulation in the study of Alazard (2012) regardless of the
choice of Z.

4.2 Effectiveness Demonstration of Our
Method for Linear Time-Invariant Plant System
We next consider the same example in the study of Alazard
(2012), i.e., the following CT LTI plant:

.

We now suppose that the following CT unstructured LTI
stabilizing controller, which is also borrowed from the study
of Alazard (2012), has already been designed:

. (36)

This controller assigns the closed-loop poles at −3, −4, −10 ± 10i.
We now suppose that poles −3 and −4 are assigned by A + BK.
Then, the state transformation matrix T and observer and state-
feedback gains are correspondingly obtained as follows:

T � 10−3 ×
3.2724 4.6495
2.7406 −0.2727[ ], L � −20 −201[ ]T,

K � −13 −7[ ].
The consequently calculated CL is given as

.
(37)

We now solve Eq. 33 in Lemma 2 for ver(X0) � 1
1

[ ], 1
−1[ ]{ },

and then the state transformation matrix T is obtained as

10−3 × 27.827 5.578
0.835 −0.505[ ] with γ = 2.154. The numbers of LMI rows

and decision variables in LMIs are 20 and 47, respectively. The

correspondingly calculated CO with Z being 0 is shown as

(38)

We show the simulation results using controllers CG, CL,
and CO in Figure 1 and show the finite-time state
estimation performance, i.e., ∫3

0
(Δx1)2 + (Δx2)2dt, in Table 1.

Although the estimation of the first state of the plant system by CL

is faithful, the second state of CL initially moves in the opposite
direction to the second state of the plant system; in this sense, the
estimation of the second state by CL is poor.

In contrast, the observer-structured controller CO has a
much better state estimation performance as indicated in
Table 1. This clearly illustrates the effectiveness of our
method compared to the method in the study of Alazard
(2012).

We next address Problem 2 with the following ϒdes and W
using the above T:

ϒdes �
p 0 0
p p 0
p p p

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, W �
p 1 1
p p 1
p p p

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (39)

where p denotes the element of no interest. Solving Eq. 35 gives
the following Z and the following corresponding state-space
matrices of CO:

FIGURE 1 | Closed-loop response to a non-zero initial plant state using CG, CL, and CO: (A) x(0) � [1 1]T ; (B) x(0) � [1 − 1]T .
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(40)

The transfer functions of CG in Eq. 36, CL in Eq. 37, and CO in
Eq. 38 are all calculated as −1667 s−2753

s2+27 s+353 . The transfer function of CO

with Ao, Bo, Co, and Do in Eq. 40 is also calculated as −1667 s−2753
s2+27 s+353 ;

however, the state-space matrices of CO can have an artificially
assigned special structure as in Eq. 40.

4.3 Effectiveness Demonstration of Our
Method for Linear Parameter-Varying Plant
System
We finally consider the conversion problem for LPV plant systems.
Note that themethods in the studies of Alazard andApkarian (1999)
and Alazard (2012) cannot be applied to the example shown below
because the plant system is given as an LPV system.

4.3.1 CT Case
We first consider the following CT LPV system:

(41)

where θ � [ θ1 θ2 ]T. We set that the two parameters are
supposed to be frozen in the interval [0.9, 1.1]; that is, the
vertex sets of Λ1 and Λ2 are set as follows:

ver Λ1( ) � 0.9, 0( ), 1.1, 0( ){ },
ver Λ2( ) � 0.9, 0( ), 1.1, 0( ){ }.

It is supposed that the following stabilizing controller is given
as an unstructured controller:

(42)

For this problem setup, we solve Eq. 29 in Lemma 1 with Csl = [1
0] andCslo � 1 and obtain T = 0.333 with γ = 0.052. The numbers of
LMI rows and decision variables in LMIs are 44 and 44, respectively.
The state-space representation of CO with Z = 0 is consequently
given as follows:

(43)

The simulation results with CG in Eq. 42 and CO in Eq. 43 are
shown in Figure 2. It is confirmed that the state of CO faithfully

represents the plant state x1 in both cases with x(0) = [1 0]T and
x(0) = [0 1]T.

We next address Problem 2 with the following ϒdes and W
using the above T:

ϒdes � 0 p

p 0
[ ], W � 1 p

p 1
[ ], (44)

where p denotes the element of no interest. Solving Eq. 35 gives
the following Z and the following corresponding state-space
matrices of CO:

. (45)

The transfer functions of CG in Eq. 42 and CO in Eq. 43 are
both calculated as − 28

s−2. The transfer function of CO with Ao, Bo,
Co, and Do in Eq. 45 is also calculated as − 28

s−2; however, the state-
space matrices of CO can have an artificially assigned special
structure as in Eq. 45.

4.3.2 DT Case
We next consider the discretized system of Eq. 41 by using Euler
approximation with the sampling period ΔT = 0.1 (s):

. (46)

We now set that θ1 can vary arbitrarily fast within the interval;
however, θ2 is set as frozen in the interval; that is, the following
vertex sets are considered:

ver Λ1( ) � 0.9, 0.9( ), 0.9, 1.1( ), 1.1, 0.9( ), 1.1, 1.1( ){ },
ver Λ2( ) � 0.9, 0.9( ), 1.1, 1.1( ){ }.

The controller in Eq. 42 is also discretized by using Euler
approximation with the sampling period ΔT = 0.1 (s):

(47)

For this problem setup, we solve Eq. 29 in Lemma 1 with Csl =
[1 0] and Cslo � 1 and obtain T = 0.353 with γ = 1.179. The
numbers of LMI rows and decision variables in LMIs are 72 and
44, respectively. The state-space representation of CO is
consequently given as follows:

. (48)

The simulation results with CG in Eq. 47 and CO in Eq. 48
are shown in Figure 3. It is indeed better to have simulations
with varying θ1 within the interval [0.9, 1.1]; however, there
are uncountable combinations for the variation of θ1. Thus,
we conduct numerical simulations only with the fixed
extreme points of θ1. It is confirmed that the state of CO

TABLE 1 | State estimation performance in Figure 1.

x(0) CG CL CO

[ 1 1 ]T 3.479 4.100 0.154

[ 1 −1 ]T 5.479 6.100 2.154
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faithfully represents the plant state x1 in both cases with x(0)
= [1 0]T and x(0) = [0 1]T.

We next address Problem 2 with the following ϒdes and W
using the above T:

ϒdes � 1 0.05
1 0.5

[ ], W � 1 1
1 1

[ ]. (49)

In this case, we set ϒdes composed of the upper-left element
of A(θ), the first element of B(θ), and the first element of C(θ)
and D(θ) in the state-space matrices of Eq. 46. Our aim is to
obtain matrices close to the nominal state-space matrices
corresponding to the first-input-first-output system. We

minimize the Frobenius norm for ϒ−ϒdes, and obtain the
following Z and the corresponding state-space matrices:

(50)

In this case, in contrast to the previously shown examples,
we cannot obtain the designated figures for the state-space
matrices Ao, Bo, Co, and Do due to lack of enough freedom in
Eq. 11.

FIGURE 2 | Simulation results with frozen (θ1 , θ2) � (0.9, 0.9), (0.9, 1.1), (1.1, 0.9), (1.1, 1.1){ } for a CT plant (Eq. 41) with x(0) = [1 0]T (A) and x(0) = [0 1]T (B)
(black: plant; blue: CG in Eq. 42; red: CO in Eq. 43).

FIGURE 3 | Simulation results with frozen (θ1 , θ2) � (0.9,0.9), (0.9, 1.1), (1.1,0.9), (1.1, 1.1){ } for a DT plant (Eq. 46) with x(0) = [1 0]T (A) and x(0) = [0 1]T (B)
(black: plant; blue: CG in Eq. 47; red: CO in Eq. 48).
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The transfer functions of CG in Eq. 47 and CO in Eq. 48 are
both calculated as − 2.8

z−1.2. The transfer function of COwith Ao, Bo,
Co, and Do in Eq. 50 is also calculated as − 2.8

z−1.2; however, the
state-space matrices of CO can have very close figures as assigned
in Eq. 49.

5 CONCLUSION

We address the conversion problem from unstructured LTI
controllers to observer-structured LTI controllers, whose
structure is similar to but not exactly the same as
Luenberger observer–based controllers, for LPV systems
with direct feedthrough. To this end, we first define
observer-structured LTI controllers, then parameterize the
state-space matrices with a priori designed unstructured LTI
controller, one free matrix and a state transformation matrix,
and finally propose a method which produces the optimal state
transformation matrix with respect to the convergence of the
discrepancy between the plant state and the observer-structured
controller state for a stochastically defined non-zero initial plant
state. Several toy examples are introduced to clearly illustrate the
effectiveness and usefulness of observer-structured LTI controllers
and the proposed method for obtaining optimal state
transformation matrices with respect to the minimization
between the discrepancies between the LPV plant state and the
converted LTI controller state.

In this paper, we address the controller conversion problem in the
case that only the stabilization problem of LPV plant systems is
considered. As our next step, we are now tackling the same conversion
problem in the case that some control performance criteria are also

considered. Then, we will demonstrate the practicality of the
conversion by using practical systems including H∞ performance.

In this paper, it is also supposed that LTI controllers are given
for LPV plant systems; however, the usefulness and effectiveness
of using LPV controllers for LPV plant systems are also well
recognized. Thus, the extension of our results to LPV controllers
is another future research topic.
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