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This paper demonstrates an innovative group of robots, consisting of jumping rovers and a
charging station, improved traversability and extended energy endurance when traveling
to multiple target locations. By employing different jumping rovers with distinct energy
consumption characteristics and jumping capabilities, we focus on searching for the most
energy-efficient path of each jumping rover in a multi-waypoints visiting mission with
obstacles. As jumping rovers can jump onto or over some obstacles without navigating
around them, they have the potential to save energy by generating alternative paths to
overcome obstacles. Moreover, due to the energy demands for the multi-waypoints
mission and the limited battery capacity, a charging station is considered to provide extra
energy for enhanced endurance during the mission. We first apply a refined rapidly-
exploring random tree star (RRTp) algorithm to find energy-efficient paths between any two
target locations. Then, the genetic algorithm (GA) is applied to select the most profitable
combination of paths to visit all targets with energy constraints. Finally, we verify the
improved mobility and energy efficiency in both virtual simulation and experimental tests
using a group of customized jumping rovers with a charging station and the proposed path
planning and task allocation method.
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1 INTRODUCTION

Unmanned ground vehicles (UGVs) have been used extensively for exploration in unknown or
dangerous environments where humanity is not able to access. The terrain in the exploration
mission may consist of diversified features, such as flats, cliffs, and slopes. For most of the
exploration missions, a UGV is selected according to the specific feature of the overall terrain.
For example, wheeled robots have been used to travel to the target location in environments
with flat terrain. However, for terrain with complicated geometry, the exploration mission is
performed by particular types of locomotive, such as caterpillar tracked robots or unmanned
aerial vehicles (UAVs). Although general wheeled UGVs show extended operational time in
most cases, they cannot overcome obstacles, such as areas with large gaps or terrain with high
elevations. UAVs, on the other hand, are subject to atmospheric effects and are governed by
more stringent safety or operational requirements. Considering the limitations of traditional
UAVs and UGVs, we propose using a team of wheeled robots with jumping capabilities for
multi-waypoints visiting missions with obstacles. The focus is to develop an optimal path
planning algorithm for the particular robot team to search for the energy-efficient path in the
assigned mission.
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Compared to a traditional wheeled vehicle that has to avoid
obstacles, the jumping capability provides flexibility on path
planning, as a jumping rover can decide whether to avoid or
jump over/onto the obstacles. The jumping motion is achieved by
deforming the robot’s parts, e.g., wheels (Ye et al., 2018), or
activating their jumping apparatus (Mizumura et al., 2017). In the
space industry, hopping robots have been applied in planetary
exploration missions (Morad et al., 2018; Hockman and Pavone,
2020). Existing studies on the control of a jumping robot focus on
generating precise jumping motion, e.g., legged motion with
specific speed and torque (Ding and Park, 2017) and motion
control of a jumping robot that uses a tail as its jumping
mechanism (Iwamoto and Yamamoto, 2015). The motion
planning approach for a jumping robot has been developed
that prioritizes safety and minimizes the cost of jumping by
finding an optimal landing position (Ushijima et al., 2017). And
obstacles are treated as a point that cannot be used as a suitable
landing surface in the literature. In this paper, we consider
specific dimensions of an obstacle that can be landed by a
jumping rover.

Another concern that restricts the robot motion in traveling
missions is the limited battery capacity, especially in long-term
operations. Therefore, to extend the operational time in traveling
missions, charging stations have been considered to provide extra
power within the mission area. In ideal scenarios, a charging
station will allow rovers to work persistently (Mathew et al., 2015;
Kingry et al., 2017). When a charging station is considered in the
multi-waypoints visiting mission, the path planning problem is
more challenging as we need to consider paths from/to a charging
station in addition to the paths between the target locations.
Furthermore, charging decisions, e.g., which rover should be
charged and when to charge them (Michaud and Robichaud,
2002), need to be determined based on the assigned mission and
energy consumption rate. These charging stations are required to
automatically connect to the inlet of an autonomous robot. Work
in (Behl et al., 2019) utilized a camera to detect the relative
position between a charging plug and a robot. Another work in
(Barzegaran et al., 2017) utilized wireless power transmission for
electric vehicles. Due to the size and weight limitation of the
jumping rover, we cannot apply those charging methods to
connect with the jumping rover. Instead, magnetic connectors
are introduced to connect two end effectors of a station and
a rover.

Many types of route optimization algorithms have been
developed to solve path planning problems involving multiple
robots, e.g., dynamic programming (Kok et al., 2010; Ou and Sun,
2010), minimum spanning tree algorithms (Pettie and
Ramachandran, 2002), Tabu search (Archetti et al., 2006), ant
colony optimization (Abousleiman et al., 2017), and particle
swarm optimization (Belmecheri et al., 2013). A general multi-
waypoints traveling mission performed by a team of robots can be
formulated as the well-known multi traveling salesperson
problem (mTSP) and then solved via the mixed-integer linear
programming (MILP) algorithm, which is not directly applicable
to the path planning problem considered in this paper. One
reason is the involvement of a charging station, which requires
determining visiting sequences and time to a charging station.

The other reason is the inclusion of obstacles, which complicates
the traditional mTSP. The development of motion planning
methods has led to various techniques being used, including
sampling-based algorithms such as probabilistic roadmap (PRM)
(Kavraki et al., 1996) and rapidly exploring random tree (RRT)
(LaValle, 1998; LaValle and Kuffner Jr, 2001). A variant of RRT,
named RRTp, iteratively searches for an optimized solution, e.g.,
shortest path (Karaman et al., 2011). In this paper, after obtaining
a path using the basic RRTp algorithm, path refinement
techniques are proposed to search for an optimal path that
meets the jumping rover’s motion constraint.

Based on our prior work of jumping rovers (Tan et al., 2020),
this work extends the jumping rover team with a charging station
and proposes new algorithms for path planning and task
allocation. We first find energy-efficient path segments
between any two target locations by a refined RRTp algorithm,
where an obstacle can be treated as a possible pathway if a
jumping rover is able to jump over it. If there are obstacles
between two targets, the refined RRTp determines whether
avoiding obstacles or jumping over obstacles is more energy
efficient. We then utilize the genetic algorithm (GA) to search
for the most profitable combination of path segments to visit all
targets, as well as path segments to/from the charging station to
satisfy energy constraints. When considering the charging station
and energy constraints of each jumping rover, it makes the path
planning of the multi-waypoints traveling mission much more
challenging, which requires a new formulation and path planning
method incorporating the charging function and energy
constraints. Compared to our prior work in (Tan et al., 2020),
the contribution of this paper includes the following points: (1) a
new formulation of the multi-waypoints traveling mission of a
robot team integrating the charging function and energy
constraints. (2) a path planning algorithm with refined paths
that consider more complicated geometries of an obstacle in both
rolling and jumping motion, (3) introducing GA to determine
both visiting and charging sequences, and (4) design and
construction of a charging system that automatically docks
with the jumping rovers.

The paper is organized as follows: Section 2 introduces the
robot team and problem formulation, Section 3 describes the
development of path planning and task allocation algorithm. The
simulation and experimental results are presented in Section 4.
Finally, we address the conclusions and future work in Section 5.

2 ROBOT TEAM MODEL AND PROBLEM
STATEMENT

2.1 Jumping Rovers and Charging Station
There are multiple requirements to verify the improved mobility
and energy efficiency of a jumping rover team in real-world
operations. First and foremost, the rolling motion must produce
ground-based locomotion and the jumping motion is required to
produce vertical displacement. Second, it must record energy
consumption from both types of motion to validate the proposed
algorithm properly. The wheeled, jumping rovers are based upon
a Parrot Jumping Sumo robot chassis (Parrot, 2019). The rover is
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made out of different materials, including acrylic, nylon,
aluminum, and 3D printed parts because the rover must be
lightweight to achieve an acceptable jumping height. The
center of mass sits on the force vector of the jumping
mechanism to ensure the rover does not flip after actuation.
In addition, “whiskers” in the front enable the rover to descend
from the top of obstacles without flipping over. Each jumping
rover has a fixed jumping height determined by the stiffness of the
compressed spring. Two jumping rovers with different energy
consumption rates and jumping heights are demonstrated in
Figure 1A. The left rover in Figure 1A can jump higher and
consumes more energy than the other one.

The charging station is built to automatically charge the two
rovers, as shown in Figure 1B. Each rover has a unique
charging port and the charging station has two charging
port arms. The charging service arms can rotate to capture
the port of the rover. Moreover, magnet tips are used for the
charging station outlets to secure the docking of rovers with
the charging station via magnetic forces. We use the “HX-A3
Hexfly Lipo Battery Charger” for each rover. Depending on the
battery level of the rover, the charging time can be different for

the same amount of charged energy. We also use voltage and
current sensors to measure howmuch energy is provided to the
rover from the chargers and these measurements are
transmitted to the mission control computer via a
wireless modem.

The Parrot Jumping Sumo robot that can be purchased off the
shelf is a manually operated rover. The overall system is shown in
Figure 1C. We modified the original model with a Micro
controller Unit (MCU) and communication system to achieve
autonomous operation, including a customized jumping
mechanism. The jumping rovers are controlled wirelessly
through serial communication with a mission control
computer. The commands are then relayed to a motor driver
that controls the rotational speed of the wheel motors. Signals for
the jumping mechanism are applied directly from the MCU to a
servo motor. Each rover and the charging station have voltage
and current sensors to measure its power consumption or
charging power. Waypoints for the planned path are output
from the MATLAB simulation and followed by the physical
UGV through a 3D space coordinate measured by a motion
capture system.

FIGURE 1 | Jumping rovers and charging station (A): jumping rover 1 (UGV 1) (left) and jumping rover 2 (UGV 2) (right), (B): charging Station (C): overall data and
power flow.
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2.2 Rover’s Kinematics and Control
In order to make the rovers follow the desired trajectories, we use
the basic kinematics of the two-wheeled robot (Ichihara and
Ohnishi, 2006; Chen et al., 2008). The rolling and jumping
motion working mechanism is shown in Figures 2A,B. For
the rolling motion, its coordinate is represented by X and Y.
The center point velocity of the rover is denoted by v. Then, _X
and _Y are expressed as,

_X � v cos θ
_Y � v sin θ

(1)

where θ is the heading angle of the rover and the angular velocity
ω is the heading angle changing rate, denoted by _θ. Then, we can
express the velocity terms in a matrix form, expressed as

_X
_Y
_θ

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ � cos θ 0
sin θ 0
0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ v
ω

[ ] (2)

The relationship between the translational and angular
velocity of the rover and the translational velocities (vl, vr) of
each wheel can be expressed by

v
ω

[ ] �
1
2

1
2

1
L

−1
L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ vr

vl
[ ] �

R

2
R

2
R

L
−R
L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ωr

ωl
[ ] (3)

where L is the width of the rover, and ωl and ωr are the angular
velocity of the left and right wheel, respectively. Then, we can
derive the relationship between the velocity and the angular
velocity of the wheel.

_X
_Y
_θ

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ �
R

2
cos θ

R

2
cos θ

R

2
sin θ

R

2
sin θ

R

L
−R
L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ωr

ωl
[ ] (4)

This relationship shows that the rover’s motion is non-
holonomic. For the rolling motion, the four differential-drive
primitives of a Balkcom-Mason curve are considered to
simplify its motion with straight line and zero-radius
rotation. When the rover changes its heading, time and
energy consumption for rotation are negligible. Therefore,
only line segment driving is considered when calculating
the energy consumption.

Due to the limited size of rovers and weight limit for the
jumping motion, there are no encoders implemented in the
rovers to measure the rotational speed of their wheels.
Therefore, to adjust the rovers’ heading angle, their wheel
speed is under control such that the rovers can maintain their
heading angle when following a straight line. A proportional and
derivative controller is applied to maintain a desired heading
angle, expressed as

u � Kpe θ( ) +Kd
de θ( )
dt

(5)

where u is the differential input for the rotational speed of a rover,
e(θ) is the error of angle between a desired heading angle and the
current heading angle, and kp and kd are the proportional and
derivative gains, respectively.

For the jumping motion, we need to determine the maximum
jumping height based on the energy conservation principle. By
calculating the spring potential energy, the maximum jumping
height can be determined by,

hmax � kspring lr − lc( )cosθc( )2
2W

(6)

where kspring is the spring constant, lr is the spring length when it
is released, lc is the spring length when it is compressed, θc is the
angle between the rover and the vertical axis, andW is the weight
of the rover. The characteristics of energy consumption and
jumping capability of two rovers are shown in Table 1, where
UGV 1 jumps higher than UGV 2 and consumes about four times
as much energy as UGV 2 for every jump.

FIGURE 2 | Jumping rover’s motion (A) rolling motion, (B) jumping motion.
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2.3 Problem Statement
The objective for a team of UGVs is to visit a set of targets using
the most energy-efficient route, where one stationary charging
station is provided for the power supply. The targets are denoted
as T = T{1,2,. . ., m}, where m is the total number of visiting targets.
The charging station is denoted by S. All UGVs start at T1 and
rendezvous at the same destination. The m targets can be located
anywhere in the mission area, including the top of obstacles. In
addition to the specified targets, we consider n obstacles
randomly scattered in the mission area, denoted by O =
O{1,2,. . ., n}. Each obstacle is a rectangular prism with a flat
surface and given dimensions. These obstacles are treated as
solid objects that cannot be passed through or moved. They will
not overlap with each other; however, their boundaries can
intersect adjacent ones such as O4, O5, and O6 shown in
Figure 3. The UGVs are indexed as z = 1, 2, . . ., p. UGVs in
the team can reach different jumping heights. To generate a
feasible jumping path, we need to consider the kinematics of two-
wheeled vehicles and the obstacles’ geometry. The jumping path
associated with an obstacle is positioned perpendicular to the
border of the obstacle. Each target point can only be visited by one
UGV to reduce the cost associated with the travel, except for the
initial and the destination targets. The number of visiting a
charging station is not limited.

Consider a single UGV that operates with two operational
modes. One is the rolling mode that rotates motors as a general

ground vehicle, and the other mode is the jumping mode. The
UGV stops at the jumping position and compresses and releases
its spring mechanism to jump. With a constant velocity during
straight forward rolling and constant angular speed during zero
radii rotation for UGV z, z = 1, . . ., p, the energy consumption
rate of the jumping rover in straight forward motions is denoted
by Pl

z. The energy consumption for straight forward and jumping
motion is much higher than the one required for rotation, which
makes the energy consumption for rotating motion negligible. In
addition, the passive energy drawn from the vehicle’s electronic
components, such as theMCU, is a fixed value and denoted by Pa

z.
The height of the jumping motion for each UGV is held constant,
denoted by hz, with fixed energy expenditure, denoted by Jz,
associated with the corresponding jumping rover z = 1, . . ., p. The
energy consumption for each jumping rover traveling from target
i to target j, i, j = 1, . . ., m, i ≠ j, is determined by

cij,z � Pl
z + Pa

z( )tlij,z + JzNij,z, (7)
where tlij,z is the time duration along the rolling motion between
targets i and j, Nij,z is the overall number of jumps for UGV z, z =
1, . . ., p, between targets i and j. The time used to travel between
two targets can be calculated by the velocity of each rover and the
distance between the targets, where constant velocity is used for
each rover. By adding the energy consumption of all jumping
rovers along path segments connecting all targets, we can find the
overall UGV team energy usage during the visiting mission.

TABLE 1 | Energy and jumping characteristics of UGVs.

Rolling Energy [J/mm] Jumping Energy [J/jump] Jumping Height [mm] Jumping Distance [mm]

UGV 1 0.016 3 21.52 260 247.3
UGV 2 0.006 1 5.49 150 226.5

FIGURE 3 | Mission overview.
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In this paper, each UGV is confined to the energy
consumption constraint due to the limited battery capacity.
Therefore, a UGV needs to visit the charging station before its
stored energy becomes exhausted. Assuming the energy initially
stored in the battery for each UGV is E0,z, a UGV’s stored energy
will reach the initial amount every time it is charged at the station.
Before approaching the charging station, a designated UGV
should have sufficient energy to drive to the charging station.
During the charging process, ΔEl,z amount of energy is provided
from the station at the lth charging sequence to UGV z such that
the stored energy will reach the initial amount.

The path planning problem for the multi-waypoints visiting
mission can be represented by a complete graph G � (V, E)which
consists of a set V � T{1,2,..., m} ∪ S as graph vertices and an edge
set E connecting any two target points. The associated edge cost
for (i, j) ∈ E is determined by the energy consumption amount
required to travel from target i to j, where i, j = 1, 2, . . ., m, S and
i ≠ j. In addition, xij,z is a binary variable that is determined by

xij,z � 1, edge i, j( ) ∈ E will be visited by UGV z
0, edge i, j( ) ∈ E will not be visited by UGV z

{
All vehicles start at the first target, denoted as T1, and end at

the same destination point Tk, where the index k, 1 < k ≤ m, is
unknown and will be determined by the path planning algorithm.
T′ is a set of targets excluding the initial target such that T = T1 ∪
T′. Let Vz be the collection of target indices, excluding the
charging station, visited by UGV z, where elements of Vz, are
sorted according to the visiting sequences. The number of targets,
excluding the charging station, visited by UGV z is denoted as nz,
which is also the length of Vz. Then, the path planning problem
for the energy-efficient multi-waypoints visiting mission can be
formulated as

min∑p
z�1

∑
j∈T′,j≠i

∑
i∈T∪S

cij,zxij,z (8)

s.t. ∑p
z�1

∑
j∈T′∪S

x1j,z � p (9)

∑p
z�1

∑
j∈T′∪S

xjk,z � p, j ≠ k, k ∈ T′ (10)

∑p
z�1

∑
i∈T∪S

xij,z � 1, j ∈ T′, i ≠ j, j ≠ k (11)

∑p
z�1

∑
j∈T∪S

xij,z � 1, i ∈ T′, i ≠ j, i ≠ k (12)

∑
i,j∈Vz

xiS,z − xSj,z( ) � 0, z � 1, . . . , p (13)
∑

i,j∈Vz 1,...,lz( )
ciS,zxiS,z + cij,zxij,z + cSj,zxSj,z − xiS,zΔEi,z( )≤E0,z − Emin ,z,

lz � 2, . . . , nz − 1, z � 1, . . . , p

(14)
where Eq. 8 is the cost function representing the overall energy
consumption for the jumping rover team to visit all the assigned
targets, as well as the charging station. Constraints 9, 10 indicate

that all pUGVs start at target T1 and end at target Tk.Constraints
11, 12 require that one target should only be visited once, except
for the starting and ending targets and the charging station.
Constraint 13 indicates that at least one pair of edges exists to
connect the charging station with two adjacent targets i and j in
the set ofVz if UGV z visits the charging station. A UGVmay visit
the charging station multiple times according to its energy
consumption characteristics. Constraint (14) specifies that the
energy in the battery of each UGV is required to maintain above
Emin,z for all the time, where xiS,zΔEi,z indicates that if UGV z gets
charged after visiting target i, it will gain ΔEi,z to reach the initial
energy amount, denoted as E0,z, and Vz (1, . . ., lz) represents the
first lz elements in the set Vz.

3 PATH PLANNING AND TASK
ALLOCATION ALGORITHM

The multi-waypoints visiting problem formulated in Eqs 8–14
also needs to consider the n obstacles in the mission area. First, a
refined RRTp algorithm is proposed to determine the optimized
paths between any two target points. Then, a customized GA is
applied to search for optimal sequences to visit all the target
points, as well as the charging station when it is necessary for a
UGV to charge its battery.

3.1 Refined RRTp
When applying the RRT algorithm (LaValle, 1998; LaValle and
Kuffner Jr, 2001) to search for a feasible path, each tree begins at
an initial point, xinit, and attempts to make a connection between
the origin and a random point, xrand, in a specified area. The
length of the connection is dictated by an established unit length,
Δx. The connection of the random point is made with the nearest
point in the tree xnear to a new point, xnew, which can be reached.
Basically, a unit vector multiplied by a scalar, Δx, in the direction
of the random point. This configuration is added to the result
data, and a new connection is made without violating the collision
constraint. The process is repeated for a number of desired
iterations, K, and the selected points in the sequence are saved
in R. If the final destination point, xdest, is provided, then xdest
connects to their nearest random point of a generated tree
without violating the collision constraint before the function
terminates. While effective in finding a solution with a fast
speed, RRT cannot guarantee that solutions are efficient in
terms of the length of the tree path from xinit to xdest. Thus,
RRTp, the optimized version of RRT, takes each point in a tree,
finds the points within a radius of each point, and replaces
existing edges with the most efficient path without violating
the collision constraints.

However, RRTp is restricted to optimization within a radius
around a vertex or within a “neighborhood.” Due to this
limitation, RRTp may not provide a smooth solution that is
traversable between target locations. To compensate for the
deficiency, we propose a refined RRTp method with the
process shown in Algorithm 1 from line 15 to line 23. We
aim to shorten the final path through the refinement process and
make it more energy efficient by excluding unnecessary tree
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segments through the smoothing and elimination process. The
smoothing process selects two random points on two distinct
edges that link RRTp vertices and creates a smoother path that
does not violate the collision constraints. The smoothing process
continues until it reaches the desired number of smoothing
iterations, U. The elimination process checks all edges from
the initial to the final vertices. If an edge does not collide with
any obstacles, the second vertex together with the edge that links
to it will be eliminated, and the third vertex will become the
second one. The elimination process removes unnecessary
vertices.

Algorithm 1. Refined RRTp Algorithm.

With the jumping capability, the jumping rovers can decide
whether to jump over or avoid an obstacle. Jumping over an

obstacle leads to obstacle elimination and then changes a non-
traversable path into a feasible one. Therefore, additional feasible
path segments will be created for the multi-waypoints visiting
mission with the jumping option. If the number of obstacles lying
on the straight line path between targets Ti and Tj is nf, there will
be 2nf number of feasible paths to connect Ti and Tj. For example,
in Figure 4, two obstacles are lying on the straight line connecting
targets T1 and T2. There are four feasible paths between T1 and T2.

The results from the refined RRTp algorithm are affected by
the number of samples. To improve the performance of the
refined RRTp to obtain a result closer to the global optimal
solution, it is necessary to examine the effects on the convergence
rate and cost value of the refined RRTp results when selecting a
different number of samples. Using one part of Scenario 3 to find
the collision avoidance path between Targets T2 and T7 as an
analysis example, when changing the number of samples from
300 to 10,000 and running the refined RRTp 50 times for each
sample number, the convergence rate is shown in Figure 5A.
Therefore, at least 4,000 samples are required to guarantee
convergence of the refined RRTp algorithm. According to the
convergence analysis, we assign the minimum number of samples
for the refined RRTp algorithm according to the effective area
including every two targets in the mission. Moreover, the cost
value under different numbers of samples is compared. For the
original RRTp algorithm, it is obvious that the increased number
of samples leads to shorter paths with a reduced cost value. For
the refined RRTp algorithm proposed in this paper, it always
obtains a near-optimal solution once it converges, as shown in
Figure 5B. With these analysis results, 4,000 samples are assigned
when calculating paths between every two targets in the refined
RRTp algorithm, which guarantees convergence and the
converged result is a near-optimal solution.

FIGURE 4 | Traversable paths between targets 1 and 2 with jumping and avoiding options.
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3.2 Path Generation for Grouped Obstacles
Section 3.1 considers the cases where obstacles are separated
from each other. This section shows the generation of traversable
path segments for obstacles that are grouped together. Using the
scenario in Figure 3 as an example, obstacles O4, O5, and O6 are
grouped together and the elevation of O5 is higher than the other
two adjacent neighbors.

Under such type of scenarios, we need to determine directions
to approach and depart the grouped obstacles as well as the routes
traveling on top of them. We first approximate every obstacle as a
combination of unit blocks. For example,O4 and O6 in Figure 6A
are composed of three-unit blocks. Moreover, the grouped
obstacles are surrounded by the same unit blocks in four
directions, denoted as W, S, E, N. Based on the geometry
approximation of the grouped obstacles and their surrounding
areas, an adjacency matrix is established to represent the
adjacency relationship between an obstacle and a surrounding
area, as well as the relationship between any two obstacles in the
group. For example, the adjacency matrix, dented as Ad, for the
case in Figure 6B is shown in Figure 6C.

In general, for a group with ng obstacles, the size of its
adjacency matrix is (ng + 4) × (ng + 4), where Ad(i, j) = 1
indicates elements i and j share a borderline. According to the

adjacency matrix, new feasible paths are determined in the next
step to overcome grouped obstacles. By permutation of the
grouped obstacle indices and their surrounding areas that are
adjacent to each other, all feasible paths approaching and
departing the grouped obstacles from one surrounding area to
the other, as well as the path segments on top of the obstacles, can
be determined. Similar to the cost value computation for the path
segment in Section 3.1, the cost value is assigned to each segment
of the newly generated paths. Then, the one with the minimum
combined cost is selected for a specific jumping rover to travel
over the grouped obstacles.

3.3 Optimal Visiting Sequences
When all feasible routes with and without jumping options are
generated between any two targets using the methods described
in Sections 3.1, 3.2, a customized GA is applied to search for the
optimal sequences to visit all the target points, as well as the
charging station when it is necessary. Three parts of the
chromosome are included in the customized GA. In Figure 7,
the first part represents the target visiting sequences for all UGVs,
denoted as [V1(1), . . ., V1 (n1), V2 (1), . . ., V2(n2), . . ., Vp(1), . . .,
Vp(np)]. The charging sequences for each UGV are involved in
the second part of the chromosome in Figure 7. Associated with

FIGURE 5 | (A): RRT* convergence rate v.s. number of samples, (B): Cost value v.s. number of samples for RRT* and refined RRT*, (C): GA performance under
different combinations of crossover and mutation rates.

FIGURE 6 | (A): geometry of grouped obstacles, (B): obstacles’ adjacency relationship, (C): adjacency matrix.
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each element in the set of Vz, a binary variable is assigned and set
as one if a corresponding UGV goes to the charging station after
visiting a specific target point, otherwise it is set as zero. Thus, the
number of chromosomes in the second part is the same as the
length of the first part. The third part of the chromosome
represents the number of targets visited by each vehicle,
denoted as [n1, n2, . . ., np] with ∑p

z�1nz � m + 2p − 2. For
example, according to the chromosome in Figure 7, the target
visiting sequences of UGV 1 is 1-3-2-4-5, and it will be charged
after visiting target 2 and then continue to visit target 4 after
charging. Then, the overall visiting sequences for UGV 1 is 1-3-2-
S-4-5.

From the initial population, the tournament selection picks a
random subset of the population and then chooses the best-fitted
chromosome in the selected population set. Among the selected
population, the crossover and mutation process will be applied
based on the probability of the process. The crossover process

only affects the first part of the chromosome, indicating each
UGV’s target visiting sequences. We introduce an ordered
crossover rather than using a single or two-point crossover to
avoid generating invalid solutions. Its child is generated by
copying a random number of successive genes and its position
from one parent. The remaining genes are implanted in the order
of another parent. Then, the mutation process will affect the first
and third parts by swapping one gen with another. These
operations prevent the genes from being trapped in a local
solution.

When generating offspring for the next generation, energy
constraints and collisions between rovers are examined. Only
collision-free offspring satisfying the energy constraints are
chosen for the GA operations described above. Specifically, to
satisfy the energy constraint, formulation in Eq. 14 is examined
based on the new sequences including the charging sequences.
Any chromosome that violates the energy constraint is

FIGURE 7 | Chromosome representation for the UGV team with visiting and charging sequences.

FIGURE 8 | Two stages of path planning and task allocation.
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FIGURE 9 | Path planning and target allocation simulation (A): without jumping option for scenario 1, (B): with jumping option for scenario 1 (C): without energy
constraint for scenario 2, (D): with energy constraint for scenario 2 (E): without energy constraint for scenario 3, (F): with energy constraint for scenario 3
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abandoned and the process is repeated until the sequence satisfies
the energy constraints. Next, we examine the collision-free
constraints between any two rovers. From RRT, we can obtain
time costs as well as energy costs when traveling between two
targets. By examining a sequence from GA, we can determine
whether one path intersects with another or if there are multiple

paths within a rover’s width. If those conflicting paths are
assigned to any rovers, the time for corresponding UGVs at
the intersection point is calculated. If there is an intersection in
time, new paths will be generated by applying a square shape
avoidance zone with the length of the square equals to the rover’s
width at the intersection point. We then run the GA again to
determine the new sequence. This process is repeated until there
is no collision among robots. Finally, the fitness value is calculated
for every selected population. The fitness value is set the same as
the cost function expressed in Eq. 8. The final solution will be
determined if the ratio of the best solution in the selected
population exceeds the rate of 97%.

For the GA, the crossover and mutation percentages involved
in the evolving operations will affect the cost value. Using
different combinations of crossover and mutation percentages
ranging from 65% to 95%, and .5%–1%, respectively, we aim to

TABLE 2 | Comparative results of energy consumption and mission time with and
without jumping option in Scenario 1.

Without jumping With jumping

Energy [J] time [s] energy [J] time [s]

UGV 1 57.72 10.27 76.89 12.67
UGV 2 114.12 67.35 68.49 39.34
Overall 171.84 67.35 145.38 39.34

FIGURE 10 | Experimental layout and charging station for Scenario 2, (A): mission area, (B): overall experimental configuration.
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find the best combination leading to fast convergence and an
optimal solution. Figure 5C shows that most cases converge to a
close-optimal solution. However, optimality is not guaranteed for
any combination of crossover and mutation percentages. For
example, if a low mutation percentage of .5% is used, its
convergence speed is slower than other combinations in
Figure 5C, associated with a higher cost value. For the worst-
case with the crossover percentage of 95% and the mutation
percentage of .5%, Figure 5C shows that the cost cannot be
reduced within the first 20 iterations and the cost value is much
higher than the optimal one when it converges. Therefore, we
choose the mutation percentage of 1% and the crossover
percentage of 85% when solving this problem.

The entire path planning and task allocation algorithm is
summarized into two steps, as shown in Figure 8. In the first
step, the optimized path segments with andwithout jumping options
for eachUGV are calculatedwith the corresponding cost determined
according to the UGV’s characteristics. Next, the optimal visiting
sequences from the initial target to the final target, as well as to the
charging station, are determined using the customized GA.

4 SIMULATION AND EXPERIMENTS

4.1 Simulation
To verify the enhanced mobility and energy efficiency of the
jumping rover team with a charging station, simulation examples
in three scenarios are presented. For Scenario 1, two UGVs are
required to visit nine target points without energy constraint, shown
in Figures 9A,B. There are seven obstacles, and two of them (O2 and
O3) have higher elevations that can only be reached by UGV 1 with
the jumping option. The two jumping rovers introduced in Section 2
will execute the mission. The characteristics of energy consumption
and jumping capability are shown in Table 1, where UGV 1 jumps
higher than UGV 2 and consumes about four times as much energy
as UGV 2 for every jump.

In Scenario 1, we verify the improved energy efficiency and
mobility by the UGVs’ jumping capability, where the charging
station is not considered. Figure 9A demonstrates the path
planning and target allocation results without the jumping
option, while Figure 9B shows the corresponding results with
the jumping option. With the jumping option, the UGVs choose

FIGURE 11 | Simulation and experimental trajectories of UGVs in Scenario 2 with energy constraint.

TABLE 3 | Energy consumption with and without energy constraint for Scenario 2 in simulation and experimental tests.

Energy[J] Without energy constraint With energy constraint

Sim Exp Error (%) Sim Exp Error (%)

UGV 1 47.20 45.15 4.34 19.70 + 65 12.46 + 65 8.35
UGV 2 66.24 64.57 2.59 58.92 60.28 2.31
Overall 113.44 109.72 3.28 78.62 + 65 72.74 + 65 5.14
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to jump over some obstacles instead of navigating around the
obstacle to visit some targets in Figure 9B. As shown in Table 2,
the jumping option leads to reduced energy consumption by
about 18% and the byproduct is the reduced mission time
around 71%.

In Scenario 2, we seek to verify the improved mission duration
via the charging station when considering the energy constraint
of each UGV. The jumping option is considered in Scenario 2 and
some of the targets are placed on top of the obstacles. Without the
energy limitation, the two UGVs’ visiting sequences are (1, 6, 3)

FIGURE 12 | Energy consumption at each target point in Scenario 2 (A): without energy constraint, (B): with energy constraint.
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for UGV 1 and (1, 2, 7, 5, 4, 8, 3) for UGV 2, as shown in
Figure 9C. Their overall energy consumption is 113.44 J (UGV 1:
47.20 J, UGV 2: 66.24 J). When considering the energy constraint
(65 J) for each UGV, their visiting sequences are (1, 6, 3, S, 8) for
UGV 1 and (1, 2, 7, 5, 4, 8) for UGV 2, as shown in Figure 9D.
The overall energy consumption is 78.62 + 65 J (UGV 1: 19.70 +
65 J, UGV 2: 58.92 J), where 65 J is supplied by the charging
station for UGV 1. The path segments before traveling to the
charging station for the two scenarios are the same. Due to the
energy constraint, UGV 2 ends its mission at target 8, and UGV 1
extends its duration by charging its battery after visiting target 3.

In Scenario 3, an extended area including 14 targets and four
rovers is considered. We also pursue an enhanced mission
duration under energy consumption constraint, where each
UGV’s battery capacity is 140 J. UGV 3 is identical to UGV 1
used in Scenario 1, and UGV 4 is the same as UGV 2 used in
Scenario 1, in terms of performance features and power
consumption characteristics. Without the battery capacity
constraint, the visiting sequences of the robot team are (1, 2,
3, 14, 7) for UGV 1, (1, 6, 4, 11, 9, 13, 7) for UGV 2, (1, 8, 7) for
UGV3, and (1, 5, 12, 10, 7) for UGV 4, where the planned path for
each UGV is shown in Figure 9E. Their overall net energy
consumption is about 302 J (UGV 1: 92.04 J, UGV 2: 161.42 J,
UGV 3: 68.02 J, UGV 4: 145.48 J). When considering the energy
constraints, the visiting sequences of the robot team are (1, 14, 3)
for UGV 1, (1, 8, 4, 12, S, 10, 7, 5, 3) for UGV 2, (1, 2, 3) for UGV
3, and (1, 6, 9, 11, 13, 3) for UGV 4, as shown in Figure 9F. Their
overall net energy consumption is 270 J (UGV 1: 62.81 J, UGV 2:
30.83 + 140 J, UGV 3: 50.80 J, UGV 4: 126.01 J). To meet the
energy constraint, UGV 2 is required to visit the charging station
after visiting Target 12 such that it gains extra energy to resume
the traveling mission.

4.2 Experiment Verification
The experimental tests are conducted based on Scenario 2 that
considers both the jumping option and the energy constraint.
As shown in Figure 10A, the charging station provides two
outlets that can simultaneously charge two different UGVs.
We use the Vicon motion capture system to track the motion
of UGVs when executing the planned mission, as shown in
Figure 10B. From the motion capture system, we can measure
the position and heading angle of rovers, the direction of the
charging station, and the location of charging connectors.
Then, we can control the rovers’ heading to follow the
calculated paths. Throughout the experimental tests, energy
consumption data is recorded at a fixed frequency using the
current/voltage sensors.

Figure 11 shows the simulation and experimental results of
two UGVs in Scenario 2 using a perspective view. In Table 3, we
compare the energy consumption amount in the simulation and
experimental results with and without the energy constraint in
Scenario 2. The comparison of simulation and experimental data
verifies that the experimental results closely match the simulation
results. The small differences between the two types of results
come from the volume of the charging station, which is
approximated as a target point in the simulation. This

attributes extra energy consumption in the experiment for the
docking motion. Furthermore, the detaching maneuver requires
extra energy than nominal driving as the rover needs to overcome
the magnetic force that captures the plug.

In the experimental tests, the two UGVs’ energy
consumption at each target point in Scenario 2 without and
with the energy constraint is shown in Figures 12A,B,
respectively. The total energy consumption without the
energy constraint is 109.72 J, and the one with the energy
constraint is 72.74 + 65 J, where 65 J is supplied by the charging
station. As UGV 1 consumes more energy in both rolling and
jumping motion, only three targets are allocated to UGV 1 and
the remaining six targets are allocated to UGV 2. Since target 6
is located at the top of an obstacle with a high elevation that
can only be reached by UGV 1, UGV 1 visits target 6 and
terminates at target 3. When considering the energy
constraint, the energy consumption of UGV 1 exceeds the
energy constraint after visiting target 3 and it does not have
sufficient energy to visit the remaining target points. Different
from the case without energy constraint, UGV 2 in this case
does not have sufficient energy to visit (1, 2, 7, 5, 4, 8, 3) since
visiting these target points consumes 66.24 J, which is larger
than the energy constraint, 65 J. Therefore, the charging
station extends the UGV mission endurance and thus has
the potential to increase the number of targets in an assigned
mission area with obstacles. As indicated in Figure 12B,
during the battery charging, the actual energy consumption
is dropping for UGV 1. Moreover, with a charging station
involved in the robot team, it does not require the UGVs to
carry heavy batteries, which makes the vehicles lighter. A video
file is included as Supplementary Material for the
experimental test.

5 CONCLUSION

This paper presents a path planning and task allocation
method for a multi-waypoints visiting mission using a
group of unmanned ground vehicles with jumping
capability and a charging station. The goal is to search for
energy-efficient routes to explore a mission area with obstacles.
A refined RRTp method and a customized genetic algorithm
are developed to determine the energy-efficient path and
visiting sequences to the assigned targets points and the
charging station. The simulation and experimental results verify
the advantages of jumping options and the involvement of a charging
station in terms of improved mobility, energy efficiency, and
extended duration. Future studies will consider more complicated
obstacle geometries and investigate the mechanism of controllable
jumping height.
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