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This paper reviews the recent works on multiplayer reach-avoid (M-RA) differential
games between two adversarial teams in a game region which is split into a goal
region and a play region. The pursuit team aims to protect the goal region from the
evasion team by cooperatively capturing the evaders which start from the play region
and strive to enter the goal region. We provide a selective overview of algorithms and
theoretical results for multiplayer reach-avoid differential games. Specifically, we
focus on point mass holonomic players that can move freely in the game region and
have simple motions as Rufus Isaacs states. We describe how the challenges due to
high-dimensional continuous joint action and state spaces, as well as complex
cooperations and competitions among players, can be properly resolved by a
combination of qualitative and quantitative analysis of small-scale games and
optimal task allocation. We finally point out the limitations of the current works
and identify fruitful future research directions on theoretical studies of multiplayer
reach-avoid differential games.
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1 Introduction

Multi-robot systems, including self-driving cars and unmanned aerial vehicles, are
becoming a topic of great interest. These systems have significant advantages over a single
robot because they can share the workload and cooperatively complete complicated tasks, such
as automated package delivery, disaster survivors search, infrastructure protection and region
patrolling (Chen et al., 2016; Shishika and Kumar, 2018; Shishika and Kumar, 2020; Yan et al.,
2022; Yan et al., 2019b; Yan et al., 2020; Shishika et al., 2020; Shishika et al., 2021; Deng et al.,
2021; Guerrero-Bonilla et al., 2021; Lee and Bakolas, 2021; VonMoll et al., 2022b). Of particular
relevance to this paper is a class of scenarios related to security and cooperation-competition
applications. Specifically, we consider multiplayer reach-avoid (M-RA) differential games, in
which multiple robots are used to protect a goal region of interest against a group of malicious
robots which aim to enter the goal region without being captured.

Compared with the classical pursuit-evasion games in which the capture is the only
competition goal, M-RA differential games are more complicated and have more practical
significance, as the evaders aim to reach a target set and avoid the capture at the same time.
According to the degree of abstraction and physical constraints, the players can be described by
different mathematical models, such as simple motion (Isaacs, 1965), Dubins car with the
minimum turning radius (Dubins, 1957), and Reeds–Shepp car with the backward move (Reeds
and Shepp, 1990). This review focuses on the simple motion, or the first-order integrator with
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bounded inputs in the language of control theory, in which the player
moves with a bounded speed and can change its heading
instantaneously. Such a model is a suitable abstraction for mobile
robots or robotic vehicles which have speed limitations and high
maneuverability, for instance, humanoid robots, quadrotor unmanned
aerial vehicle and small underground vehicles, and due to its
simplicity, this model has been extensively studied with fruitful
results in differential games (Fisac et al., 2015; Chen et al., 2018;
Ibragimov et al., 2018; Yan et al., 2020; Fu and Liu, 2021; Yan et al.,
2021a; Yan et al., 2021b; Liang et al., 2022; Wang et al., 2022; Yan et al.,
2022).

The challenges of solving M-RA differential games with simple
motions can be broadly divided into two categories: non-unique
terminal conditions, and complex cooperation and competition
pattern (Yan et al., 2020; Yan et al., 2022). Non-unique terminal
conditions, where the game could end up with either capture or entry
into the goal region, largely complicate the strategy synthesis which
involves integrating backward trajectories from differential terminal
surfaces (Isaacs, 1965). This results from a lack of systematic analysis
methods in the presence of complicated singular surfaces occurring in
the backward computation. At the inter-agent level, grouping players
into two opposing teams is intrinsically accompanied with complex
cooperation within team members and goal-driven inter-team
competition. For instance, it is not hard to imagine a scenario
where cooperation between two pursuers is necessary for winning
against an evader while any one of them fails to do so (Yan et al., 2020).
Like prey animals, some evaders may lure the pursuers away from the
goal region or sacrifice themselves through being captured such that
the other evaders successfully reach the goal region.

This review is concerned with the M-RA differential games, with a
particular interest in simple motions, which were first discussed by
(Mitchell et al., 2005; Margellos and Lygeros, 2011; Zhou et al., 2012)
and then extended into many variations and practical applications
(Huang et al., 2014; Selvakumar and Bakolas, 2019; Fu and Liu, 2020).
The problem is closely related to lifeline games (Garcia et al., 2019b;
Yan et al., 2021a; Yan et al., 2021b; Chen and Yu, 2022), two-target
differential games (Blaquière et al., 1969; Olsder and Breakwell, 1974;
Pachter and Getz, 1980; Getz and Pachter, 1981) and target guarding
differential games (Mohanan et al., 2018). Moreover, the problem has
high relevance to scenarios involving underground vehicles guarding a
building, unmanned aerial vehicles patrolling against illegal poachers
and unmanned surface vehicles patrolling around a prohibited
water area.

The remainder of this paper is organized as follows. Section 2
introduces the background on simple motion, game elements and core
concepts. In Section 3, we review two most common methods in
M-RA differential games. We detail the barrier construction in Section
4 for several interesting M-RA differential games. We present an
integer linear programming formulation for task allocation in Section
5. We review three classical strategies in Section 6. In Section 7, we
discuss the limitations in the literature and possible directions for
future research. Finally, Section 8 concludes the paper.

2 Background

M-RA differential games draw concepts from the fields of
differential games, reachability, control and robotics. In this
section, we first introduce the system dynamics, assumptions and

game elements used throughout the rest of the paper in Section 2.1.
Then, Section 2.2 contains a representative, but not complete,
discussion of the possible applications. We conclude the section
with the core concepts in differential games for qualitative and
quantitative analysis in Section 2.3.

2.1 Simple motion and game elements

We consider Np + Ne players partitioned into two teams, a team of
Np pursuers (also called defenders), P � {P1, . . . , PNp}, and a team of
Ne evaders (also called attackers), E � {E1, . . . , ENe}. The players move
in an n-dimensional Euclidean open/closed game region
Ω ⊂ Rn (n≥ 2) separated by an (n−1)-dimensional hypersurface
T ⊂ Rn−1 into two regions: play region Ωplay and goal region Ωgoal,
as shown in Figure 1. The players are assumed to be point masses and
they have simple motion as Isaacs stated (Isaacs, 1965), i.e., they are
holonomic. Let xPi ∈ Rn and xEj ∈ Rn be the positions of Pi and Ej,
respectively. The dynamics of the players are described by the
following differential equations

_xPi � vPiuPi, xPi 0( ) � x0Pi
, Pi ∈ P,

_xEj � vEjuEj, xEj 0( ) � x0Ej
, Ej ∈ E, (1)

where x0Pi
and x0Ej

are the initial positions of Pi and Ej, and vPi ∈ R>0
and vEj ∈ R>0 denote the speed of Pi and Ej, respectively. The control
inputs for Pi and Ej are their respective instantaneous headings uPi and
uEj, which satisfy the constraint U � {u ∈ Rn | ‖u‖2 ≤ 1}. The simple
motion (1) models the players which have limited moving speeds and
can change their headings instantaneously. We make the following
assumptions.
Assumption 1: The speeds satisfy constraint vPi ≥ vEj, implying that the
pursuers move at least equally fast as the evaders.
Assumption 2: Each player has access to the full-state information,
i.e., the positions of all players, as well as the speeds, are known by the
player.
Assumption 3. A capture occurs if the distance between the pursuer Pi
and the evader becomes less than or equal to a non-negative capture
radius ri. It is called radius capture if the capture radius is positive, and
point capture otherwise.

FIGURE 1
Multiplayer reach-avoid (M-RA) differential games, where multiple
evaders (red) aim to enter the goal region, while the pursuers (blue) are
tasked to protect the goal region by capturing the evaders (Yan et al., 2020).
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Assumption 4: The number of pursuers remains constant, and the
pursuers chase the evaders until no evader remains in the play region.

From the point view of the individual player, each pursuer
performs the task in one of the following three modes: has no task;
fulfills the task alone; forms as a coalition with some other pursuers to
complete the task. Each evader exits the game under one of the
following three conditions: being captured in the play region; being
captured exactly at the splitting hypersurface; reaches the goal region
before being captured. From the team level, the evasion team aims to
send as many evaders as possible into the goal region, while the pursuit
team strives to capture as many evaders as possible before the evaders
enter the goal region. Formally, letting J be the number of captured
evaders in the play region, the problem is to find the saddle-point
equilibrium strategies for two teams that give:

max
ΣP

min
ΣE

J � min
ΣE

max
ΣP

J, (2)

where ΣP and ΣE denote the strategies of the pursuit team and the
evasion team, respectively.

2.2 Applications

As the players’ objectives imply, M-RA differential games have
high relevance to the adversarial scenarios in which players compete or
cooperate for a set of states in the game state space. For example,
mobile ground vehicles can be employed to defend a building of
interest so as to minimize some metric, such as the number of
malicious vehicles entering the building (Fu and Liu, 2020;
Shishika and Kumar, 2020; Shishika et al., 2021). In wildlife
protection, the use of unmanned aerial vehicles against illegal
poachers is a promising alternative to typical field methods. As
more and more attacking boats occur in many waterside cities,
deploying patrolling boats is a sensible and feasible solution to
protecting stationary ferries. In path planning, a group of vehicles
aim to get into some goal region or escape from a bounded region
through an exit, while avoiding dangerous situations, such as collisions
with moving obstacles (Yan et al., 2019b; Yan et al., 2020; Yan et al.,
2022).

2.3 Barriers, winning regions and strategies

In general, the problems in M-RA differential games are classified
into two categories: game of kind and game of degree. In a game of
kind, the goal is, given a winning condition, to determine which team
(player) can win the game, and therefore the game solution is win or
lose for a team (player). If the game winner is known with the result of
the game of kind, the natural question to ask is how to design strategies
so as to ensure the winning and optimize some metric simultaneously,
for instance, the distance to the goal region from the perspective of the
evasion team if the captured cannot be avoided. Technically, such a
problem leads to a game of degree, in which the focus is, given a payoff
function, to find the (saddle-point) equilibrium strategies for the
players.

2.3.1 Barriers and winning regions
In order to solve the game of kind systematically, Isaacs

introduced the concept of barrier (Isaacs, 1965), a surface that

divides the entire game state space into two disjoint parts: pursuit
winning region (PWR) and evasion winning region (EWR). With a
particular interest in the case of multiple pursuers against one evader,
the PWR is the set of initial states, from which the pursuit team can
ensure the capture before the evader enters the goal region. The EWR,
complementary to the PWR, is the set of initial states, from which the
evader guarantees to reach the goal region regardless. Naturally,
constructing the barrier becomes the core of solving a game of
kind. Formally, the PWR WP, EWR WE and barrier B for P
against Ej are respectively given by

WP � x � xP1 , . . . , xPNp
, xEj( ) | ∃u ∈ ΣP,∀uEj ∈ U, s.t.,P wins againstEj from x{ },

WE � x � xP1 , . . . , xPNp
, xEj( ) | ∃uEj ∈ U,∀u ∈ ΣP, s.t., Ej wins againstP from x{ },

B � x � xP1 , . . . , xPNp
, xEj( ) | ∃u ∈ ΣP,∃uEj ∈ U, s.t.,P andEj cannotwin from x{ },

which can be also described by fixing the pursuers/evaders’ positions.
Due to the usefulness of knowing the game winner before the game
actually runs, huge progress has been made on the study of barriers
(Yan et al., 2017; Shishika and Kumar, 2018; Yan et al., 2019a; Shishika
et al., 2020; Yan et al., 2020; Liang et al., 2022; Lee and Bakolas, 2021;
Yan et al., 2021a; Yan et al., 2021b; Von Moll et al., 2022b; Chen and
Yu, 2022).

2.3.2 Strategies
Regarding the game of degree, the strategy type has a huge impact

on the approaches of seeking equilibrium strategies and the inherent
computational complexity. In a nutshell, a strategy (policy) of a player
resolves the choices in each game state based on its available
information at the moment. There are four basic types of strategies
for the players in differential games–open loop, state feedback, non-
anticipative and anticipative strategies (Mitchell et al., 2005). An open
loop strategy requires that each player decides its entire controls u(τ)
for all τ ∈ [t,∞) without any knowledge of the other players’
decisions. A state feedback strategy allows each player to choose
u(τ) based on the current value of the state. A non-anticipative
strategy allows a player (team) to choose u(τ) with all the
information of state feedback, plus the other players’ current input.
While the other players are at a slight disadvantage under this strategy
structure, at a minimum they have access to using state feedback,
because the player must declare its strategy before the other players
choose a specific input and thus the other players can determine the
response of the player to any input signal. An anticipative strategy
would be equivalent to allowing a player to choose u(τ) based on
knowledge of all future inputs of the other players; in other words, the
other players would have to reveal their entire input signals in advance
to this player.

3 Methods

We begin our discussion by reviewing the two most common
methods, geometric method and Hamilton-Jacobi-Isaacs (HJI)
method, that are widely used in M-RA differential games with
simple motions, to solve the induced games of kind and games of
degree. The geometric method leverages the player dynamics,
i.e., simple motion, under which the optimal trajectory of the
player is a straight line in many cases (Isaacs, 1965; Yan et al.,
2019b; Yan et al., 2020; Yan et al., 2022). The HJI method is more
general and is able to handle with more complicated player dynamics.
However, it also suffers from high computational complexity Mitchell
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et al. (2005); Margellos and Lygeros (2011); Chen et al. (2018); Fisac
et al. (2015).

3.1 Geometric method

If the optimal trajectories of the players are known to be
composed of straight lines, which is common under the simple
motion, solving the game is closely related to constructing the
dominance regions (Isaacs, 1965; Oyler et al., 2016), where a point
in the game region is said to be dominated by one of the players if
that player is able to reach the point before the other players,
regardless of the other players’ best effort (the capture radius is also
taken into account). A dominance region is then the set of all points
dominated by a particular player. We first introduce two classical
and predominant dominance regions: Voronoi cell and Apollonius
circle, and then present a more general function-based dominance
region.
Definition 1 (Voronoi cell): A partition V(Ω) �
{Rp

1 , . . . , R
p
Np
, Re

1, . . . , R
e
Ne
} of Ω is the Voronoi partition of Ω

generated by the points {xP1, . . . , xPNp
, xE1, . . . , xENe

}, if for each 1 ≤
i ≤ Np and each 1 ≤ j ≤ Ne,

Rp
i � x ∈ Ω | ‖x − xPi‖2 ≤min ‖x − xPi′‖2, ‖x − xEj′‖2{ },∀i′ ≠ i, 1≤ j′≤Ne{ },

Re
j � x ∈ Ω | ‖x − xEj‖2 ≤min ‖x − xPi′‖2 , ‖x − xEj′‖2{ },∀1≤ i′≤Np, j′ ≠ j{ }.

If vPi � vEj and ri = 0 for all 1 ≤ i ≤Np and 1 ≤ j ≤Ne, the region R
p
i (R

e
j,

respectively), called the Voronoi cell, is the dominance region of Pi (Ej,
respectively).
Definition 2 (Apollonius circle): If vPi > vEj and ri = 0, then the
Apollonius circle Ra

ij for Pi and Ej is a circle with the center and
radius respectively given as follows

center :
α2ijxEj − xPi

α2ij − 1
, radius :

αij‖xPi − xEj‖2
α2ij − 1

,

where αij � vPi/vEj is the speed ratio. The set ∩Np

i�1R
a
ij is the dominance

region of Ej against the pursuers P.
Definition 3 [Function-based dominance region (Yan et al., 2022)]: Let
fij: R

2 → R be a function such that fij(x) � ‖x − xPi‖2 − αij‖x −
xEj‖2 − ri for all x ∈ R2. If vPi ≥ vEj and ri ≥ 0, then the set {x ∈
Ω|fij(x) ≥ 0, ∀1 ≤ i ≤ Np} is the dominance region of ej against the
pursuers P.

These three types of dominance regions for multiple pursuers
against one evader are depicted in Figure 2.

3.2 Hamilton-Jacobi-Isaacs method

Let x � (xP1, . . . , xPNp
, xE1, . . . , xENe

) ∈ Rn(Np+Ne) be the state of
the game, and the control inputs of two teams are denoted as up �
(uP1, . . . , uPNp

) ∈ RnNp and ue � (uE1, . . . , uENe
) ∈ RnNe . Consider an

M-RA differential game with the dynamics (1), and the terminal set
and the terminal payoff respectively are as follows

M � x | g x( )≤ 0{ }, J � Φ x tf( )( ), x tf( ) ∈ M. (3)

Since the M-RA differential game is zero-sum in general, the
corresponding value function V(x) is the unique viscosity solution
to the HJI equation

min
ue

max
up

H x, λ, up, ue( ) � max
up

min
ue

H x, λ, up, ue( )
� ∑Np

i�1
vPi‖λPi‖2 −∑Ne

j�1
vEj‖λEj‖2 � 0, (4)

where the Hamiltonian is defined asH(x, λ, up, ue) � λ⊤f , f is the stacked
dynamics (1), and λ � (λP1, . . . , λPNp

, λE1, . . . , λENe
) ∈ Rn(Np+Ne) is the

costate whose value equals to the gradient of V(x), i.e., λ = ∇V(x), and
the underlying minimax controls are uPi* � λPi

‖λPi‖2 and uEj* � − λEj
‖λEj‖2. The

boundary values for the HJI equation satisfy V(x) =Φ(x) for all x ∈ M.
Then, the method of characteristics can be used to solve (4), which
originally is a partial differential equation (PDE) and then converted
into a system of Euler-Lagrange (EL) ordinary differential equations
(ELODEs).

More specifically, we define the minimax Hamiltonian as

H* x, λ( ) � min
ue

max
up

H x, λ, up, ue( ) � ∑Np

i�1
vPi‖λPi‖2 −∑Ne

j�1
vEj‖λEj‖2.

(5)
IfV(x) is twice continuously differentiable, the equilibrium trajectories
are determined by the following ELODE:

_x � zH* x, λ( )
zλ

� f *, _λ � −zH* x, λ( )
zx

� 0, (6)

where f* is the stacked dynamics f under the minimax controls. Such
equilibrium trajectories are called regular equilibrium trajectories and
the corresponding optimal controls are called regular equilibrium
controls. The ELODE (6) reveals that for M-RA differential games
with simple-motion players, the regular equilibrium trajectories are
straight lines and the regular equilibrium controls are constant, which

FIGURE 2
Dominance regions for multiple pursuers against one evader: Voronoi cell (A), Apollonius circle (B) and function-based (C), where the crosses are the
centers of the Apollonius circles.
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validates geometric methods in such games. Along the regular
equilibrium trajectories, it holds that

_V x( ) � ∇⊤V x( ) _x � λ⊤f * � 0,

implying that the value function is constant.
The HJI method solves an M-RA differential game by integrating

the ODE system (6) in inverse time initially from the boundary ofM.
At a point x ∈ zM, the costate satisfies

λ � ∇Φ x( ) + μ∇g x( ), (7)
where μ ∈ R is the Lagrange multiplier which can be determined by
substituting (7) into (4). As soon as the costate on the boundary of
M is obtained, one can solve the ODE system (6) to get the value
function and equilibrium controls along the regular equilibrium
trajectories. This method is widely used in the study of the problem
of active target defense [Pachter et al. (2019); Garcia et al. (2018);
Liang et al. (2019); Garcia et al. (2019a); Liang et al. (2021)], where
the target is a maneuvering player that cooperates with a defender
against an attacker. In Akilan and Fuchs (2017); Von Moll et al.
(2021); Von Moll et al. (2022b); Von Moll et al. (2022a), the turret
defense and perimeter defense games, in which the defenders are
restricted to the boundary of the goal region, are also analyzed via
the HJI method, and the equilibrium controls are obtained by
solving the ODE system (6).

Apart from the computation above, the HJI method is also
used as a tool to verify the value function sufficiently. Letting X be
a subset of the state space with M ⊂ X , if a function V(x) is such
that

1. It is continuously differentiable everywhere over X \M;
2. It satisfies the HJI Eq. 4 over X \M;
3. It equals to Φ(x) on the boundary of M,

then V(x) is the value function of the game over X . Examples can be
found in Garcia et al. (2020, 2021); Yan et al. (2022).

4 Construction of barriers and winning
regions

In this section, we review the barrier construction for multiple/
single player(s) against one opponent in five interesting and
representative M-RA differential games by detailing the game
description and barrier construction individually. We will omit
the resulting winning regions which interested readers can find in
the related papers, as by definition, they follow from the barriers
directly.

4.1 Two-dimensional bounded convex game
region

4.1.1 Game description
The game region Ω is a two-dimensional (2D) closed convex

region and the splitting hypersurface T is a straight line with length
ℓ such that Ωplay and Ωgoal are non-empty (see Figure 1, where O is

the origin). The point capture is considered, i.e., ri = 0 for all 1 ≤ i ≤
Np. Homogeneous pursuers and evaders are considered, that is,
players in each team have the same speed. The pursuers are
assumed to be faster than the evaders, and the speed ratio is
denoted by α > 1.

4.1.2 Barrier construction
For this game, let x = [x,y]⊤ for any vector x ∈ R2. We focus on the

barrier for the pursuit team against one evader. A pursuer is active and
contributes to the barrier construction, if it dominates at least one
point in the splitting line T against other pursuers. Since only barrier
contributors are necessary for barrier computation by definition, we
determine all active pursuers first. If the pursuit team has a unique
active pursuer (say Pi), then the barrier B(xPi), consisting of three
curves, is computed as follows: B(xPi) � ~B(xPi) ∩ Ωplay and
~B(xPi) � ⋃3

k�1 ~Bk(xPi), where
~B1 xPi( ) � x ∈ R2

∣∣∣∣ α‖x − x1‖2 − ‖xPi − x1‖2 � 0, x≤ σ1 , y> 0{ },
~B2 xPi( ) � x ∈ R2

∣∣∣∣ α2 − 1( )y2 − x − xPi( )2 − 1 − 1/α2( )y2
Pi
� 0, x ∈ σ1 , σ2( ), y> 0{ },

~B3 xPi( ) � x ∈ R2
∣∣∣∣ α‖x − x2‖2 − ‖xPi − x2‖2 � 0, x≥ σ2 , y> 0{ },

(8)

and x1 � [0, 0]⊤, x2 � [ℓ, 0]⊤, σ1 � xPi/α
2 and

σ2 � (1 − 1/α2)ℓ + xPi/α
2. If the pursuit team consists of two active

pursuers (say Pc = {P1, P2} and assume xP1 < xP2), then the barrier
B(xPc), consisting of five curves, is computed as follows: B(xPc) �
~B(xPc) ∩ Ωplay and ~B(xPc) � ⋃5

k�1 ~Bk(xPc), where
~B1 xPc( ) � x ∈ R2

∣∣∣∣ α x − x1‖ ‖2 − xP1 − x1
 2 � 0, x≤ σ1 , y> 0{ },

~B2 xPc( ) � x ∈ R2
∣∣∣∣ α2 − 1( )y2 − x − xP1( )2 − 1 − 1/α2( )y2

P1
� 0, x ∈ σ1 , σ2( ), y> 0{ },

~B3 xPc( ) � x ∈ R2
∣∣∣∣ α x − x2‖ ‖2 − xP2 − x2

 2 � 0, x ∈ σ2 , σ3[ ], y> 0{ },
~B4 xPc( ) � x ∈ R2

∣∣∣∣ α2 − 1( )y2 − x − xP2( )2 − 1 − 1/α2( )y2
P2

� 0, x ∈ σ3 , σ4( ), y> 0{ },
~B5 xPc( ) � x ∈ R2

∣∣∣∣ α x − x3‖ ‖2 − xP2 − x3
 2 � 0, x≥ σ4 , y> 0{ },

(9)

where x1 � [0, 0]⊤, x2 � [x2, 0]⊤, x3 � [ℓ, 0]⊤, σ1 � xP1/α
2,

σ2 � (1 − 1/α2)x2 + xP1/α
2,σ3 � (1 − 1/α2)x2 + xP2/α

2, σ4 � (1 − 1/α2)ℓ
+xP2/α

2and x2 � (‖xP2‖22 − ‖xP1‖22)/(2(xP2 − xP1)). The barrier
~B(xPc) without considering the boundary of the play region is
shown in Figure 3A, and the complete barrier B(xPi) in Figure 3B.
More generally, if the pursuit team has more than two active
pursuers, it has been proved that any point on the underlying
barrier can be determined by at most two active pursuers. With
this observation, the barrier is constructed by concatenating the
two-pursuer barriers for all pairs of adjacent active pursuers
along T . We refer interested readers to Yan et al. (2020) for
more details.

4.2 Three-dimensional game region

4.2.1 Game description
The game region Ω is the whole three-dimensional (3D) space

and T is a plane such that Ωplay and Ωgoal are two-half spaces. The
point capture and radius capture are both considered, that is, ri ≥ 0
for 1 ≤ i ≤ Np. Pursuers and evaders are heterogeneous in the sense
that players in each team may have different speeds and pursuers
may have different capture radii. The pursuers are assumed to be
faster than the evaders, that is, vPi > vEj for all 1 ≤ i ≤ Np and
1 ≤ j ≤ Ne.
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4.2.2 Barrier construction
We focus on the barrier for the pursuit team against one evader. The

capture strategy in Yan et al. (2022) indicates that the barrier is equivalent
to the case where the dominance region of the evader which is proved to
be strictly convex before the capture occurs, is tangent to the goal region.
Formally, the barrier can be computed as follows

B xPc( ) � {xEj ∈ Ω | {x ∈ Ω | ‖x − xPi‖2 − αij‖x − xEj‖2
− ri ≥ 0,∀1≤ i≤Np} tangent to Ωgoal}.

Since Yan et al. (2022) proves that in Ej’s dominance region, the
unique point closest to the goal region can be determined by at most
three pursuers, checking the tangent property for all pursuer
combinations with no more than three pursuers would be sufficient
to cover all points of the barrier, improving the computational
efficiency drastically. The extension to a convex play region with
an exit is also discussed in Yan et al. (2022).

4.3 Limited evasion lifetime

4.3.1 Game description
The game region Ω is the whole 2D plane and T is a straight line

separating Ω into two disjoint half planes Ωplay and Ωgoal. The radius
capture is considered, and the pursuer is faster than the evader. Apart
from the above, the evader has to reach the goal region Ωgoal within a
limited lifetime ta (ta > 0) prior to the capture or the evader loses the
game otherwise.

4.3.2 Barrier construction
We focus on the barrier for one pursuer against one evader. First, we

compute the barrier for the game without lifetime limitation which
directly follows from Section 4.1, as indicated by B∞ in Figure 4.
Then, the points at the barrier which correspond to the capture/reach
time larger than ta (the dashed part of B∞), are discarded. The barrier is
further completed considering the following two cases. The first one is
that, the lifetime is the only active constraint and thus the optimal evasion
strategy is moving directly towardsΩgoal and reachingΩgoal exactly when
the lifetime runs out, as depicted in green. The second one is that, both the
lifetime and the capture both are active constraints, and the evader reaches
the goal region exactly when the capture happens and the lifetime is up at
the same time, as depicted in magenta in Figure 4. Following this, the
barrier is computed as follows: if |yPi|> vPita + ri,

B xPi( ) � x ∈ R2
∣∣∣∣ x ∈ R, y � vPita/αij{ }, (10)

and B(xPi) � ⋃5
k�1Bk(xPi) otherwise, where

B1 xPi( ) � x ∈ R2
∣∣∣∣ y � vPita/αij, x≤x1{ },

B2 xPi( ) � x ∈ R2
∣∣∣∣ x − x1( )2 + y2 � v2Pi

t2a/α2ij, x1 < x<x2, y> 0{ },
B3 xPi( ) � x ∈ R2

∣∣∣∣ x � x* − d1d2/α2ij, y � d1

������
α2ij − d2

2

√
/α2ij{ },

B4 xPi( ) � x ∈ R2
∣∣∣∣ x − x3( )2 + y2 � v2Pi

t2a/α2ij, x4 < x<x5, y> 0{ },
B5 xPi( ) � x ∈ R2

∣∣∣∣ y � vPita/αij, x≥x5{ }.
(11)

The variable x* in (11) is as follows: x* ∈ R if |yPi|≥ ri and
x* ∈ x ∈ R | |x − xPi|≥

�������
r2i − y2

Pi

√{ } otherwise, and

x1 � xPi −
��������������
vPita + ri( )2 − y2

Pi

√
x2 � x1 +

vPita
��������������
vPita + ri( )2 − y2

Pi

√
α2ij vPita + ri( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
×

x5 � xPi +
��������������
vPita + ri( )2 − y2

Pi

√
x4 � x5 −

vPita

��������������
vPita + ri( )2 − y2

Pi

√
α2ij vPita + ri( ) .

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (12)

The complete barrier B(xPi) is the union of these colored solid lines.
We refer interested readers to Yan et al. (2021b) for details.

4.4 View of the evasion team

4.4.1 Game description
The game region Ω is the 2D plane and T is a straight line. The

pursuit team P has a unique pursuer, say P, and the evasion team E
consists of two evaders E1 and E2. We focus on the point capture. The
pursuer is faster than the evaders, i.e., αj � vP/vEj > 1 for j = 1, 2. We
demonstrate the existence of cooperative strategies among evaders in

FIGURE 3
Barrier construction for two-dimensional (2D) bounded convex game region. (A) No boundary for play region; (B) Bounded play region.

FIGURE 4
Barrier construction for 2D reach-avoid differential games with
limited evasion lifetime (Yan et al., 2021b).
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this example. The evaders are assumed to know which evader is
currently being chased by the pursuer.

4.4.2 Barrier construction
The barrier in this case splits the state space into three disjoint

parts: Under the players’ optimal strategies, the first one
corresponds to no captured evader, the second corresponds to
one captured evader and the third corresponds to two captured
evaders. Since it takes the pursuer some time to capture the first-
pursued evader (if the capture is guaranteed) before pursuing the
second-pursued evader, the Apollonius circle is generalised to
tackle the scenario where the pursuer starts to pursue the evader
when the latter has already moved for a time interval δ. Formally,
the dominance region accounting for a time difference between the
pursuit and evasion of P and Ej, called δ-Apollonius circle, is
defined as follows

Eδ
j � x ∈ R2 | αj‖x − xEj‖2 � ‖x − xP‖2 + vPδ{ }. (13)

If Ejmoves freely before P pursues it for a time period δ, then based on
the δ-Apollonius circle, the barrier is computed as follows

Bδ
j xP( ) � x ∈ R2

∣∣∣∣ x � x* − ab, y � a
�����
1 − b2

√
, x* ∈ P{ }, (14)

where x* � [x*, 0]⊤, a � αj‖x* − xP‖2 + vEjδ and b = αj(x* − xP)/‖x* −
xP‖2. The feasible set P for x* is determined as follows. If δ ≤

(1−α2j )|yP |
αjvEj

,

then P � R, and the barrier is illustrated in Figure 5A. If δ > (1−α2j )|yP |
αjvEj

,

then P is given by

P � x ∈ R | |x − xP|≥

�������������
αjvEjδ

1 − α2j
( )2

− y2
P

√√⎧⎪⎪⎨⎪⎪⎩ ⎫⎪⎪⎬⎪⎪⎭, (15)

and the barrier is illustrated in Figure 5B. Then, the barrier for two
evaders against one pursuer follows by combining the common one-
versus-one barrier without time difference and the proposed one-
versus-one barrier with a time difference, where an aiding strategy
between two evaders may occur. More specifically, if P pursues E1 first
and then E2, the aiding strategy describes that E1 moves away from the
goal region to aid E2’s evasion, such that E2 reaches the best relative
position to escape when E1 is captured. This strategy implies that one
evader may need to sacrifice itself to save the other evader, which is
frequently observed between prey animals. As an illustration,
Figure 5C indicates that if P pursues E1 first, then the game space
is divided by the orange curve into two disjoint regions QP and QE

such that if E2 lies inQP currently, then P can ensure the capture of E2
after capturing E1, while if E2 lies in QE, E2 is able to reach Ωgoal

without being captured. Figure 5D shows the case when P pursues E2
first. Combining these two cases, we conclude that the pursuer should
pursue E1 first. We refer interested readers to Yan et al. (2021a) for
details.

4.5 The lady in the lake with multiple pursuers

4.5.1 Game description
We extend the classical game the Lady in the Lake (Isaacs, 1965) to

multiple pursuers. The game region Ω is the whole two-dimensional

FIGURE 5
Barrier construction for 2D reach-avoid differential gameswith one pursuer and two evaders (Yan et al., 2021a). (A) Small time differenceΔ; (B) Large time
difference Δ; (C) Winning spaces when P pursues E1 first; (D) Winning spaces when P pursues E2 first.

FIGURE 6
The Lady in the Lakewithmultiple pursuers. Game description (A); the barrier does not exist (B) and the barrier occurs (C) for one pursuer and one evader.
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plane and T is a circle such that Ωplay is the disk inside T and Ωgoal is
the remainder. The evasion team has a unique evader, i.e., the lady.
The point capture is considered, and the pursuers are assumed to be
faster than the evader. The pursuers are restricted to the circle T and
maintain a uniform distribution along T by cooperation, as shown in
Figure 6A.

4.5.2 Barrier construction
Since the pursuers are uniformly distributed, the goal of the evader

is to penetrate T through a point between two adjacent pursuers. Yan
et al. (2017) reveals that if the speed radio is less than a constant which
only depends on the number of pursuers, then there is no barrier and
the evader can always escape. The escape strategies are classified into
two types, depending on their relative positions. Roughly speaking, the
evader escapes directly along a straight line if its distance to the closest
pursuer is long enough for a successful escape, and otherwise, the
evader needs to go back to the center, then adjust its relative position to
the pursuers to create a better escape condition and finally escapes
directly along a straight line. If the speed ratio is greater than or equal
to this constant, then the barrier emerges. In summary, the barrier
computation is as follows. Let α0 ∈ (1, +∞) be the unique solution of
the equation

π/Np + arccos 1/α0( ) − �����
α20 − 1

√
� 0. (16)

If α < α0, then B(xPc) � ∅. If α ≥ α0, then B(xPc) � ⋃Np

i�1Bi(xPc), where

Bi xPc( ) � ρ, θi( ) ∣∣∣∣ |θi| � arccos
R

αρ
( ) −

��������
α2ρ2 − R2

√
R

⎧⎪⎨⎪⎩
−arccos 1

α
( ) +

�����
α2 − 1

√
, ρ ∈ ρ0, R[ ], |θi|≤ π/Np},

(17)
and ρ0 is the solution to the equation in (17) for θi = π/Np. We depict one
pursuer case for an illustration. In Figure 6B, α < α0 holds and the red
curve splits the game space into ϒ2 and ϒ3, such that E has different
strategies separately as stated above, where ϒ1 is the circle that E should
enter if it lies in ϒ2. In Figure 6C, α ≥ α0 holds and the (orange) barrier
emerges. We refer interested readers to Yan et al. (2017) for details.

5 Task allocation

Task allocation, a popular task planning strategy, focuses on
assigning groups of simple tasks to individual players for execution.
When applied to M-RA differential games, the player configurations,
availabilities and capabilities need to be considered (Smith et al.,
2009; Bajaj and Bopardikar, 2019; Yan et al., 2020; Yan et al., 2022;
Bajaj et al., 2021; Antonyshyn et al., 2022; Velhal et al., 2022). In this
section, we first introduce an integer linear programming
formulation for capturing the most number of evaders in Section
5.1 and then propose a polynomial approximation algorithm in
Section 5.2.

5.1 Integer linear programming

From the pursuit team’s perspective, the goal is, for each
evader, to designate a pursuit coalition which is capable of

capturing the evader before it enters the goal region. If the
barrier of the game is constructed, a pursuit coalition is
adequate if the evader and the pursuit coalition lie in the PWR.
In this way, we collect the outcomes of all pursuit coalition and
evader pairs prior to the game execution. Then, we match pursuit
coalitions with the evaders such that the most number of evaders
are captured. This task allocation problem can be formulated as a
0–1 integer linear program as follows.

Suppose that the size of the pursuit coalition is less or equal toNc (Nc ≤
Np). Then the pursuit team P consists of Nall � C1

Np
+ C2

Np
+/ + CNc

Np

possible coalitions: C1
Np

one-pursuer coalitions, C2
Np

two-pursuer
coalitions, and so on. Let G � (VP ∪ VE, E) be an undirected bipartite
graph consisting of two independent vertex sets VP, VE and a set of
edges E. The vertex set VP consists of all Nall pursuit coalitions, and
VE represents the set of evaders. The edge connecting vertex Pc ∈ VP

and vertex Ej ∈ VE is denoted by ecj. An edge ecj ∈ E if and only if Pc
is capable of capturing Ej before the latter enters Ωgoal, while any
strict subcoalition of Pc cannot. The goal of the task allocation here is
to find a matching in G that contains a maximum number of evaders.
Since a pursuer can only appear in at most one pursuit coalition for
an executable matching, a conflict graph C � (E, �E) is introduced to
account for such conflicts among the pursuit coalitions. Each vertex
in C corresponds to an edge e ∈ E of G, and an edge �e ∈ �E if and only if
the vertexes connected by �e, say ecj, epq ∈ E, have no shared pursuers,
i.e., Pc ∩ Pp is empty. Formally, the task allocation problem is to find a
matching that solves the following integer linear program

maximize ∑
ecj∈E

xcj

subject to ∑
Pc∈VP

xcj ≤ 1 ∀Ej ∈ VE, ∑
Ej∈VE

xcj ≤ 1 ∀Pc ∈ VP,

xcj + xpq ≤ 1 ∀ ecj, epq( ) ∈ �E,
xcj ∈ 0, 1{ } ∀ecj ∈ E, xcj � 0 ∀ecj ∉ E,

(18)

where xcj = 1 indicates the assignment of pursuit coalition Pc to capture
Ej, and xcj = 0 means no assignment.

5.2 Polynomial approximation algorithm

Since problem (18) is a special constrained matching
problem (Tanimoto et al., 1978) and proved to be NP-hard
(Yan et al., 2022), solving (18) is intractable when the
number of players is large. Fortunately, Yan et al. (2022)
shows that there exist constant-factor polynomial algorithms
for problem (18), and further proposes a 1/Nc-approximation
polynomial algorithm called Sequential Matching algorithm. In
this algorithm, First, polynomial algorithms (e.g., maximum
network flow) are used to compute the maximum matching of
the subgraph of G which only considers the pursuit vertexes
containing one pursuer. Then, the matched players are removed
from G, and we compute another maximum matching of the
subgraph of the new G which only considers the pursuit vertexes
containing two pursuers. Repeat the process until G has no
vertexes at either side, or pursuit coalitions with Nc pursuers
have all been considered. Finally, a 1/Nc-factor
approximation matching solution is obtained by merging all
these maximum matchings which have no shared vertexes by
construction.
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6 Cooperative strategies

Based on the results of the game of kind, the game of degree needs
to provide the strategies for the players to ensure their winnings and
optimize some metrics at the same time. In this section, we review
three types of dominance region based cooperative strategies, with a
focus on the pursuers.

6.1 Voronoi-based strategy

Voronoi partitions are widely used for generating
cooperative strategies for the players, usually when they all
have the same speed. There are three popular Voronoi-based
pursuit strategies: area-based, point-based, and relay strategies.
The area-based pursuit strategy is aiming at minimizing the area
of the evader’s Voronoi cell (Pan et al., 2012). The point-
based pursuit strategy requires that each pursuer moves
towards a specific point in the evader’s dominance region,
such as the farthest point from the evader’s current position,
and the point closest to the goal region (Yan et al., 2019b; Garcia
et al., 2020; Yan et al., 2022). The relay pursuit strategy allows
the pursuers to pursue the evader in a relay way based on
whether the evader is in its dominance region against the
other pursuers.

6.2 Apollonius-circle based strategy

As for unequal speed scenarios, the Apollonius circle is used to
design cooperative strategies for the pursuers. Most of Apollonius-
based pursuit strategies are point-based. For instance, since the
evader’s dominance region, formed by the intersection of all one-
to-one Apollonius circles, is strictly convex, the point on the
dominance region closest to a convex goal region (if they are
disjoint) is unique and thus moving towards this point under
feedback strategies can ensure the pursuit winning (Yan et al.,
2019b). However, the singularity needs to be resolved when the
non-convex goal regions are considered Von Moll et al. (2020).

6.3 Convex optimization based strategy

It is difficult to use Voronoi-based or Apollonius-based strategies
when the pursuers have positive capture radii, due to the lack of the
closed-form representation of the dominance region. Inspired by the
function-based dominance region, Yan et al. (2022) proposed a convex
optimization based pursuit strategy which applies to both point
capture and radius capture cases. For multiple pursuers against one
evader, if the evader’s dominance region is disjoint from the goal
region, then the point xI (may be non-unique) in the dominance
region closest to the goal region is computed by solving the convex
optimization problem

minimize
x,y( )∈Rn×Rn

‖x − y‖2
subject to fij x( )≥ 0, g y( )≤ 0, ∀i ∈ c,

(19)

where fij is defined in Definition 3 and g: Rn → R is such that
Ωgoal � {x ∈ Rn | g(x)≤ 0} is a non-empty, closed convex region.

The convexity of the problem follows from the fact that the evader’s
dominance region and the goal region are both convex. Then, the
current control input of each pursuer is defined as the direction
pointing to xI, i.e., the pursuer moves towards xI. Yan et al. (2022)
shows that if the pursuers are faster, then xI is unique and this
feedback strategy is able to guarantee that the dominance region
never approaches the goal region, leading to a guaranteed pursuit
winning.

7 Discussion

Being a relatively new field of study, many research questions
remain open for M-RA differential games. In this section, we
discuss the limitations in the existing literature and point out
directions for future developments, from the following aspects
of the games inspired by Shishika and Kumar (2020): player
dynamics, sequential capture, spatial-temporal coupling, fast
evaders and partial information.

7.1 Player dynamics

We assumed that each player is modelled by simple motion and
thus can change its heading instantaneously. As discussed above,
this dynamical model is a suitable abstraction for mobile robots or
robotic vehicles which have limited speed and high
maneuverability. However, such abstractions may generate
strategies which fail to complete the tasks, since some
constraints ignored in the abstraction have a crucial effect on
the strategy synthesis. Examples of the constraints include
minimum turning radius, maximum acceleration, and external
forces. Taking these dynamical constraints into account will
inevitably complicate the strategy synthesis.

7.2 Sequential capture

If the pursuer is allowed to capture multiple evaders sequentially,
then this scenario will involve a dynamic vehicle routing problem
(Bopardikar et al., 2010) in an adversarial setting. This cannot be
handled with existing barrier construction methods which only focus
on myopic capture, i.e., the capture of the evader being pursued
without reasoning the pursuit after the capture. Taking sequential
capture into consideration when synthesizing strategies will lead to
many interesting strategic behaviors, and constructive results have
been presented when the evaders are assumed to arrive in a
probabilistic spatio-temporal manner (Smith et al., 2009; Bajaj and
Bopardikar, 2019; Bajaj et al., 2021). For example, some of the evaders
may lure the pursuers away from the goal region so that other evaders
can reach the goal region. When constructing the barriers for
capturing multiple evaders, the pursuers may chase the evaders
that are further away first and the close ones afterwards.

7.3 Spatial-temporal coupling

The task allocation method in Section 5 assumes that each pursuit
coalition plays a game against an evader independently. However,
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since all players operate in a shared environment simultaneously, the
players’ trajectories in different games are coupled spatially and
temporally. Such coupling may lead to future collision and can also
be leveraged to design wiser strategies. Taking the coupling of the
future paths between different matching pairs into account is worth
studying.

7.4 Fast evaders

Most of existing results are provided when the pursuers are faster
or equal to the evaders. The most significant consequence of this
constraint is that the evader’s dominance region, represented by either
Voronoi cell, Apollonius circle or non-negative level set of a function,
is convex. This convexity property ensures that the evader dominates
all points along the straight line from its current position to any goal
point in its dominance region, implying a capture-free path regardless
of the pursuers’ strategies. However, the game with faster evaders is
fundamentally different, because the capture requires more
complicated cooperation among the pursuers to offset the speed
disadvantages, or leverage the characteristics of the game region
(e.g, boundaries and convexity).

7.5 Partial information

The assumption in the existing works that each player has full
knowledge of the positions and speeds of all other players, may be
invalid in many realistic situations due to the adversarial objectives.
First, the pursuers have a limited detection range out of which the
information about evaders and the environment may be unavailable.
Second, even if the evaders are detected, measurement errors exist and
vary depending on the sensing devices. Third, if the number of evaders
within the detection range is large, then counting or locating all
possible evaders in a dense swarm raises a big challenge to the
detection capabilities of the pursuers.

8 Conclusion

In this work, we reviewed the recent progress in M-RA differential
games. We provided background on game elements, application and
problems of interest. We introduced two commonmethods, geometric
method and HJI method, for solving M-RA differential games. We

presented a review of barrier construction (winning regions follow
immediately) formultiple players against one opponent player in several
games. We presented an integer linear programming formulation and
its approximation algorithm to tackle multiple versus multiple cases
using the results of multiple versus one and themaximummatching.We
presented three dominance region based pursuit strategies, depending
on the speed ratio and the capture radius. Finally, we discussed several
limitations in the current problem formulation and identified the
corresponding trends for future research.
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