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One of the major drawbacks of the basic parallel formulations of a PID

controller is the effects of proportional and derivative kick. In order to

minimize these effects, modified forms of parallel controller structures such

as PI-D and I-PD are usually considered in practice. In addition, there is a usual

servo/regulation tradeoff regarding closed-loop control system operation.

Appropriate tuning is needed for each situation. One way of focusing

explicitly on load disturbance is by the appropriate selection of a controller

equation. A gap is generated here between the conception of a tuning rule and

its final application thatmay need deployment on different controller equations.

There is no danger when we go from PI-D to I-PD as we just change reference

processing. However, there will be a loss of performance. The potential loss of

performance, depending on the final controller equations used, motivates the

authors to introduce the idea of resilient PID tuning: minimize the effects of

changing the controller equation on the achieved performance/robustness.

Today, this can be seen as a complement to the well-known controller fragility

concept. On the basis of this scenario, this paper motivates the analysis of a

tuning rule from such a point of view and also emphasizes the benefits that a

better process model may provide from such an aspect.
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1 Introduction

The proportional–integral–derivative (PID) controller was first proposed in 1922 by

Minorsky (1922) and first applied in industrial applications in 1939 (Bennett, 1993). Since

then, it has been considered an effective tool and is one of the most common control

schemes that have dominated the majority of industrial processes and mechanical systems

because of its versatility, high reliability, and ease of operation (Astrom and Hagglund,

2006). PID controllers can be manually tuned appropriately by the operators and control

engineers based on the empirical knowledge when the mathematical model of the

controlled plant is unknown. Some classical tuning methods, such as Ziegler–Nichols

method (Ziegler and Nichols, 1942), Chien–Hrones–Reswick method (Chien et al., 1952),

IMC (Rivera et al., 1986), S-IMC (Skogestad, 2003), robust IMC (Vilanova, 2008), and

MoReRT (Alfaro and Vilanova, 2016), are applied to the process control, and the
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performance is then significantly outperformed compared to the

one that is manually tuned.

One of themajor drawbacks of the basic parallel formulations

of PID controllers is the effects of proportional and derivative

kick. The changes in the set point cause an impulse signal or

sudden change in the controller output as well as in the output

response (Johnson, 2005). The controller output is given to the

final control elements like control valve, motor, or electronic

circuit in which the spikes create serious problems. In order to

minimize these effects, modified forms of parallel controller

structures such as ID-P and I-PD are usually considered in

practice as suggested by Ogawa and Kano (2008) and Ang

et al. (2005).

Another motivation for the appropriate selection of the

controller structure comes from the differences that arise

depending on the mode of operation of the designed closed-

loop. This is a common factor (O’Dwyer, 2009) that all

approaches face: the frequently referred topic of set-point

tracking vs. disturbance rejection performance. It is well-

known (Alcantara et al., 2013) that there is an inherent

tradeoff between both modes of operation in addition to the

also well-known performance/robustness tradeoff. This

distinction has made available in recent years a number of

research works that analyze and provide tuning solutions to

each one of the operational modes under a variety of

performance indexes as well as control constraints. However,

it has also been recognized (Shinskey, 2002; Vilanova et al., 2017)

that disturbance rejection is muchmore important than set-point

tracking for many process control applications, leading set-point

tracking to a secondary level of interest. Therefore, a controller

design that emphasizes disturbance rejection rather than set-

point tracking is an important design problem that, even if it has

been the focus of research, it may have not received the

appropriate attention. One way of focusing explicitly on load

disturbance is by the appropriate selection of the controller

equation. In the ideal PID formulation, all the three modes

process the error signal and therefore both the reference and

the disturbance signals. However, industrial software packages

(Ang et al., 2005) used to offer a choice menu where different

implementations are available. One can choose which controller

modes are fed with the reference signal. From this aspect, we can

go, for example, from PID to PI-D, where the derivative term just

acts on the process output, or the I-PD where the error signal is

just seen by the integral term.

On the basis of the previous situation, the authors aim to

focus on the idea of resilience of PID tuning rules. This is the idea

of tuning rules that guarantee appropriate performance and

robustness even when applied on a different PID formulation

from the one the tuning rule was conceived for. We do not refer

in this work to the problem of not appropriately converting the

tuning equations and making them consistent with the controller

formulation. This has already been addressed by Alfaro and

Vilanova (2012a) for what matters to the changes in the PID

equation. However, a deep analysis of the implications that the

signal processed by each controller mode does have on the

resulting closed-loop control performance is still needed. This

will serve as a basis for evaluating the resilience of the tuning.

Vilanova et al. (2018a) presented a robust tuning rule for

I-PD controllers from the point of view of solving the servo vs.

regulation choice for tuning. From this perspective, the I-PD

implementation is conceived as an alternative that provides a

structural solution to tradeoff tuning. The proposal states that a

direct, simple, and efficient solution is found if the controller

tuning is addressed for the servo mode but using the I-PD

controller structure. The effects of the usual tuning rules

implemented as an I-PD controller are analyzed, and the loss

of performance of the usual IMC tuning, for example, is reported.

However, it is to be noted that the IMC tuning is essentially a

servo tuning. Therefore, when implemented as an I-PD

controller, the loss of performance is expected because the

proportional term does not process the process output. This

analysis, however, even if correct, is not general and does not

imply that all tunings will underperform when implemented as

an I-PD controller. In other words, the lack of resilience should

not be taken for granted.

On the basis of the previous scenario, the purpose of this

work is to gain insights into such a resilience concept. We analyze

the performance and robustness of the implementation of simple

robust tuning (SRT) presented by Alfaro and Vilanova (2013)

when I-PD and PID formulations are considered both a 1-DoF

and a 2-DoF controller. The evaluation is confronted with robust

tuning explicitly designed for the I-PD controller as presented by

Vilanova et al. (2018a). This comparison is not conducted with

the aim of establishing the best tuning but to illustrate the

advantages of the resilience with respect to controller

implementation.

The following section reviews the concepts of fragility and

resilience with respect to robustness and performance as they will

be used in the work. Next, the control problem formulation is

presented, and the differences between PID controller

implementations are stated. Notation is introduced regarding

PID implementation in terms of signal processing. Following

this, simple robust tuning (SRT) is presented. Section 5 presents

an evaluation of a benchmark process and different robustness

levels, followed by a discussion on the resilience idea and some

concluding remarks.

2 Fragility evaluation

Alfaro (2007) presented the concept of controller fragility.

Fragility introduces a measure of the change (in fact, the loss) in

the controlled closed-loop system robustness due to a change in

the controller parameters (changes up to 20% are usually

associated to the final fine-tuning of the controller). The loss

of robustness caused because of this change in the controller
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parameters is evaluated by means of the delta 20 fragility index.

Values of this index determine if the tuning is fragile (>0.5), non-
fragile (≥0.5), or resilient (≥0.1).

Twomain differences arise in the idea presented here. First of

all, the property that may change is not robustness but the

performance. Second, the motivation for such a change is not

a change in the controller parameters but a change in the

equation that implements the controller.

The notion we introduce in this work refers to controller

implementation. In fact, the main difference with respect to the

notion of the controller’s fragility presented by Alfaro (2007) is

the effect generated by an eventual small change on the controller

parameters, whereas here the tuning remains fixed, but the

controller equations are the ones that may change. The

changes in the controller equation that are considered here

mainly refer to reference processing. Even one of the degrees

of freedom may be lost. What matters here is which controller

modes (proportional and/or integral) process the reference signal

and in which way (using the set-point weight—2-DoF—or

not—1-DoF)1. In all such cases, the feedback properties

remain unchanged. Therefore, the control system will

experience a potential reduction in the tracking performance.

Its robustness and regulation properties will remain unchanged.

The classification proposed by Alfaro (2007) as fragile, non-

fragile, or resilient, in terms of the delta 20 fragility index, is

chosen because the change in the controller parameters may turn

a control system with a highly robust controller (withMs between

1.2 and 1.4) into one with minimum acceptable robustness (Ms

≈ 2.0)2.

In this case, it is not possible to get an idea of relative loss

because the change in the controller is structural. It gets difficult

to establish a single number as a threshold where we can say

whether the performance loss is acceptable or not. This will be

process- and application-dependent. In addition, it must be

considered that as the effects of the implementation will be

just on tracking, the evaluation will depend on the measure

that the control system will operate as a regulator or as a servo.

There are too many considerations that prevent a single,

objective definition to be established. However, even in this

different framework, it is the author’s opinion to better

consider a conceptual extension of the initial fragility index

along the same lines as presented by Alfaro and Vilanova

(2012b) for the idea of performance fragility with respect to a

small variation in the controller parameters.

Therefore, we propose to extend the same classification of

performance-fragile, non-fragile, and resilient controllers as

presented by Alfaro and Vilanova (2012b), but with respect to

a change in the controller implementation rather than a 20%

change in its parameters. Of course, this adoption is made with

the idea of avoiding to introduce other different and subjective

measures. Considering a change in the controller’s equation

implementation, the delta performance-fragility index, PFIΔ,

could define the maximum loss of the control system

performance with respect to the original equation the

controller was conceived for (Alfaro and Vilanova, 2012b):

PFIΔ^
JmeΔ
Joe

− 1, (1)

where Joe is the performance measure index evaluated on the

nominal system and JmeΔ is the extreme value for the same index

evaluated when a Δ variation in the controller parameters is

introduced. This index usually takes the form of an integral

criterion such as IAE, ITAE, ISE, and ITSE. However, it does not

need to be constrained to this form. Based on the PFIΔ, the

controller’s performance, its fragility degree is defined as follows:

• Performance-fragile PID controller: A PID controller is

performance-fragile if its delta performance fragility index

is higher than 0.50, PFIΔ > 0.50.

• Performance-non-fragile PID controller: A PID controller

is performance-non-fragile if its delta performance fragility

index is less than or equal to 0.50, PFIΔ ≤ 0.50.

• Performance-resilient PID controller: A PID controller is

performance-resilient if its delta performance fragility

index is less than or equal to 0.10, PFIΔ ≤ 0.10.

3 Control problem and PID controller
formulation

In this section, we revise the control problem formulation as

well as the formulation of the PID controller equation and the

different options for error, feedback, and reference signal

processing. As some of the concepts, especially what matters

to the control problem are well-known, the presentation will be

succinct.

FIGURE 1
Closed-loop control system.

1 A second degree of freedom is understood here as the separate
processing of the reference signal, usually with a set-point weight ß
that modifies the usual error signal e = r − y to e = βr − y.

2 MS is thewell-known robustnessmeasure of the closed-loop system in
terms of the maximum sensitivity function MS _�maxω| 1

1+C(jw)P(jw)|.
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3.1 Control problem

Consider a closed-loop control system, as shown in Figure 1,

where P(s) is the controlled process model and Cr(s) and Cy(s) are

the transfer functions of the set-point controller and the feedback

controller, respectively. In this system, r(s) is the set point, u(s) is

the controller output signal, d(s) is the load disturbance, and y(s)

is the controlled process variable.

The control system output is

y s( ) � Myr s( )r s( ) +Myd s( )d s( ), (2)

where the servo-control and the regulatory control closed-loop

transfer functions are

Myr s( ) � Cr s( )P s( )
1 + Cy s( )P s( ) (3)

and

Myd s( ) � P s( )
1 + Cy s( )P s( ), (4)

respectively, that are related by

Myr s( ) � Cr s( )Myd s( ). (5)

As the control system closed-loop characteristic

polynomial is

p s( ) � 1 + Cy s( )P s( ), (6)

the control system relative stability depends on the controlled

process model and the feedback controller parameters but not on

the set-point controller parameters that are not included in the

feedback controller transfer function.

Given a controlled process model P(s) and the controller

C(s) = {Cr(s), Cy(s)}, control algorithm parameters must be

selected considering the control system robustness—relative

stability—and its performance under a selected design metric.

3.2 PID controllers

As a general controller, the two-degree-of-freedom (2-DoF)

proportional integral derivative control algorithm,

u t( ) � Kp βr t( ) − y t( ) + 1
Ti

∫
t

0

r ξ( ) − y ξ( )[ ]dξ + Td
d γr t( ) − y t( )[ ]

dt

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭ , (7)

is considered that can be expressed in the s domain as

u s( ) � Kp βr s( ) − y s( ) + 1
Tis

r s( ) − y s( )[ ] + Tds

αTds + 1
γr s( ) − y s( )[ ]{ }, (8)

where Kp is the controller proportional gain, Ti is the integral

time, Td is the derivative time, α is the derivative filter constant, β
is the proportional set-point weight factor, and γ is the derivative
set-point weight factor. It is to be noted that in Eq. 8, as usual

practice, a first-order filter has been added to the derivative term.

Controller output Eq. 8 can be expressed as

u s( ) � Cr s( )r s( ) − Cy s( )y s( ), (9)
and the control system error signal is

e s( ) � r s( ) − y s( ). (10)

Selection of the set-point weight factors ß and γ allows to

obtain the different members of the PID controller “family”: the

general 2-DoF PID controller PIDe2—control modes act on

different weighted error signals; the 2-DoF PID controller

PIeDy2—derivative mode acts only on the feedback signal; the

basic one-degree-of-freedom (1-DoF) PID controller PIDe1—all

control modes act on the error signal; the 1-DoF PIeDy1

controller—proportional and integral control modes act on

the error; and the 1-DoF IePIy1 controller—only the integral

control acts on the error signal, as listed in Table 1. Figure 2

shows a generic block diagram of a 2-DoF PID controller,

showing the role of the ß and γ weights according to this table.

From Eq. 8 and Table 1, it is found that all the aforementioned

PID control algorithms provide the same feedback controller but

different regulatory controllers as follows—considering here only

controllers with no derivative “kick” (γ = 0):

• Feedback controller of all the PID algorithms:

TABLE 1 PID controller “family.”

β Γ

PIDe2 ≥ 0 [0/1]

PIeDy2 ≥ 0 0

PIDe1 1 1

PIeDy1 1 0

IePDy1 0 0

FIGURE 2
Block diagram of a PID controller Eq. 8 representing all
situations for the PID controller’s “family” shown in Table 1.

Frontiers in Control Engineering frontiersin.org04

Alfaro and Vilanova 10.3389/fcteg.2022.1061830

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2022.1061830


Cy s( ) � Kp 1 + 1
Tis

+ Tds

αTds + 1
( ). (11)

• Set-point controller of the PIeDy2:

Cr s( ) � Kp β + 1
Tis

( ). (12)

• Set-point controller of the PIeDy1:

Cr s( ) � Kp 1 + 1
Tis

( ). (13)

• Set-point controller of the IePDy1:

Cr s( ) � Kp

Tis
. (14)

In the I-PD controller structure, all three parameters

contribute to the disturbance attenuation as all three

parameters process the output signal. On the other hand, only

the integral time constant contributes to the tracking

performance. Therefore, the final allocation of the controller

gains should result in different controller tunings depending on

the use of an I-PD or a PID. Questions such as the following ones

naturally arise: will the performance of the I-PD degrade

significantly from the PID one? Will it be beneficial to

elaborate tuning rules specifically for the I-PD configuration?

4 Simple robust tuning

As presented, the simple robust tuning (SRT) method by

Alfaro and Vilanova (2013) is considered for evaluation with

respect to the different PID controller implementations. In this

section, the SRT formulation, tuning equations, and robustness

characterization are presented. The SRT equations for the 2-DoF

PID controllers (PIeDy2) are obtained on the basis of a

performance/robustness tradeoff analysis.

The SRT method regards a controlled process as a generic

SOPDT model, given by the following transfer function:

P s( ) � Ke−Ls

Ts + 1( ) aTs + 1( ),
0≤ a≤ 1, 0.1≤ τL � L

T
≤ 2,

(15)

covering first- and second-order plus dead-time overdamped

processes.

The control system performance is optimized under the

integrated absolute error (IAE) cost functional

Je^∫∞

0
|e t( )|dt � ∫∞

0
|r t( ) − y t( )|dt, (16)

and its robustness is measured with the maximum sensitivity

MS^max
ω

|S jω( )| � max
ω

1
|1 + Cy jω( )P jω( )|. (17)

As additional performance evaluation metrics, the control

effort total variation

TVu^∑∞
k�1

|uk+1 − uk|, (18)

and the controller output instant change to a set-point step

change

Δu0^β Kp Δr, (19)

can be used.

Analysis of the regulatory control performance and

robustness shows that for a model with a given time constant

ratio a, increasing the control system target robustnessMt
S results

in a substantial reduction in the controller gain Kp but has a

negligible effect on the controller integral time Ti and the

derivative time Td. As a result, tuning equations that are

independent of the desired robustness are obtained for the Ti

and Td controller parameters. On the other hand, Kp is used to

match the control system target robustness level and becomes the

only robustness-dependent controller parameter. As the

controller gain depends on the control system robustness, the

proportional set-point weight factor ß depends on it as well.

The SRT equations are of the general form3:

Kp � H T, τL, a;M
t
S( ), (20)

Ti � F T, τL, a( ), (21)
Td � G T, τL, a( ), (22)
β � Q τL;M

t
S( ). (23)

SRT equations H, F, G, and Q for four target robustness

levels, Mt
S ∈ {minimum (2.0), low (1.8), intermediate (1.6), high

(1.4)}, and controlled process models with five time constant

ratios, a ∈ {fopdt (0.0), sopdt (0.25, 0.50, 0.75), dppdt (1.0)}, can

be found in Alfaro and Vilanova (2013).

5 Performance evaluation

Having presented the SRT tuning equations, now it is time to

evaluate their performance regarding the operation of the closed-

loop control system with the PID controller implemented under

different variations, say PIeDy2, PIeDy1, and IePDy1. Performance

is evaluated with respect to regulatory control and servo-control

operation. Also, robustness of the control system should be taken

into account. The evaluation will be conducted by considering a

usual benchmark process model from Åström and Hägglund

(2000) and also considering the robust I-PD tuning from

3 Derivative filter constant α = 0.1 is used in all controllers.
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Vilanova et al. (2018a) to have a reference of robust tuning

regarding IePDy1 implementation.

The evaluation is conducted using the following steps: first of

all, the process models are obtained, and the corresponding

controllers are adjusted according to the presented SRT

tuning rule. Next, the regulatory control performance is

analyzed, and evaluation of the robustness/performance

tradeoff in terms of the process model used (FOPDT and

SOPDT) is presented. Next, we proceed with the servo-control

performance. The effects of losing the reference signal processing

(either because of a 1-DoF or IePDy1 implementation) are

discussed. Those evaluations provide an idea of the effects of

changing the controller implementation with respect to the SRT

tuning rule itself. As a final step, in order to get an idea of the

achievable performance of SRT compared with a specific IePDy1

tuning, the robustness/performance tradeoff of the SRT tuning is

faced with that of the tuning presented by Vilanova et al. (2018a).

5.1 Controlled process and models

As controlled processes, the four-order test system from

Astrom and Hagglund (2000)

P0 s( ) � K

T′s + 1( ) a′T′s + 1( ) a′2T′s + 1( ) a′3T′s + 1( ), (24)

with K = 1.25, T′ = 10 s, and a′ ∈ {0.4, 0.8} is used.

For controller tuning purposes, these processes are

approximated by FOPDT and SOPDT models

P1 s( ) � Ke−Ls

Ts + 1
, (25)

P2 s( ) � Ke−Ls

Ts + 1( ) aTs + 1( ), (26)

using the three-point 123c identification method (Alfaro, 2006).

The parameters of the identified low-order models are listed in

Table 2. At this point, it is important to highlight that both FOPDT

and SOPDT are considered, mainly because even though SRT can

be based on both FOPDT and SOPDT, the robust IePDy1 method

by Vilanova et al. (2018a) just considers FOPDT process models.

5.2 SRT controller parameters and
regulatory control performance

The SRT PIeDy2 controller parameters for four target

robustness levels Mt
S using the FOPDT and the SOPDT

controlled process models are listed in Table 3 for the process

TABLE 2 FOPDT and SOPDT models.

K T [s] a L [s] τL

a′ = 0.4

1.25 11.49 — 5.17 0.450

1.25 8.56 0.704 1.47 0.172

a′ = 0.8

1.25 17.57 — 13.37 0.761

1.25 11.15 1.0 7.71 0.691

TABLE 3 SRT PIeDy2 controllers; process with a9=0.4

Mt
S 2.0 1.8 1.6 1.4

Tuning with the FOPDT model

Kp 1.59 1.41 1.19 0.90

Ti [s] 7.88

Td [s] 2.28

ß 0.62 0.67 0.75 0.95

Mm
S 2.01 1.80 1.60 1.40

Jed/Δd 6.56 7.39 8.67 11.11

TVud/Δd 1.53 1.49 1.43 1.34

Tuning with the SOPDT model

Kp 5.07 4.39 3.56 NA†

Ti [s] 6.72

Td [s] 2.85

ß 0.54 0.56 0.58 0.71

Mm
S 2.00 1.80 1.61 —

Jed/Δd 1.59 1.93 2.55 —

TVud/Δd 2.07 1.87 1.76 —

† Valid only for τL ≥ 0.25 if a ≥ 0.50.

TABLE 4 SRT PIeDy2 controllers; process with a9 = 0.8

Mt
S 2.0 1.8 1.6 1.4

Tuning with the FOPDT model

Kp 1.05 0.93 0.79 0.60

Ti [s] 16.37

Td [s] 5.46

ß 0.68 0.76 0.89 1.16

Mm
S 2.02 1.81 1.61 1.41

Jed/Δd 20.08 22.02 24.89 30.58

TVud/Δd 1.46 1.37 1.27 1.14

Tuning with the SOPDT model

Kp 1.37 1.21 1.01 0.77

Ti [s] 16.19

Td [s] 7.56

ß 0.67 0.74 0.86 1.11

Mm
S 1.98 1.79 1.59 1.40

Jed/Δd 15.17 17.11 20.17 25.35

TVud/Δd 1.41 1.33 1.25 1.18
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with the time constant ratio a′ = 0.4 and in Table 4 for the process

with a′ = 0.8. These tables also include the obtained control

system robustness Mm
S and the regulatory control

behavior—performance Jed and controller output total

variation TVud. The control system robustness Mm
S is

evaluated using the controlled process low-order models Eqs.

25, 26, in a real industrial application, and it cannot be obtained

directly with the controlled process. However, the system

performance in terms of Jed and TVud is evaluated with the

original processes Eq. 24 as it may correspond to an application

of the tuned controller and the corresponding recording of the

closed-loop signals.

Regarding the achieved robustness and its effects on the

control system performance, the first thing noticed in these tables

is that all the controllers—based on four different

models—achieve the target robustness levels within 1%. It is

also noticed that an inverse relation exists between the control

system robustness and its performance. If the target robustness is

increased −Mt
S ↓−, the control system performance

decreases—Jed ↑—but the control effort is smoother—Jud ↓.

FIGURE 3
Regulatory control responses, when a′ = 0.4.

TABLE 5 Servo-control response; process with a9 = 0.4 and tuning
using the FOPDT model.

Mt
S 2.0 1.8 1.6 1.4

Controller PIeDy2

Jer/Δr 12.40 12.93 13.66 14.71

TVur/Δr 2.57 2.39 2.15 1.87

Δu0/Δr 0.99 0.94 0.89 0.86

Controller PIeDy1

Jer/Δr 12.84 13.24 13.78 14.71

TVur/Δr 3.62 3.16 2.60 1.92

Δu0/Δr 1.59 1.41 1.19 0.90

Controller IePDy1

Jer/Δr 15.45 16.20 17.28 19.14

TVur/Δr 1.96 1.83 1.66 1.41

Δu0/Δr 0 0 0 0

TABLE 6 Servo-control response; process with a9 = 0.4 and tuning
using the SOPDT model.

Mt
S 2.0 1.8 1.6

Controller PIeDy2

Jer/Δr 7.56 8.15 9.21

TVur/Δr 8.28 6.91 5.67

Δu0/Δr 2.74 2.56 2.06

Controller PIeDy1

Jer/Δr 8.60 9.23 10.30

TVur/Δr 14.63 11.70 9.06

Δu0/Δr 5.07 4.39 3.56

Controller IePDy1

Jer/Δr 9.65 10.2 11.26

TVur/Δr 4.29 3.85 3.48

Δu0/Δr 0 0 0
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There is a conflict between the control system robustness and its

performance, but it cannot be considered an industrial control

system design tradeoff. The control system design robustness

level is process-dependent. It is a requirement imposed by the

controlled process non-linearity—changes in the process

dynamic characteristics in the control system operation range.

Then, the required control system robustness level is a must and

its performance should be sacrificed.

As all the controllers considered—PIeDy2, PIeDy1, and

IePDy1—have the same feedback controller transfer function Eq.

11, their closed-loop regulatory control transfer functions as well as

their robustness and performance are all the same as listed in

Tables 3, 4. In fact, robustness is a feedback property, and having

the same closed-loop regulatory control transfer functions, the

three controller implementations provide the same robustness.

For both controlled processes—a ∈ {0.4, 0.8}—two low-order

models were obtained—FOPDT and SOPDT—and used for

tuning purposes. From the control system evaluation, it is

clear that for the same robustness level, the control systems

designed using the SOPDT models provide better performance,

but with a less smooth control effort, than the corresponding

systems designed using the FOPDT models.

From the designer’s point of view, the marginal extra effort

needed to obtain a SOPDT low-order model to represent the

controlled process in the controller design procedure pays for

itself with the higher performance obtained. The regulatory

control responses for the process Eq. 24 with a′ = 0.4 are

shown in Figure 3. It shows the robustness/performance

conflict, but more important is the performance increase

obtained by designing the control system using the SOPDT

TABLE 7 Servo-control response; process with a9 = 0.8 and tuning
using the FOPDT model.

Mt
S 2.0 1.8 1.6 1.4

Controller PIeDy2

Jer/Δr 28.74 29.30 29.96 30.90

TVur/Δr 1.89 1.73 1.56 1.34

Δu0/Δr 0.71 0.71 0.70 0.70

Controller PIeDy1

Jer/Δr 29.49 29.66 30.01 31.15

TVur/Δr 2.44 2.07 1.69 1.22

Δu0/Δr 1.05 0.93 0.79 0.60

Controller IePDy1

Jer/Δr 35.37 36.72 38.65 42.44

TVur/Δr 1.44 1.30 1.16 0.98

Δu0/Δr 0 0 0 0

TABLE 8 Servo-control response; process with a9 = 0.8 and tuning
using the SOPDT model.

Mt
S 2.0 1.8 1.6 1.4

Controller PIeDy2

Jer/Δr 26.72 27.74 29.08 30.78

TVur/Δr 2.20 2.04 1.86 1.65

Δu0/Δr 0.92 0.90 0.87 0.85

Controller PIeDy1

Jer/Δr 27.71 28.45 29.38 30.65

TVur/Δr 3.01 2.56 2.08 1.52

Δu0/Δr 1.37 1.21 1.01 0.77

Controller IePDy1

Jer/Δr 33.07 34.55 36.72 40.08

TVur/Δr 1.52 1.41 1.27 1.10

Δu0/Δr 0 0 0 0

FIGURE 4
SRT proportional set-point weight factor.
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model instead of the FOPDT one. As a complementary view of the

better regulatory capabilities, we can look at the integral gain. This is

defined asKi=Kp/Ti.We canobserve that larger values are obtained for

designs based on an SOPDT process model. Therefore, better capacity

of the controller is needed to reduce the load disturbance effect.

5.3 SRT servo-control performance

The obtained servo-control performance with the three

different controllers for the controlled process with a′ = 0.4 is

listed in Table 5—tuned with the FOPDT model—and in

Table 6—tuned with the SOPDT model.

Corresponding performance data for the controlled process

with a′ = 0.8 are listed in Table 7 (FOPDT) and in Table 8

(SOPDT).

As in PIeDy1 and IePDy1 controllers, the second degree of

freedom of the PIeDy2 controller is lost, and its servo-control

performance is lower than the performance obtained with the

latter. As shown in Table 1, the PIeDy1 controller is equivalent to a

PIeDy2 controller with ß = 1, and the IePDy1 controller is

equivalent to a PIeDy2 controller with ß = 0. The drop in the

servo-control performance obtained using the 1-DoF controllers

depends on the controlled process, the model used for controller

tuning, and its target robustness level can be related with the

proportional set-point weight factor ß.

For the controlled processes used for the evaluation, the set-

point weight factor ß-values vary from 0.54 to 1.16. Then, as the

required ß-value approaches 1.0, the PIeDy1 servo-control

performance losses decrease, but the performance

corresponding to the IePDy1 controller increases (this

implementation corresponds to a ß = 0 2-DoF controller).

The SRT proportional set-point weight factor ß as a function

of the normalized model dead-time τL = L/T and the different

robustness target levels Mt
S are shown in Figure 4. As for all

models ß > 0.50, the servo-control performance lost with a PIeDy1

controller is lower than the one lost with an IePDy1 controller. A

performance reduction in the tracking operation is therefore

expected. Some of the robust servo-control responses (a′ = 0.4,

Mt
S � 1.6) are shown in Figure 5. For a given robustness level, the

PIeDy2 controller output is “optimal”—has the lowest Jer. The

IePDy1 controller loses 22% less performance than the PIeDy2

FIGURE 5
Servo-control responses, when a′ = 0.4 and Mt

S � 1.6.

TABLE 9 VAGG robust IePDy tuning.

a9 = 0.4 a9 = 0.8

Mt
S 2.0 1.6 2.0 1.6

Kp 1.81 1.35 1.25 0.94

Ti [s] 8.17 7.80 17.34 15.85

Td [s] 1.86 2.03 4.13 4.72

Mm
S 2.19 1.70 2.35 1.78

Jed/Δd 5.83 7.74 18.80 22.50

TVud/Δd 1.65 1.536 1.83 1.52

Jer/Δr 14.44 16.36 33.75 36.70

TVur/Δr 2.14 1.86 1.77 1.52

Δu0/Δr 0 0 0 0
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controller, but its control effort is smoother—has the lowest TVur

and, more importantly, has no proportional “kick”—Δu0 = 0.

5.4 Robust IePDy tuning performance

To the best of the authors’ knowledge, the method proposed

by Vilanova et al. (2018b) is one of the few robust tuning

procedures available specifically designed for IePDy1

controllers. Herein, it is denoted as the VAGG method. It

optimizes the IePDy1 control system servo-control

response—using the IAE cost functional—assuring at the

same time a specific robustness level—MS ∈ {2.0 (tight), 1.6

(smooth)}—for FOPDT-controlled process models. The VAGG

controller parameters and performance indices for the

controlled process Eq. 24 using models Eq. 25 are listed in

Table 9.

As it can be noticed, the obtained closed-loop control system

robustness (Mm
S ) is in the range of 6.25%–11.5% lower than the

corresponding target levels. Therefore, the resulting control

system is less robust than expected. Then, to have a fair

comparison, the VAGG controller proportional gains Kp are

reduced in the range of 8%–15%—without changing the

controller integral times Ti and derivative times Td—to

increase the control system robustness up to the target levels.

The new controller’s proportional gainsKp* and the performance

obtained are listed in Table 10.

The VAGG IePDy1 controller performances are very similar

to the ones obtained with the FOPDT model-based SRT IePDy1

controllers, ΔJex% ∈ [ − 3.8 / + 1.9], and with smoother control

efforts but not better than the ones obtained with the SOPDT

model-based SRT IePDy1 controllers. Then, additional

investigation is needed on the performance of the robustly

tuned IePDy1 controllers using SOPDT models to see if a new

tuning rule is needed or if one of the existing optimal and robust

regulatory control tunings for 1-DoF or 2-DoF PIeDy controllers

can be used with an IePDy1 controller without a significant loss of

performance4.

FIGURE 6
Servo-control, controlled variable w/noise (Run 2), a′ = 0.4,
SOPDT model, and Mt

S � 1.6.

TABLE 10 VAGG robust IePDy tuning with reduced gain.

a9 = 0.4 a9 = 0.8

Mt
S 2.0 1.6 2.0 1.6

Kp* 1.67 1.22 1.08 0.80

Mm′
S

2.01 1.60 2.00 1.60

Jed/Δd 6.31 8.50 20.46 25.00

TVud/Δd 1.61 1.49 1.61 1.38

Jer/Δr 14.92 16.99 34.91 38.31

TVur/Δr 2.02 1.75 1.50 1.28

TABLE 11 Servo-control performance Jer/Δr (a9 = 0.4, SOPDT model,
and Mt

S � 1.6).

Controller PIeDy2 PIeDy1 IePDy1

W/o noise 9.21 10.30 11.26

Run 1 9.898 10.991 11.767

Run 2 9.584 10.626 11.755

Run 3 9.683 10.480 11.998

Run 4 9.436 10.463 11.697

Run 5 9.711 10.868 11.375

Average 9.62 10.69 11.72

4 For example, the RoPe tuning method (Alfaro et al., 2011).
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5.5 Servo-control performance for a
controlled variable with noise

As a complementary evaluation, additional controller

performance tests are conducted for a controlled process

variable corrupted with a measurement noise. The servo-

control normalized performances Jern for five simulation

runs, and their averages values are listed in Table 11 for

different controller configurations. The servo responses for

a noisy signal (Run 2) are shown in Figure 6. As the change

in the controller configurations is relevant for what matters

to the tracking operation, the load disturbance is not

evaluated or shown here. We can see that the effect of

the noise with respect to the ideal situation can be

considered negligible. Table 6 shows the values obtained

in the ideal case.

6 Discussion

The previous section provided the performance evaluation of

the SRT under different scenarios. It is evident that the

comparison is process- and robustness-dependent. However,

some general conclusions can be drawn.

According to the performance measures shown in Tables 5, 6,

it is possible to evaluate the performance loss with respect to the

following two implementation changes:

• PIeDy2→ PIeDy1: In this case, the second degree of freedom

is lost, and a 2-DoF-tuned controller is implemented in a 1-

DoF form. If we evaluate the performance losses and the

corresponding PFIΔ, it turns out that they are <0.1 for all

tunings carried out using an FOPDT model. Therefore, we

face resilient tuning. For the design concurred with a better

SOPDT model, the PFIΔ is also <0.1 for the process with

a′ = 0.4 and slightly higher than 0.1 for a′ = 0.8 but in any

case far from 0.5. Therefore, we can say that SRT tuning is

resilient and non-fragile.

• PIeDy2 → IePDy1: As we move to IePDy1 implementation,

the change is more drastic because just the integral term

processes the reference signal. Therefore, a larger

performance drop is expected for reference changes. In

fact, in this case, for both FOPDT and SOPDT-based

tuning, the resulting PFIΔ is very similar: slightly greater

than 0.2 but in any case far from 0.5. Therefore, we can say

that SRT tuning is non-fragile.

The previous classification of the SRT rule as resilient in

almost all cases is a rather qualitative evaluation that, in any

case, provides an idea of the low sensitivity of the tuning with

respect to the implementation of the reference processing

term. It is important to bear in mind here that when

tuning the three (or four in the 2-DoF case) parameters of

a PID controller, distribution of the controller gain is carried

out among the different parameters. Therefore, assigning how

those gains take care of the two essential signals that do

generate the error: the reference signal—for tracking

purposes—and the feedback signal—for regulation

purposes—altered because of potential disturbances.

Depending on how those gains are distributed, the loss of

performance in one of the operating modes can be really

higher. Therefore, even qualitatively, the fact that the SRT

tuning rule is almost in all cases resilient stands as a proof of a

balanced gain distribution.

If we focus on a more quantitative evaluation, the only option

is to compare the achieved performance on the implemented

configuration with respect to a tuning designed specifically for

such controller implementation. In this respect, we conducted an

evaluation of the VAAG tuning (Vilanova et al., 2018b)

performance. As this is a tuning optimized for the IePDy1

controller implementation and includes at the same time

robustness considerations, it provides a perfect scenario to

quantitatively evaluate the degraded performance of the SRT

tuning.

Table 10 shows the VAAG performance for a fair

comparison. For the two robustness levels considered in

Vilanova et al. (2018b), as observed in the previous

subsection, the results show that the performance of an

IePDy1 controller tuned with the VAGG is very similar to

the one obtained with the FOPDT model-based SRT (even

SRT is not originally optimized for IePDy1). If we start with

SOPDT model-based SRT tuning, in this case, even the SRT’s

degraded performance is better than the one achieved by the

VAAG. This quantitative evaluation raises the question about

the potential interpretation of the previously categorized non-

fragility of SOPDT-based SRT tuning as really resilient with

respect to structural changes in the controller

implementation.

7 Conclusion

This work has presented a position work regarding the

importance of the PID controller structure. Most of the

tuning rules are conceived for a PID controller where the

reference signal is processed by both the integral and the

proportional term (either with or without a reference

weighting factor).

One of the major drawbacks of the basic parallel

formulations of the PID controllers is the effects of

proportional and derivative kick. The changes in the set-

point cause an impulse signal or a sudden change in the

controller output as well as the output response. The

controller output is given to the final control elements like

control valve, motor, or electronic circuit in which the spikes

create serious problems. In order to minimize these effects,
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modified forms of parallel controller structures such as PI-D

and I-PD are usually considered in practice. Therefore, it

turns out that tuning may finally be applied to an I-PD

controller.

The considered simple robust tuning (SRT) allows to tune

a PI/PID controller for an FOPDT as well as an SOPDT

process model. The advantages of using a better process

model have been outlined, and the use of SOPDT models

instead of FOPDT models is greatly encouraged. This fact may

allow minimizing the loss of performance when the final

implementation is an I-PD instead of a PID as usual. This

fact will make the tuning rule resilient with respect to the PID

implementation.

This issue is not usually considered when presenting new

tuning rules or when comparing with existing, well-

established tunings. Modern tunings use approaches

driven by advanced multi-objective algorithms that

provide the final tuning values for the controller

parameters. The optimality of such a design is not

discussed at all. However, other more practical constraints

should also be taken into account. This is a similar situation

as the one with the fragility of tuning (Alfaro, 2007). Fragility

and resilience, taken together, are concepts of great utility for

the final practitioner as this will generate more confidence

into the provided tuning.

In this work, only simple robust tuning was evaluated as

an example. The purpose was to present a situation where a

robust design based on FOPDT and SOPDT process

models can be evaluated with respect to different PID

controller implementations—PIeDy2, PIeDy1, and IePDy1.

This helped shed light on the robustness/performance

tradeoff, effect of the process model, and loss of

performance because of controller implementation, as

well as quite different evaluation issues that are not

usually taken into account.
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