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A major goal in genomics is to properly capture the complex dynamical

behaviors of gene regulatory networks (GRNs). This includes inferring the

complex interactions between genes, which can be used for a wide range of

genomics analyses, including diagnosis or prognosis of diseases and finding

effective treatments for chronic diseases such as cancer. Boolean networks

have emerged as a successful class of models for capturing the behavior of

GRNs. Inmost practical settings, inference of GRNs should be achieved through

limited and temporally sparse genomics data. A large number of genes in GRNs

leads to a large possible topology candidate space, which often cannot be

exhaustively searched due to the limitation in computational resources. This

paper develops a scalable and efficient topology inference for GRNs using

Bayesian optimization and kernel-based methods. Rather than an exhaustive

search over possible topologies, the proposed method constructs a Gaussian

Process (GP) with a topology-inspired kernel function to account for correlation

in the likelihood function. Then, using the posterior distribution of the GP

model, the Bayesian optimization efficiently searches for the topology with the

highest likelihood value by optimally balancing between exploration and

exploitation. The performance of the proposed method is demonstrated

through comprehensive numerical experiments using a well-known

mammalian cell-cycle network.
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1 Introduction

Gene regulatory networks (GRNs) play an important role in the molecular

mechanism of underlying biological processes, such as stress response, DNA repair,

and other mechanisms involved in complex diseases such as cancer. The topology

inference of GRNs is critical in systems biology since it can generate valuable

hypotheses to promote further biological research. Furthermore, a deep understanding

of these biological processes is key in diagnosing and treating many chronic diseases.

Advances in high-throughput genomic and proteomic profiling technologies have

provided novel platforms for studying genomics. Meanwhile, single-cell gene-

expression measurements allow capturing multiple snapshots of these complex

biological processes. These advances offer an opportunity for seeking systematic

approaches to understand the structure of GRNs.
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In recent years, Boolean network models have been

successfully employed for modeling different biological

networks (Wynn et al., 2012; Saadatpour and Albert, 2013;

Abou-Jaoudé et al., 2016). More specifically, these Boolean

networks have been widely used for inferring GRNs from

their state (i.e., gene) data (Pusnik et al., 2022). The state

value of genes in the Boolean network is represented by 1 and

0, representing the activation and inactivation of genes,

respectively. There are several Boolean network models,

including the deterministic Boolean network models, Boolean

network with perturbation, probabilistic Boolean network

models, and Boolean control networks (Lähdesmäki et al.,

2003; Shmulevich and Dougherty, 2010; Cheng and Zhao,

2011). Most of these models account for genes’ stochasticity

and can effectively capture the dynamics of GRNs through

relatively small times-series data.

Inference of Boolean network models consists of learning the

parameters of their models given all the available data. Several

advances have been made in the inference of Boolean network

models in recent years. These techniques aim to find models that

best fit the available time-series data. The fitness criteria are often

likelihood or posterior, leading to well-knownmaximum likelihood and

maximum aposteriori inference techniques (Shmulevich et al., 2002;

Lähdesmäki et al., 2003). Despite the optimality of these inference

techniques, lack of scalability has limited their applications to small

GRNs. Several heuristic methods have been developed to scale the

inference of Boolean network models; these include scale-free and

cluster-based approaches (Hashimoto et al., 2004; Barman and

Kwon, 2017), and methods built on evolutionary optimization

techniques (Tan et al., 2020; Barman and Kwon, 2018). The former

methods aim to build a topology from known seed nodes according to

multiple heuristics,whereas the latter ones use evolutionaryoptimization

techniques such as genetic algorithms and particle swarm algorithms for

searching over the parameter space. Despite the scalability of these

approaches, their incapability to effectively consider the temporal

changes in data and efficiently search over possible network models

leads to their unreliability in the inference process.

This paper focuses on developing a systematic approach for

the inference of GRNs using Boolean network models. Two main

challenges in the inference of GRNs are:

• Large Topology Candidate Space: The modeling consists of

estimating a large number of interacting parameters, which

represent the connections between genes that govern their

dynamics. This requires searching over a large number of

topology candidates and picking the one with the highest

likelihood value given the available data. Most existing

inference methods for general nonlinear models are

developed to deal with continuous parameter spaces,

such as maximum likelihood (Johansen et al., 2008;

Kantas et al., 2015; Imani and Braga-Neto, 2017; Imani

et al., 2020), expectation maximization (Hürzeler and

Künsch, 1998; Godsill et al., 2004; Schön et al., 2011;

Wills et al., 2013), and multi-fidelity (Imani et al., 2019;

Imani and Ghoreishi, 2021) methods. However, these

methods cannot be applied for inference over large

discrete parameter spaces, such as the large topology

candidate space of GRNs. In this paper, we develop a

method that is scalable with respect to the number of

unknown interactions, and efficiently searches over the

large topology candidate space. More specifically, our

proposed method enables optimal inference in the

presence of a large number of unknown regulations for

GRNs with a relatively small number of genes.

• Expensive Likelihood Evaluation: The likelihood function,

which measures the probability that the available data

come from each topology candidate, is often expensive

to evaluate. The reasons for that are a large number of

genes in GRNs, and the sparsity in the data, which require

propagation of the system stochasticity across time and

gene states. Given the limitation in the computational

resources, evaluation of the likelihood functions for all

of the topology candidates is impossible, and one needs to

find the topology with the highest likelihood value with a

few expensive likelihood evaluations.

This paper derives a scalable topology inference for GRNs

observed through temporally sparse data. The proposed

framework models the expensive-to-evaluate (log-)likelihood

function using a Gaussian Process (GP) regression with a

structurally-inspired kernel function. The proposed kernel

function exploits the structure of GRNs to efficiently learn the

correlation over the topologies, and enables Bayesian prediction

of the log-likelihood function for all the topology candidates.

Then, a sample-efficient search over topology space is achieved

through a Bayesian optimization policy, which sequentially

selects topologies for likelihood evaluation according to the

posterior distribution of the GP model. The proposed method

optimally balances exploration and exploitation, and searches for

the global solution without getting trapped in the local solutions.

The accuracy and robustness of the proposed framework are

demonstrated through comprehensive numerical experiments

using a well-known mammalian cell-cycle network.

The remainder of this paper is organized as follows. Section 2

provides a detailed description of the GRN model and the topology

inference of GRNs. Further, the proposed topology optimization

framework is introduced in Section 3. Section 4 presents various

numerical results, and the main conclusions are discussed in Section 5.

2 Preliminaries

2.1 GRN model

This paper employs a Boolean network with perturbation

(BNp) model for capturing the dynamics of GRNs (Shmulevich
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and Dougherty, 2010; Imani et al., 2018; Hajiramezanali et al.,

2019). Previously, several works have successfully employed the

BNp model for different purposes such as inference (Dougherty

and Qian, 2013; Marshall et al., 2007) and classification

(Karbalayghareh et al., 2018). This model properly captures

the stochasticity in GRNs, coming from intrinsic uncertainty

or unmodeled parts of the systems. Consider a GRN consisting of

d genes. The state process can be expressed as {Xk; k = 0, 1, . . .},

where Xk ∈ {0,1}d represents the activation/inactivation state of

the genes at time k. The gene state is updated at each discrete time

through the following Boolean signal model:

Xk � f Xk−1( ) ⊕ nk, (1)

for k = 1, 2, . . ., where nk ∈ {0,1}d is Boolean transition noise at

time k, “⊕” indicates component-wise modulo-2 addition, and f

represents the network function.

The network function in Eq. 1 is expressed in component

form as f = (f1, . . ., fd). Each component fi: {0,1}d → {0, 1} is a

Boolean function given by:

fi x( ) �
1, ∑d

j�1 cijx j( ) + bi > 0,

0, ∑d

j�1 cijx j( ) + bi ≤ 0,

⎧⎪⎨⎪⎩ (2)

for i = 1, . . ., d, where cij denotes the type of regulation from

component j to component i; it takes +1 and −1 values if there is a

positive and negative regulations from component j to

component i respectively, and 0 if component j is not an

input to component i. bi is a tie-breaking parameter for

component i; it takes +1
2 if an equal number of positive and

negative inputs lead to state value +1 and reverse for −1
2 . The

network function in Eq. 2 can also be expressed inmatrix form as:

f Xk−1( ) � CXk−1 + b, (3)
where the threshold operator �v maps the positive elements of vector

v to 1 and negative elements to 0, C is the connectivity matrix with

(C)ij = cij in the ith row and jth column, and b � [b1, . . . , bd]T
represents the bias vector. A schematic representation of the

regulatory network model is shown in Figure 1.

In Eq. 1, the noise process nk indicates the amount of

stochasticity in a Boolean state process. For example, nk(j) =

1, means that the jth gene’s state at time step k is flipped and does

not follow the Boolean function. Whereas, nk(j) = 0 indicates that

this state is governed by the network function. We assume that all

the nk components are independent and have a Bernoulli

distribution with parameter (p), which 0 ≤ p < 0.5 refers to

the amount of stochasticity in each state variable (i.e., gene).

2.2 Topology inference of regulatory
networks

In practice, the network function is unknown or partially

known, and the unknown parameters need to be inferred

through available data. The unknown information is often the

elements of the connectivity matrix or bias units. We assume that

L elements of the connectivity matrix {c1, . . ., cL} are unknown.

Given that each element takes in values in space { + 1, 0, −1},

there will be 3L different possible models (i.e., connectivity

matrices) denoted by parameter vectors: Θ � {θ1, . . . , θ3L },
where θj = [θj (1), . . ., θj(L)], and θj(i) denotes the type of the

ith unknown interaction/parameter under the jth model. It is

evident that each parameter vector corresponds to one specific

topology/model; therefore, the phrases parameter vector and

topology/model are used interchangeably throughout this

paper. Further, Cθj represents the connectivity matrix

associated with parameter vector θj, while only one parameter

vector represents the true underlying system topology. Assuming

that D1:T represents the available data, the inference process can

be formulated as:

θ* � argmax
θ∈Θ

P D1: T | θ( ), (4)

where P (D1:T|θ) is the likelihood function for the topology

parameterized by θ. The solution to the optimization problem,

θ* in Eq. 4, is known as the maximum likelihood solution. Note

that without loss of generality, the proposed method, which will

be described in the next section, can be applied to any arbitrary

point-based estimator, such as maximum aposteriori.

It should be noted that the unknown parameters could

include the bias units in the network model in Eq. 3.

Depending on the regulatory network, the bias units are often
−1
2 for the network in normal conditions, whereas a combination

of +1
2 and −1

2 often represents the network in stress conditions.

Therefore, if the network condition is not known, the topology

FIGURE 1
The schematic representation of a regulatory networkmodel.
The step functions map outputs to 1 if the input is positive, and 0,
otherwise.
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inference could aim to simultaneously estimate the parameters of

the connectivity matrix and bias units.

3 The proposed framework

3.1 Likelihood evaluation

Let {x1, . . . , x2d } be an arbitrary enumeration of the possible

Boolean state vectors (i.e., a GRN with d components). The

available data in D1:T can be represented using the vector I1:T =

{I1, . . .., IT}, where Ik specifies the index associated with the kth

state (0 if the state at time step k is missing). For instance,D1: 6 �
{~X2 � x9, ~X3 � x3, ~X6 � x11} contains the information of time

steps 2, 3 and 6, and denotes that data at time steps 1, 4 and 5 are

missing. In this case, the indicator vector is defined as I1:6 = {0, 9,

3, 0, 0, 11}.

For any given model θ ∈ Θ, we define the predictive posterior
distribution (Πθ

k|k−1) and posterior distribution (Πθ
k|k) of the

states as:

Πθ
k|k−1 i( ) � P Xk � xi | I1: k−1, θ( ),
Πθ

k|k i( ) � P Xk � xi | I1: k, θ( ), (5)

for i = 1, . . ., 2d and k = 1, 2, . . ..

We define the transition matrix Mθ of size 2d × 2d associated with

a GRN model parameterized by θ, through the following notation:

Mθ( )ij � P Xr � xi | Xr−1 � xj, θ( )
� P nr � fθ xj( ) ⊕ xi( )
� p‖Cθxj+b⊕xi‖1 1 − p( )d−‖Cθxj+b⊕xi‖1 , (6)

for i, j = 1, . . ., 2d, where the second and third lines in Eq. 6 are

obtained based on the GRN model in Eq. 1.

Let Πθ
0|0(i) � P(X0 � xi | θ), for i = 1, . . ., 2d, be the initial

state distribution. If no knowledge about this distribution is

available, this can be represented by Πθ
0|0(i) � 1/2d, for i = 1,

. . ., 2d, and θ ∈ Θ. The predictive posterior distribution can be

computed recursively as:

Πθ
k|k−1 � MθΠθ

k−1|k−1. (7)

The posterior probability of states at time step k can be computed

according to predictive posterior and the available data at time

step k. If the data at time step k is missing, i.e. Ik = 0, the predictive

posterior becomes the posterior, as no data is available at time

step k. This can be written as:

Πθ
k|k j( ) � P Xk � xj | I1: k, θ( ) � P Xk � xj | I1: k−1, Ik � 0, θ( )

� Πθ
k|k−1 j( ), for j � 1, . . . , 2d.

(8)
However, if the ith state is observed at time step k, i.e., Ik = i, then

the posterior probability of state at time step k becomes 1 for state

i, as full knowledge about Xk = xi is available. The posterior

probability in this case can be expressed as:

Πθ
k|k i( ) � P Xk � xi | I1: k−1, Ik � i, θ( ) � 1,

Πθ
k|k j( ) � P Xk � xj | I1: k−1, Ik � i, θ( ) � 0, j ≠ i.

(9)

To summarize, the posterior portability of any state at time k, i.e.

Xk = xi can be derived through the following expression:

Πθ
k|k i( ) �

Πθ
k|k−1 i( ) if Ik � 0,

1 if Ik � i,
0 otherwise

⎧⎪⎨⎪⎩ (10)

for i = 1, . . ., 2d and k = 1, 2, . . ..

The likelihood value in optimization problem in Eq. 4 can be

written in logarithmic format as:

L θ( ) ≔ logP D1: T | θ( ) � logP I1: T | θ( )

� ∑T
k�1

logP Ik | I1: k−1, θ( ), (11)

where

P Ik | I1: k−1, θ( ) � Πθ
k|k−1 Ik( ) if Ik ≠ 0

1 otherwise
{ . (12)

The computation of the log-likelihood value for any given

topology can be huge due to the large size of the transition

matrices with 22d elements. The computational complexity of log-

likelihood evaluation is of order O (22dT), where T is the time

horizon. This substantial computational burden (especially in

systems with a large number of components) is the motivation to

come up with more efficient ways to solve the problem presented

in Eq. 4.

3.2 Bayesian optimization for topology
optimization

This article proposes a Bayesian optimization approach for

scalable topology inference of regulatory networks observed

through temporally sparse data. Bayesian optimization (BO)

(Frazier, 2018) is a well-known approach that has been

extensively used in recent years for optimization problems in

domains with expensive to evaluate objective functions. BO has

shown great promise in increasing the automation and the

quality of the optimization tasks (Shahriari et al., 2016). In

this paper, we are dealing with an expensive-to-evaluate

likelihood function. A major issue in employing the

conventional BO is its ability of dealing with continuous

search spaces, whereas the search space in our problem is the

topology of regulatory networks, which takes a large

combinatorial space. Therefore, some key changes need to be

applied to the original BO formulation so that it can be adapted

to our problem. The main concepts of this approach are

explained in detail in the following paragraphs.
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3.2.1 GPModel over the Log-Likelihood Function
The transition matrix (Mθ) in Eq. 7 makes the log-

likelihood function evaluation in Eqs. 4, 11

computationally expensive, especially when dealing with

large scale regulatory networks. Therefore, it is vital to

come up with an efficient way of searching over the

topology space. In this article, the log-likelihood function L

(.) is modeled using the Gaussian Process (GP) regression.

The GP (Rasmussen and Williams, 2006) is mostly defined

over continuous spaces, primarily due to the possibility of

defining kernel functions that model the correlation over

continuous spaces. In our case, the parameters are discrete

interactions (i.e., parameters of the connectivity matrix that

take +1, 0, or −1), which prevent constructing the GP model

for representing the log-likelihood function over topology

space.

This paper takes advantage of the topology structure of

GRNs, encoded in connectivity matrix in (3), and defines the

following GP model:

L θ( ) � GP μ θ( ), k θ, θ( )( ), (13)

where μ(.) shows the mean function, and k (.,.) indicates the

topology-inspired kernel function. The mean function, μ(.), in

Eq. 13 represents the prior shape of the log-likelihood function

over all the topologies. One possible choice for the mean function

is the constant mean function. This mean function carries a

single hyperparameter, which can be learned along with the

kernel hyperparameters.

Knowing that each parameter vector θ corresponds to a

connectivity matrix Cθ, the structurally-inspired kernel

function is defined as:

k θ, θ′( ) � σ2f exp −‖C
θ − Cθ′‖2

l
( ), (14)

where ‖V‖2 is the sum of squares of elements of V, Cθ and Cθ′
represent the connectivity matrices related to topologies θ and θ′
respectively, l is the length-scale, and σ2f is the scale factor

hyperparameters. These hyperparameters quantify how close

the topologies are to each other. The more similar two

topologies are (i.e., less difference in the connectivity

matrices), the more they are correlated, and the kernel

function value will be higher for them. While, for more

distinct topologies, the kernel will have smaller values.

Figure 2 represents an example of a few possible topologies

for a GRNwith two genes. These four possible topologies differ in

one or two interactions. If the log-likelihood value for topology θ1

is calculated, this information can be used for predicting log-

likelihood values for other topologies. The connectivity matrices

for these topologies can be expressed as:

Cθ1 � 0 −1
1 0

[ ],Cθ2 � 0 0
1 0

[ ],Cθ3 � 0 1
1 0

[ ],Cθ4 � 0 1
−1 0

[ ].
(15)

The correlation between topology θ1 and all the

aforementioned topologies, Θsub = {θ1, θ2, θ3, θ4} are calculated

based on Eq. 14, and expressed through the following kernel

vector:

K θ1 ,Θsub( ) � k θ1, θ1( ) k θ1, θ2( ) k θ1, θ3( ) k θ1, θ4( )[ ]
� σ2

f

σ2f
exp 1( )

σ2f
exp 4( )

σ2f
exp 16( )[ ], (16)

where the length-scale hyperparameter is assumed to be 1. It

can be seen that topology θ1 has the maximum correlation

with itself, and the correlation rate decreases when we move

from topology θ1 to θ4. This can also be understood in terms

of the differences between the interacting parameters,

expressed in the connectivity matrices in Eq. 15.

Topology θ2 is different from θ1 in only missing

interaction from gene 2 to gene 1. This results in a

correlation of k(θ1, θ2) � σ2f
exp(1) between these two

topologies. Further, in Eq. 15 we can see that the

interaction from gene 2 to gene 1 in model θ1 is

suppressive (−1), whereas the same interaction is

activating (+1) in model θ3. This leads to smaller

correlation between topologies θ1 and θ3, k(θ1, θ3) � σ2f
exp(4),

in comparison to the correlation between topologies θ1 and

θ2. Finally, in Eq. 15, it can be seen that θ1 and θ4 have two

opposite types of interactions, leading to the

k(θ1, θ4) � σ2f
exp(16), which is the smallest correlation

between θ1 and all the other topologies.

The GP model has the capability of providing the Bayesian

representation of the likelihood function across the topology

space. Let θ1:t = (θ1, . . ., θt) be the first t samples from the

parameter space (i.e., samples from the topology candidates) with

the associated log-likelihood values L1: t � [L1, . . . , Lt]T (i.e., L1 =
L (θ1) in Eq. 11). The posterior distribution of L(θ) in Eq. 13 is

derived as:

L θ( ) | θ1: t, L1: t ~ N μtθ,Σt
θ( ), (17)

where μtθ and Σt
θ are the mean and variance for a specific model θ

∈ Θ respectively. These values can be obtained as:

μtθ � μ θ( ) + K θ,θ1: t( )K−1
θ1: t ,θ1: t( ) L1: t − μ θ1: t( )( ),

Σt
θ � k θ,θ( ) − K θ,θ1: t( )K−1

θ1: t ,θ1: t( )K
T
θ,θ1: t( ),

(18)

where μ(θ1: t) � [μ(θ1), . . . , μ(θt)]T, and

K Θ,Θ′( ) �
k θ1, θ1′( ) . . . k θ1, θr′( )

..

.
1 ..

.

k θl, θ1′( ) . . . k θl, θr′( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (19)

for Θ = {θ1, . . ., θl}, Θ′ � {θ1′, . . . , θr′}. Using the

aforementioned formulation, the GP constructs the log-likelihood

function as a zero-mean Bayesian surrogatemodel with covariance k

(.,.). Further, at iteration t, the log-likelihood function can be

computed by employing the already chosen and evaluated log-

likelihood values for topologies θ1:t, i.e., L1:t. The uncertainty of the
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surrogate model will be reduced as we evaluate the likelihood

function for more topologies.

The GP hyperparameters, which consist of the

hyperparameters of the topology-inspired kernel function and

the mean function, can be learned by optimizing the marginal

likelihood function of the GP model at each iteration through:

L1: t | θ1: t( ) ~ N μ θ1: t( ),K θ1: t ,θ1: t( )( ). (20)

3.2.2 Sequential Topology Optimization
The notion of efficient topology optimization is to come up

with an efficient way of searching over all the topology space so

that we utilize a minimum number of computationally expensive

likelihood evaluations and eventually find the optimal topology,

which yields the largest likelihood value.

As mentioned in Section 3.1, evaluation of the log-likelihood

function for each topology is a computationally expensive task.

Therefore, in here the sample-efficient and sequential topology

selection is achieved as:

θt+1 � argmax
θ∈Θ

αt θ( ), (21)

where αt(θ) represents the acquisition function in the Bayesian

optimization context, which is determined over the GP model

posterior at iteration t. Multiple acquisition functions exist in

the context of Bayesian optimization. For instance, probability

improvement (Shahriari et al., 2016) is one of the most

traditional acquisition functions, which makes selections to

increase the likelihood of improvement in each iteration of

BO. Other examples for acquisition functions include expected

improvement (Mockus et al., 1978; Jones et al., 1998; Brochu

et al., 2010), upper confidence bound (Auer, 2003), knowledge

gradient (Wu et al., 2017; Frazier, 2009), and predictive entropy

search (Henrández-Lobato et al., 2014). In this work, we use the

expected improvement acquisition function, which is the most

commonly used acquisition function. This acquisition function

balances the exploration and exploitation trade-off, and

furthermore has a closed form solution. The expected

improvement acquisition function is defined as (Mockus

et al., 1978; Jones et al., 1998):

αt θ( ) � μtθ − Lt
max( )Φ μtθ − Lt

max( )/ ��
Σt
θ

√( )
+

��
Σt
θ

√
ϕ μtθ − Lt

max( )/ ��
Σt
θ

√( ), (22)

Where ϕ(.) and Φ(.) refer to the probability density function and

cumulative density function of standard normal distribution, Ltmax �
max {L1, . . . Lt} is the maximum log-likelihood value until the latest

turn, and μtθ and Σt
θ are the mean and variance of the GP model at

iteration t as defined in Eq. 18.

The acquisition function in Eq. 22 holds a closed-form

solution and requires the mean and variance of the GP model

for any given topology. To solve Eq. 21 for large regulatory

networks with a large number of unknown interactions, we can

implement some heuristic optimization methods including

particle swarm optimization technique (Kennedy and

Eberhart, 1995), genetic algorithm (Anderson and Ferris,

1994; Whitley, 1994), or the breadth-first local search (BFLS)

(Atabakhsh, 1991) to obtain the model with the largest

acquisition value. After the model with maximum acquisition

value (θt+1) is chosen, the next log-likelihood evaluation is carried

for topology θt+1 to derive the log-likelihood value Lt+1. The GP

model is then updated based on all the new information, defined

as θ1:t+1 = (θ1:t, θt+1) and L1: t+1 � [L1: t, Lt+1]T.
The proposed Bayesian topology optimization continues its

sequential process over all the topology space of the regulatory

networks for a fixed number of turns, or until no significant

change in the maximum log-likelihood value in consecutive

iterations is spotted. When the optimization ends, the topology

with the largest evaluated likelihood value is selected as the system

topology, meaning that:

θ* ≔ θi*, where i* � argmax
i�1,...,t+1

Li. (23)

The inference process consists of three main components.

Figure 3 represents the schematic diagram of the proposed

method. The GP model predicts the log-likelihood values

over the possible topology candidates, denoted by the black

dots in Figure 3. The red dots denote the evaluated log-

likelihood values for the selected topologies up to the

current iteration. Using the posterior distribution of the GP

model, the next topology with the highest acquisition function

is selected, followed by the log-likelihood evaluation for the

selected topology. The GP is then updated based on the

selected topology and the evaluated log-likelihood, and

this sequential process continues until a stopping criterion

is met.

The detailed steps of the proposed inferencemethod are described

in Algorithm 1.Θ denotes the topology space, andD1:T represents the

available data. Line 3 to line 8 of the algorithm creates the state index

associated with the data D1:T. The sequential topology optimization

process is then carried out from line 10 to line 19, where in each loop,

the log-likelihood value for a topology selected by the proposed

FIGURE 2
An example of possible models (i.e, topologies) for a GRN
with two genes.
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Bayesian optimization technique is computed, followed by the

GP posterior update and the next topology selection. Finally,

upon the termination of the inference process, the topology

with the maximum log-likelihood is chosen in line 20 as the

inferred topology. The computation of the log-likelihood

determines the complexity of the algorithm at each step of

our proposed method, which is of order O (22dT). This means

that the complexity at each step of the proposed method is the

same as one log-likelihood evaluation. The log-likelihood

evaluation at each iteration is used to update our

knowledge (posterior), and to help choose the best

candidate for future iterations.

4 Numerical experiments

The code repository for replicating the numerical experiments of

this paper is included in the data availability statement at the end of

this paper. The well-known mammalian cell-cycle network (Fauré

et al., 2006) is used to evaluate the performance of our proposed

method. Figure 4 presents the pathway diagram of this network. The

state vector for this network is assumed as the following x =(CycD,

Rb, p27, E2F, CycE, CycA, Cdc20, Cdh1, UbcH10, CycB). The

division ofmammalian cells depends on the overall organism growth,

controlled using signals that activate cyclin D (CycD) in the cell. As

can be seen in the state vector, the mammalian cell-cycle network

Algorithm 1. The Proposed method for inference of regulatory networks through temporally-sparse data.
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contains 10 genes (d = 10). The settings used for our experiments are

as follows: data length of 100 (k = 100), process noise of 0.1 (p = 0.1),

and missing data percentage (sparsity) of 50%. Furthermore,

10 regulations of the connectivity matrix are assumed to be

unknown (L = 10), and a maximum of 100 likelihood evaluations

are used for the inference process. All the parameters used throughout

the numerical experiments are expressed in Table 1.

The connectivity matrix and bias vector in Eq. 3 for the

mammalian cell-cycle network can be written as:

C �

+1 0 0 0 0 0 0 0 0 0
−1 0 +1 0 −1 −1 0 0 0 −1
−1 0 +1 0 −1 −1 0 0 0 −1
0 −1 +1 0 0 −1 0 0 0 −1
0 −1 +1 +1 −1 −1 0 0 0 0
0 −1 0 +1 0 +1 −1 −1 −1 0
0 0 0 0 0 0 −1 0 0 +1
0 0 +1 0 0 −1 +1 0 0 −1
0 0 0 0 0 +1 +1 −1 +1 +1
0 0 0 0 0 0 −1 −1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b � −1
2

−1
2

−1
2

−1
2

−1
2

−1
2

−1
2

−1
2

−1
2

−1
2[ ]T.

(24)

In this section, we are assuming that the connectivity

matrix is not fully known. This network has 10 genes, and

there is a total of 210 = 1, 024 possible states for this network.

Consequently, the transition matrix size is 210 × 210, which

causes the likelihood evaluation to be computationally

expensive for any possible topology. Using our proposed

method, we show that the optimal topology with the largest

log-likelihood value can be inferred with few likelihood

evaluations; hence, we offer an efficient search over all

possible topologies.

In all of the experiments, 10 unknown interactions (cij) were

considered. Each of the unknown interactions can take their

values in the set { + 1, 0, −1}, which leads to 310 = 59, 049 different

possible system models, i.e., Θ � {θ1, . . . , θ310 }. The 10 randomly

chosen unknown regulations, which are elements of the

connectivity matrix in Eq. 24, are:

c2 1 � −1, c3 5 � −1, c310 � −1, c4 2 � −1, c5 4 � +1
c6 7 � −1, c6 9 � −1, c8 3 � +1, c9 6 � +1, c9 8 � −1.

(25)
We also considered a uniform prior distribution for the

initial states, i.e., Πθ
0|0(i) � 1

210 for all θ ∈ Θ and i = 1, 2, . . .,

210. Furthermore, all the experiments are repeated for

10 independent runs, and the average results along the

confidence bounds are reported in all the figures. Note that

the randomness of early results come from the process noise (p),

and the way the sequential topology optimization is being

performed in each run.

For the first set of experiments, the performance of the proposed

method is shown using two plots in Figure 5. The left plot represents

the progress of the log-likelihood value of the inferred model with

respect to the number of likelihood evaluations, meaning that it

shows the maximum log-likelihood value obtained during the

optimization process. Larger log-likelihood values mean that the

chosen model can better represent the true model (i.e., the available

TABLE 1 Parameter values of mammalian cell-cycle network
experiments.

Parameter Value

Trajectory Length, k 100

Number of Likelihood Evaluations 100

Number of Genes, d 10

Number of Unknown Regulations, L 10

Process Noise, p 0.1

Missing Data Percentage 50%

FIGURE 3
Schematic diagram of the proposed topology inference in
GRNs.

FIGURE 4
Pathway diagram for the cell-cycle network.
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data is more likely to come from models with larger likelihood

values). As a comparison, we also repeated the same experiment

using Genetic Algorithm (GA) (Anderson and Ferris, 1994;Whitley,

1994), which is a powerful and well-known solver for non-

continuous problems. By looking at the left plot in Figure 5, we

can see that the inference by the proposed method, indicated by the

solid blue line, is better than the GA method (dashed red line). This

superiority can be seen in terms of the mean and confidence

intervals in Figure 5. As we evaluate more likelihoods for

different models, the likelihood of the proposed method’s

inferred model gets closer to the optimal log-likelihood value,

indicated by the dotted red line. Hence, our proposed method is

capable of reaching a better log-likelihood with less number of

likelihood evaluations and has amore efficient way of searching over

all the possible models. Furthermore, the 95% confidence interval is

illustrated in the same plot for bothmethods during this experiment.

We can observe that the proposed method’s confidence interval

keeps getting smaller, and roughly after 70 evaluations, the

confidence interval tends to go zero. This indicates the

robustness of the proposed method, where after roughly

70 iterations, the log-likelihood gets to its optimal value at

different independent runs. By contrast, the results from the GA

FIGURE 5
Results of the mammalian cell-cycle network with 10 unknown interactions.

FIGURE 6
Performance of the proposed method with respect to
percentage of missing data.

FIGURE 7
Performance of the proposed method in presence of
different Bernoulli noise.
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still show a large confidence interval even after 100 evaluations, and

its average is far less than the optimal log-likelihood value.

The right plot of Figure 5 shows the progress of the connectivity

error during the optimization process (i.e., number of likelihood

evaluations) obtained by the proposed method. Let C* be the

vectorized true connectivity matrix indicated in Eq. 24, and Ct be

the vectorized inferred connectivity matrix at tth likelihood

evaluation. The connectivity error at iteration t is defined as

‖C* − Ct‖1. Evidently, we will have a better estimate of the true

model as this error gets closer to zero. In the right plot, we can see

that the connectivity error decreases as we do more evaluations, and

after about 75 likelihood evaluations, the error gets to zero, meaning

that we successfully inferred the true connectivity matrix. Also, as

expected, we can see that the 95% confidence interval gets smaller as

we do more evaluations and eventually gets close to zero after about

75 evaluations.

In the second set of experiments, we aim to investigate the effect

of missing data percentage on the performance of the proposed

method. It is expected that with more missing data, it would be more

difficult to infer the relationship between different components of the

system; hence the connectivity error for the inferred model would be

larger. For these experiments, we changed the missing data

percentage from 0% to 90% and used Bernoulli noise value 0.2.

Other parameters are fixed based on Table 1. The mean of the

inferred models’ connectivity error obtained from these experiments,

along with their 68% confidence interval are presented as bar plots in

Figure 6. As expected, these results demonstrate that the mean of

connectivity error increases as themissing data percentage gets larger.

The final set of experiments focuses on how the Bernoulli

noise affects the performance of the proposed method. In all

these experiments, we consider 50% missing data percentage,

and we change the Bernoulli noise from 0.01 to 0.4. For

performance comparison, the mean of the inferred models’

connectivity error derived from these experiments is shown

using bar plots in Figure 7. In this bar plot, we can observe that

the connectivity error is large for the Bernoulli noise of 0.01.

As the noise increases to 0.05 and 0.1, the connectivity error

keeps decreasing. However, increasing the noise to 0.2, 0.3,

and finally 0.4 results in a continuous increase in the

connectivity error. These results demonstrate the

relationship between network stochasticity and data

informativity needed for the inference process. For a small

process noise (p = 0.01), the network is typically trapped in

attractor states, which precludes the observation of the entire state

space. This leads to the issue of statistical non-identifiability,

which refers to the situation where multiple models are not

clearly distinguishable using the available data. Once the noise

value is slightly increased (p = 0.05, p = 0.1), the network gets

out of its attractor states more often, which enhances the

performance of the inference process. Finally, for too large

process noise values (p = 0.2, p = 0.3, p = 0.4), the state

transitions become more chaotic, making it more difficult to

infer the true relations between the components.

5 Conclusion

This paper presents a highly scalable topology inference method

for gene regulatory networks (GRNs) observed through temporally

sparse data. The Boolean network model is used for capturing the

dynamics of the GRNs. The inference process consists of inferring

the interactions between genes or equivalently selecting a topology

for the system among all the possible topologies that have the highest

likelihood value. Evaluating the likelihood function for any given

topology is expensive, preventing exhaustive search over the large

possible topology space. The proposed method models the log-

likelihood function by a Gaussian Process (GP) model with a

structurally-inspired kernel function. This GP model captures the

correlation between different possible topologies and provides the

Bayesian representation of the log-likelihood function. Using the

posterior distribution of the GP model, Bayesian optimization is

used to efficiently search over the topology space.

The high performance of our proposed method is shown

using multiple experiments on the well-known mammalian cell-

cycle network. We have also repeated all the experiments multiple

times to obtain a confidence interval and further demonstrate the

accuracy and robustness of the solutions obtained by our method.

In the first experiment, we considered the topology inference of the

mammalian cell-cycle network with 10 unknown interactions and

50% missing data. From comparing the results of topology

inference using our proposed method and genetic algorithm,

we observed that our method is more efficient in searching

over the topology space and reaches an optimal model with

fewer likelihood evaluations. Meanwhile, the small confidence

interval of our method justified the robustness of the solutions.

The second experiment investigated the effect of missing data on the

performance of the proposed inferencemethod. From the results, we

understand that as expected, with more missing data, the method’s

accuracy reduces, and the inference error becomes larger. Finally, in

the third experiment, we studied the performance of our method in

the presence of different Bernoulli noise (i.e., stochasticity in the state

process). The results show that for small stochasticity, the accuracy

of the inference is low, as the system spends most of its time in a few

states (i.e., attractors) and the interactions between different

components of the system are not distinguishable. As the

stochasticity increases, the accuracy of the proposed method

increases (as the error decreases) until a certain point, and after

that again, the accuracy starts decreasing. This is because too much

stochasticity turns the system into a more chaotic form, making the

inference of the true model more challenging.
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