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This paper investigates the leader-based distributed optimal control problem of discrete-
time linear multi-agent systems (MASs) on directed communication topologies. In
particular, the communication topology under consideration consists of only one
directed spanning tree. A distributed consensus control protocol depending on the
information between agents and their neighbors is designed to guarantee the
consensus of MASs. In addition, the optimization of energy cost performance can be
obtained using the proposed protocol. Subsequently, a numerical example is provided to
demonstrate the effectiveness of the presented protocol.
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1 INTRODUCTION

Inspired by biological motion in nature, the cooperative motion of multi-agent systems (MASs) has
been studied extensively in the past decade (Wang et al., 2017, 2019; Wang and Sun, 2018; Wang
et al., 2020b; Koru et al., 2021; Wang and Sun, 2021). Compared to a single agent, networked MASs
have the advantages of fast command response and robustness. Due to the distributed network
computing system having the characteristics of strong scalability and fast computing speed, the study
of distributed cooperative control problems for multi-agent systems has attracted increasing
attention of control scientists and robotics engineers by virtue of its extensive applications in
many cases, such as mobile robots (Mu et al., 2017; Zhao et al., 2019), autonomous underwater
vehicles (AUVs) (Zuo et al., 2016; Li et al., 2019), and spacecrafts (Zhang et al., 2018; 2021a). A
classical framework for the cooperative control of MASs with switching topologies is discussed in the
study by Olfati-Saber and Murray (2004). Ren and Beard (2005) have further relaxed the conditions
given by Olfati-Saber and Murray (2004), which present some new results with regard to the
consensus of linear MASs.

In practice, it is necessary to investigate the control problem of multi-agent systems in discrete
time with most computer systems being discrete structures. In the study by Liang et al. (2017), the
cooperative containment control problem of a nonuniform discrete-time linear multi-agent is
studied, and a novel internal mode compensator is designed to deal with the uncertain part of system
dynamics. A solution method of the discrete-time MAS decentralized consensus problem based on
linear matrix inequality (LMI) is given in the study by Liang et al. (2018). The problem of multi-agent
consensus control based on the terminal iterative learning framework is discussed by Lv et al. (2018)
where an adaptive control method based on time-varying control input is proposed to improve the
control performance of the system. Su et al. (2019) proposed a distributed control algorithm based on
the low-gain feedback method and the modified algebraic Riccati equation to achieve a semi-global
consensus of discrete-time MASs under input saturation conditions. A multi-agent consensus
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framework based on the distributed model predictive controller is
proposed by Li and Li (2020), while the self-triggeringmechanism
is adopted to reduce communication cost and solve the problem
of asynchronous discrete-time information exchange. Liu et al.
(2020) proposed a distributed state feedback control algorithm
based on theMarkov state compensator to solve the problem, that
is, some followers cannot directly obtain the leader’s own state
information. For MASs with unknown system parameters, a
distributed adaptive control protocol containing local
information was designed by Li et al. (2020) to ensure the
inclusiveness of the system. In the study by Li et al. (2021), a
class of discrete-time MASs adaptive fault-tolerant tracking
problem based on reinforcement learning is studied, in which
an adaptive auxiliary signal variable is designed to compensate
the effect of actuator faults on the control system.

In practical applications, the energy cost performance of the
designed protocols should be considered carefully, especially
for the systems with low loadability, for example, autonomous
underwater vehicles and spacecrafts. In the study by Zhang
et al. (2017), the discrete-time MAS optimal consensus
problem is discussed, and a data-driven adaptive dynamic
programming method is proposed to solve the problem,
that is, it is difficult to obtain an accurate mathematical
model of the system. Wen et al. (2018) constructed a
reinforced learning framework based on fuzzy logic system
(FLS) approximators for the identifier–actor–critic system to
achieve optimal tracking control of MASs. An optimal signal
generator is presented in the study by Tang et al. (2018), where
an embedded control scheme by embedding the generator in
the feedback loop is adopted to realize the optimal output
consensus of multi-agent networks. Tan (2020) transformed
the distributed H∞ optimal tracking problem of a class of
physically interconnected large-scale systems with a strict
feedback form and saturated actuators into the equivalent
control problem of MASs; meanwhile, a feedback control
algorithm is designed to learn the optimal control input of
the system. In the study by Wang et al. (2020a), the optimal
consensus problem of MASs is decomposed into three sub-
problems: input optimization, consensus state optimization,
and dual optimization, and a distributed control algorithm is
proposed to achieve the optimal consensus of the system. The
nonuniform MAS distributed optimal steady-state regulation
is investigated in the study by Tang (2020), and the results are
extended to the case where the system only has real-time
gradient information using high gain control techniques.
The single-agent goal representation heuristic dynamic
programming (GrHDP) technique is extended to the multi-
agent consensus control problem in by Zhong and He (2020),
and an iterative learning algorithm based on GrHDP is
designed to make the local performance indexes of the
system converge to the optimal value. In the study by Xu
et al. (2021), the optimal control problem with piecewise-
constant controller gain in a random environment is solved,
and an improved Hamilton–Jacobi –Bellman (HJB) partial
differential equation is obtained by the splitting method and
Feynman-KAC formula.

However, to the authors’ best knowledge, there are very few
studies focusing on the optimal control of discrete-time MASs
only containing a directed spanning tree. In this study, the
leader-based distributed optimal control problem of discrete-
time linear MASs on directed communication topologies is
investigated. A distributed discrete-time consensus protocol
based on the directed graph is designed, and it is proved that
the optimization of energy cost performance can be satisfied
with the presented consensus protocol. Furthermore, the
optimal solution can be obtained by solving the algebraic
Riccati equation (ARE), and the design of the protocol
presented in this study does not require global
communication topology information and relies on only the
agent dynamics and relative states of neighboring agents, which
means that every agent manages its protocol in a fully
distributed way.

Notation. RN stands for the Euclidean space with N-
dimension; In is an identity matrix of n-order; 1N is a N-
dimensional vector with all elements equaling 1, and 0m×n

denotes a zero matrix of order m × n; ‖x‖ stands for the
Euclidean norm of the vector x; A ⊗ B denotes the Kronecker
product between the matrices A and B; P > 0 represents the
positive definiteness of the matrix P, and P ≥ 0 represents the
positive semi-definiteness of P; P−1 and PT are the inverse matrix
and transpose matrix of P, respectively.

2 PRELIMINARIES

2.1 Algebraic Graph Theory
A digraph G � {V, E} is used to describe the communication
topology of MASs, where V � {]1, . . . , ]N} denotes the set of
nodes. An edge (]j, ]i) is included in the set E if the relative
information can be transfered from ]i to ]j. A path from ]i to ]j is
made up of a set of edges (]i, ]l1), . . . (]ln, ]j). A graph is supposed
to be connected if a path from ]i to ]j for all pairs of (]i, ]j) existed.
An adjacency matrixA � [aij]N×N is used to describe the digraph
G, where aii = 0, and aij = 1, i ≠ j, if (]j, ]i) ∈ E, but 0 otherwise. Let
L � [lij]N×N denote the Laplacian matrix of G such that lij = −aij
for i ≠ j and lii � ∑N

j�1aij.

2.2 Problem Formulation
Considering a group of N agents with the discrete-time system
presented by the following equation.

xi k + 1( ) � Axi k( ) + Bui k( )
x0 k + 1( ) � Ax0 k( ) i � 1, 2, . . . , N{ , (1)

where xi(k) ∈ Rp denotes the state variable and ui(k) ∈ Rq

denotes the control input; A and B are constant matrices with
suitable dimensions. The purpose of this study is to design a
protocol that guarantees the states of N agents in Eq. 1 to achieve
an asymptotic consensus. i.e., limk→∞‖xi(k) − x0(k)‖ � 0 and
optimizes the cost function (which will be defined later).

Assumption 1. the leader agent’s index is defined as 0, and the
leader agent’s and the follower agent’s index are defined as 1, . . . ,
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N,. The digraph G contains a directed spanning tree with the
leader as the root node.

Lemma 1. (Matrix Inversion Lemma (Horn and Johnson, 1996)):
For any nonsingular matrices E ∈ CN×N,G ∈ CN×M and the general
matrices F ∈ CN×N, H ∈ CN×M holds. Then, the inverse of the
matrix(E + FGH) is as follows.

E + FGH( )−1 � E−1 − E−1F HE−1F + G−1( )−1HE−1.

3 MAIN RESULTS

In this section, a distributed optimal controller is designed to
solve the consensus of the system in Eq. 1, and the optimization of
cost function is achieved with the presented protocol.

Since Assumption 1 holds, the Laplacian matrix L can be
regraded as (Zhang and Lewis, 2012)

L � 0 01×N
L2 L1

[ ], (2)

where L1 is a nonsingular matrix.
Let ξi(k) � ∑N

j�0aij(xi(k) − xj(k)), then we have

ξ k( ) � L1 ⊗ Ip( ) x k( ) − ~x0 k( )[ ], (3)
where ~x0(k) = 1N ⊗ x0(k) x(k) � [xT

1(k), . . . , xT
N(k)]T, and

ξ(k) � [ξT1(k), . . . , ξTN(k)]T; it implies that the leader-following
consensus of the system in Eq. 1 can be achieved i.e.,
limk→∞‖xi(k) − x0(k)‖ � 0 and i ∈ 1, . . . , N{ } can be achieved
if and only if limk→∞‖ξ(k)‖ � 0.

A distributed optimal controller is developed as follows.

ui k( ) � ∑N
j�0

aij⎛⎝ ⎞⎠−1 ∑N
j�1

aijuj k( ) − cKξ i k( )⎡⎢⎢⎣ ⎤⎥⎥⎦, i � 1, . . . , N,

j � 0, . . . , N

(4)

where c represents the coupling strength, and K denotes the
control gain matrix.

The error system can be obtained by taking the difference of
Eq. 3 as follows.

ξ k + 1( ) � IN ⊗ A( )ξ k( ) + L1 ⊗ B( )U k( ), (5)
where U(k) � [uT1 (k), . . . , uTN(k)]T.

Inspired by reference given by Zhang et al. (2021b), the cost
function is chosen to be

L k( ) � 1
2
ξT k( )Qξ k( ) + 1

2
UT k( )RU k( ), (6)

where the matrices Q � QT > 0 and R � RT > 0 denote the
appropriate weighting matrices. In addition, the energy-cost

function constraint performance for the system in Eq. 5 is
considered as follows.

J � ∑∞
k�0

L k( ) � ∑∞
k�0

1
2
ξT k( )Qξ k( ) + 1

2
UT k( )RU k( )( ). (7)

In Eq. 7, 1
2 ξ

T(k)Qξ(k) represents the process cost and
1
2 U

T(k)RU(k) represents the control cost. Therefore, J can be
considered the goal of comprehensive optimization of control
energy and error quantity. Furthermore, a Hamiltonian equation
is utilized to optimize the cost function L(k) as

H k( ) � −L k( ) + λT k + 1( )f k( ), (8)
where λT (k + 1) represents the costate variable and f(k) �
(IN ⊗ A) + (L1 ⊗ B)U(K).

Next, the protocol presented in Eq. 4 is proved to guarantee
the optimization of the energy cost performance and stability of
system in Eq. 5.

Theorem 1. For the given matrices Q = QT > 0 and R = RT > 0,
the cost function L(k) is optimized and the stability of system
in Eq. 5 can be achieved if and only if the following ARE
holds:

P � ATPA − ATPB R + BTPB( )−1BTPA + Q. (9)
where P is the positive definite solution of Eq. 9, and the control
gain matrix is K � (R + cBTPB)−1BTPA; c is a constant value
satisfying the condition c > 1.

FIGURE 1 | Communication topology among seven agents.

FIGURE 2 | State norm of seven agents.
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Proof. i) Optimization of Cost Function

(i–i) Necessity

The optimal control input can be solved from the equation as
follows.

zH k( )
zU k( ) � −RU k( ) + LT

1 ⊗ BT( )λ k + 1( ) � 0, (10)

Let λ(k) = −(IN ⊗ P)ξ(k), then the optimal controller can be
obtained in Eq. 10 as follows.

U* � R−1 LT
1 ⊗ BT( )λ k + 1( ) � −R−1 LT

1 ⊗ BTP( )ξ k + 1( ), (11)
Let R � 1

c (LT
1L1 ⊗ R), where R = RT > 0. Since Eq. 11 holds

true, Eq. 5 can be rewritten as

ξ k + 1( ) � IN ⊗ A( )ξ k( ) − L1 ⊗ B( )R−1 × LT
1 ⊗ BTP( )ξ k + 1( )

� IN ⊗ A( )ξ k( ) − c L1 ⊗ B( ) L−1
1 L−T

1 ⊗ R−1( )
× LT

1 ⊗ BTP( )ξ k + 1( ) � IN ⊗ Ip + cBR−1BTP( )−1A[ ]ξ k( ),
(12)

According to Lemma 1, it indicates that the expression of U*
can be rewritten as

U* � −c L−1
1 LT

1 ⊗ R−1( ) LT
1 ⊗ BTP( )ξ k + 1( )

� −c L−1
1 ⊗ R−1BTP Ip + cBR−1BTP( )−1A[ ]ξ k( )

� −c L−1
1 ⊗ K( )ξ k( ),

(13)

whereK � (R + cBTPB)−1BTPA is the control gain of the optimal
controller in Eq. 4, which can guarantee the optimization of the
cost function L(k).

Considering the costate variable λ(k) = −(IN ⊗ P)ξ(k), it can be
obtained by the following equation.

λ k( ) � zH k( )
zξ k( )

� −Qξ k( ) − IN ⊗ ATP Ip + cBR−1BTP( )−1A[ ]ξ k( ),
(14)

which indicates that

IN ⊗ P � Q + IN ⊗ ATPB c−1R + BTPB( )BTPA + IN ⊗ ATPA.

(15)
Let Q � IN ⊗ ATPB(c−1R + BTPB)BTPA − IN ⊗ ATPB(R+

BTPB)BTPA + IN ⊗ Q be a positive definite matrix, and Q =
QT > 0 holds true, then we have

P � ATPA − ATPB R + BTPB( )−1BTPA + Q, (16)
which is identical to the ARE presented in Eq. 9.

It is to be noted that if c ≥ 1, we
have (c−1R + BTPB)−1 ≥ (R + BTPB)−1, which implies that
Q≥ 0. Then, the positive definiteness of Q> 0 is achieved
by c > 1.

(i–ii) Sufficiency

Considering the following equation:

UT k( ) + ξT k( )c L−T
1 ⊗ ATPB R + cBTPB( )−1[ ]( ) ×

LT
1L1 ⊗

R

c
+ BTPB( )[ ]× U k( ) + c L−1

1 ⊗ R + cBTPB( )−1BTPA[ ](
ξ k( )). (17)

Based on K � (R + cBTPB)−1BTPA and
U(k) � U*(k) � −c(L−1

1 ⊗ K)ξ(k), the abovementioned Eq. 17
can be rewritten as

FIGURE 3 | State tracking error norm. FIGURE 4 | Control input ui of six agents.
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U k( )T + ξ k( )T L−T
1 ⊗ cKT( )[ ]

× LT
1L1 ⊗

R

c
+ BTPB( )[ ] × U k( ) + L−1

1 ⊗ cK( )ξ k( )[ ]
� U k( )T L−T

1 L1 ⊗
R

c
( )U k( ) + U k( )T L−T

1 L1 ⊗ BTPB( )U k( )
+ ξ k( )T IN ⊗ cKT R + cBTPB( )K[ ]ξ k( )
+ 2ξ k( )T L1 ⊗ KT R + cBTPB( )[ ]

� UT k( )RU k( ) + ξ k( )T IN ⊗ c2KTBTPBK( ) + ξT k( )
× IN ⊗ cKT R + cBTPB( )K[ ]ξ k( ) − 2ξT k( )
× IN ⊗ cKTBTPA( )ξ k( ).

(18)
Since Eq. 5 and Eq. 15 hold true, we have

ξT k + 1( ) IN ⊗ P( )ξ k + 1( ) − ξT k( ) IN ⊗ P( )ξ k( ) + ξT k( )Qξ k( )
� ξT k( ) IN ⊗ ATPA( )ξ k( ) + ξT IN ⊗ c2KTBTPBK( )ξ k( )

− 2ξT k( ) IN ⊗ cKTBTPA( )ξ k( ) − ξT k( ) IN ⊗ P( )ξ k( )
+ ξT k( )Qξ k( )

� ξT k( ) IN ⊗ c2KTBTPBK( )ξ k( ) − 2ξT k( ) IN ⊗ cKTBTPA( )
+ ξT k( ) IN ⊗ ATPB

R

c
+ BTPB( )−1

BTPA[ ]ξ k( ).
(19)

According to the following conditional equation

cKT R + cBTPB( )K
� cATPB R + cBTPB( )−1 R + cBTPB( ) R + cBTPB( )−1BTPA

� cATPB R + cBTPB( )−1BTPA

� ATPB
R

c
+ BTPB( )−1

BTPA.

(20)

Then, Eq. 19 can be regarded as

ξT k( ) IN ⊗ c2KTBTPBK( )ξ k( ) − 2ξT k( ) IN ⊗ cKTBTPA( )ξ k( )
+ξT k( ) IN ⊗ cKT R + cBTPB( )K[ ]

� ξT k + 1( ) IN ⊗ P( )ξ k + 1( ) − ξT k( ) IN ⊗ P( )ξ k( ) + ξT k( )Qξ k( ).
(21)

Let V(k) � 1
2ξ

T(k)(IN ⊗ P)ξ(k) denote the Lyapunov
function, then, substituting Eq. 21 into Eq. 18, we have

UT k( ) + ξT k( ) LT
1 ⊗ cKT( )[ ]

× LT
1L1 ⊗

R

c
+ BTPB( )[ ] × U k( ) + L−1

1 ⊗ cK( )ξ k( )[ ]
� UT k( )RU k( ) + ξT k( )Rξ k( )︸������������︷︷������������︸

2L k( )

+ ξT k + 1( ) IN ⊗ P( )ξ k + 1( ) − ξT k( ) IN ⊗ P( )ξ k( )︸���������������������︷︷���������������������︸
2ΔV k( ) .

(22)
Let ϕ � [UT(k) + ξT(k)(LT

1 ⊗ cKT)][LT
1L1 ⊗ (Rc) + BTPB][U(k) + (L1 ⊗ cK)ξ(k)], that is ϕ =

0 holds true if and only if U(k) = U*(k) holds, and the cost function L(k) can be rewritten as

L k( ) � −ΔV k( ) + 1
2
ϕ. (23)

Then, the cost function can be optimized, that is, L*(k) = −ΔV(k)
with the controller U*(k) � −c(L−1

1 ⊗ K)ξ(k).
Hence, it indicates that the optimal performance index J* is

derived as follows.

J* � ∑∞
k�0

L* k( ) � −∑∞
k�0

ΔV k( ) � − lim
k→∞

V k( ) + V 0( ), (24)

where V (0) represents the initial value of V(k).

(ii) The Stability of System

Based on the expressions of U*(k), we have

ΔV k( ) � −L k( )
� −1

2
ξT k( )Qξ k( ) − 1

2
ξT k( ) L−T

1 ⊗ cKT( ) × L−T
1 L1 ⊗

R

c
( )

× L−1
1 ⊗ cK( )ξ k( )

� −1
2
ξT k( ) Q + IN ⊗ cKTRK( )ξ k( )≤ 0.

(25)

It is inferred from Eq. 25 that − limk→∞V(k) = 0. Then, the
optimal performance index J* can be rewritten as

J* � − lim
k→∞

V k( ) + V 0( ) � V 0( ). (26)

As a consequence, the conditions in Theorem 1 are all
satisfied, which completes the proof.

FIGURE 5 | Trajectories of energy cost performance.
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Remark 1. Based on Theorem 1, it is obvious that the value of the
control gain matrix K mainly depends on the matrix P and the
coupling strength c, where the value of P is directly solved by Eq.
9, and c is a constant value satisfying the condition c > 1.
Therefore, the design of the control protocol ui(k) in Eq. 4
does not require global communication topology information
and relies only on the agent dynamics and relative states of
neighboring agents, that is, every agent manages its control
protocol ui(k) in a fully distributed way.

Remark 2. The topology considered in this study is a structure
containing only one directed spanning tree, which means that the
agent can only obtain the information of a single neighbor, and
we prove the effectiveness of the proposed distributed optimal
controller under the abovementioned conditions. In fact, the
proposed controller is also suitable for the case with the
general case, such as reference given by Wang et al. (2017),
Wang et al. (2019).

4 NUMERICAL EXAMPLE

In this section, a numerical example is provided to demonstrate
the effectiveness of the proposed controller.

Considering a network with seven agents, the communication
topology is described by Figure 1. Moreover, the system
parameters of each agent are given as follows (Xi et al., 2020).

A �
1.005 2 0.010 2 −0.099 8
0.046 1 1.041 1 0.099 8
−0.104 9 −0.204 7 0.995 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
B � −0.067 7 −0.024 6 0.155 9[ ]T.

Let R = 10, Q = 10*I3, and the coupling strength c = 2, then the
matrix P and the control gain K can be calculated by Theorem 1.
The initial conditions are given by x0 (0) = [0.2–0.2 0.3]T, x1 (0) =
[0.1 0.2 0.2]T, x2 (0) = [−0.15–0.1 0.1]T, x3 (0) = [0.3 0.2 0.1]T, x4
(0) = [−0.2 0.2–1.1]T, x5 (0) = [1.3 0.1–0.1]T, and x6 (0) = [1.0 0.5
1.5]T. Then, the trajectories of the state norm and tracking error
norm are shown in Figures 2, 3.

It can be seen from Figures 2, 3 that six followers can track the
leader successfully within about 11 s by using the proposed
optimal controller, and the steady-state tracking error is less
than 2.0. In addition, it is shown in Figure 4 that the control input
of six agents will nearly reach zero at about 13 s.

Moreover, the trajectories of energy cost performance J are
displayed in Figure 5, which shows that the optimal performance
of J equals 924. It can be acquired from Theorem 1 that the

theoretical value of the optimal performance is
J* � V(0) � 1

2ξ
T(0)(IN ⊗ P)ξ(0) � 924.066. Consequently, the

simulated value of J* is consistent with its theoretical value,
which proves that the controller proposed in this study
satisfies the optimality requirements.

5 CONCLUSION

In this study, the leader-based distributed optimal control of
discrete-time linear MASs only containing a directed spanning
tree has been investigated. A distributed optimal consensus
control protocol is presented to guarantee that multiple
followers can successfully track the leader. It can be proved
that the proposed protocol can ensure the optimization of the
energy performance index with the optimal gain parameters
which can be realized by solving the ARE. Moreover, the
design of the protocol presented in this study is
independent with the global information of topologies,
which indicates that every agent manages its protocol in a
fully distributed way. Finally, a numerical example which
illustrates the effectiveness of the designed protocol is
reported.
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