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Assessing the stability of biological system models has aided in uncovering a plethora of
new insights in genetics, neuroscience, and medicine. In this paper, we focus on analyzing
the stability of neurological signals, including electroencephalogram (EEG) signals.
Interestingly, spatiotemporal discrete-time linear fractional-order systems (DTLFOS)
have been shown to accurately and efficiently represent a variety of neurological and
physiological signals. Here, we leverage the conditions for stability of DTLFOS to assess a
real-world EEG data set. By analyzing the stability of EEG signals during movement and
rest tasks, we provide evidence of the usefulness of the quantification of stability as a bio-
marker for cognitive motor control.
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1 INTRODUCTION

Systems biology and biomedicine has been studied in conjunction with control theory over several
decades (Wiener, 2019). By applying the tools developed in control theory to biological and
biomedical systems, new discoveries have been made that enhance our understanding of both
the function and dysfunction of biological systems. One such control theoretic tool is stability, which
has been particularly useful in uncovering new critical insights in a multitude of biological and
biomedical applications (Wang and Zhang, 2009; Zhang et al., 2015; Li et al., 2017). Stability assesses
the long-term behavior of a dynamical model and its equilibrium properties, which are critical to
understanding the nature of the underlying biological or biomedical process and its characteristics.
However, the accuracy of such conclusions drawn on the properties of the biological or biomedical
process under observation will depend on the quality-of-fit of the model that is used to describe the
underlying process. Assessing the goodness-of-fit requires measurements of the biological process.

There are many different tools to measure neurophysiological signals, including
electrocardiogram (ECG), electromyogram (EMG), electroencephalogram (EEG), and blood
oxygenation level dependent (BOLD), and their models have been studied in the literature
(Baleanu et al., 2011; Magin, 2012; Pequito et al., 2015; Xue et al., 2016b; Gupta et al., 2018). In
this paper, we restrict our attention to non-invasive scalp EEG, which has been widely used to draw
conclusions on disease diagnosis, develop treatment, and gain a fundamental understanding of
systems biology on the whole (Haddad et al., 2010; McFarland et al., 2010).

There is evidence that discrete-time linear fractional-order dynamical systems (DTLFOS) are
well-suited to describe EEG signals and forecast their evolution (Pequito et al., 2015; Gupta et al.,
2018). Furthermore, these nonlinear spatiotemporal models rely on only a few parameters
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(Caponetto, 2010; Xue et al., 2016b; Monje et al., 2010). These
parameters include a couplingmatrix and a set of temporal scale
coefficients called fractional exponents. The coupling matrix
describes the spatial dependencies between different state
variables. The fractional exponents describe the long-term
memory of the dynamical process across different state
variables. With these few required and easy-to-interpret
parameters, together with the superior goodness-of-fit, these
DTLFOS models present distinct advantages over both linear
time-invariant and (generically) nonlinear models. Specifically,
LTI systems are limited in their ability to capture different time-
scales occurring in biological applications, which are inherently
modeled by the spatial component (i.e., the system’s
autonomous matrix) (Pequito et al., 2015; Xue et al., 2016a;
Xue and Bogdan, 2017). On the other hand, spatiotemporal
nonlinear systems have been widely accepted as tools capable of
accurately modeling EEG data but may lead to over-complicated
and difficult to interpret models that often over-fit the data.

Despite the advantages of DTLFOS, there are few results
regarding the stability of fractional-order systems (FOS). The
prior literature describes conditions for continuous-time FOS
(Benzaouia et al., 2014) and for single-input single-output
continuous-time commensurate systems (i.e., systems with
equal fractional exponents across state variables) (Dastjerdi
et al., 2019). In Dzieliński and Sierociuk (2008), the authors
leverage an infinite dimensional representation of truncated
DTLFOS (i.e., with finite memory) to give conservative
sufficient conditions for stability. While the work in
(Busłowicz and Ruszewski, 2013) does provide necessary and
sufficient conditions for practical and asymptotic stability of
DTLFOS, they only consider commesurate-order systems
(i.e., α is the same for all state variables). That said, a
comprehensive analysis of DTLFOS stability is lacking.

Henceforth, we aim to analyze the quantification of stability of
DTLFOS that encode EEG signals giving us the ability to unveil
new insights on the relation between neural behavior and
cognitive motor control. The prior literature describes
methods using EEG signals to classify various movements with
varying levels of success (Morash et al., 2008; Kim et al., 2019;
Ofner et al., 2019). However, to the best of our knowledge,
analyzing the stability of DTLFOS that model EEG signals to
draw conclusions on cognitive motor control is a novel approach.

Subsequently, the main contributions of this work are as
follows. First, we introduce stability conditions for multivariate
DTLFOS with arbitrary fractional exponents. We then leverage
these conditions to study the stability of a real-world EEG motor
data set modeled as a DTLFOS and provide evidence of its
relevance in the context of cognitive motor control.

2 MATERIALS AND METHODS

2.1 Discrete-Time Linear Fractional-Order
System
In this paper, we consider discrete-time linear fractional-order
non-commensurate systems described by

Δαx k + 1[ ] � Ax k[ ], (1)

where x ∈ Rn denotes the state and Δα is the Grünwald-Letnikov
discretization of the fractional derivative. The Grünwald-
Letnikov discretization for any i-th state (1 ≤ i ≤ n) can be
expressed as Δαi xi[k] � ∑k

j�0 ψ(αi, j)xi[k − j], where αi ∈ R is
the fractional-order coefficient of the ith state and ψ(αi, j) �

Γ(j−αi)
Γ(−αi)Γ(j+1)with Γ(·) denoting the Gamma function (Dzielinski and
Sierociuk, 2005).

Notice that System (Eq. 1) is a (finite-dimensional)
nonlinear (non-Markovian) system, and it considers a
weighted linear combination of all the previous data from
the beginning to the current time. As can be noticed from the
Grünwald-Letnikov discretization formula, the magnitude of
the fractional-order derivative necessitates the total number
of previous data points and the weights on those data points.
Intuitively, a larger fractional-order coefficient (i.e., α closer
to 1) implies a lower dependency on the previous data
meaning that the weights decay at a faster rate.
Furthermore, as the fractional-order coefficient α
approaches 1, the system becomes closer to an integer-
order linear time-invariant system.

Towards deriving the stability conditions for DTLFOS, we
start by noticing that the DTLFOS (Eq. 1) can be re-written as
[Lemma 2, (Gupta et al., 2018)]:

x k[ ] � Gkx 0[ ], (2)

where

Gk �
In, k � 0

∑k−1
j�0

AjGk−1−j, k≥ 1

⎧⎪⎪⎨⎪⎪⎩ (3)

with A0 � A − D(α, 1), Aj � − D(α, j + 1), for j ≥ 1, and

D α, j( ) �
ψ α1, j( ) 0 . . . 0

0 ψ α2, j( ) . . . 0

0 ..
.

1 0
0 0 . . . ψ αn, j( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)

In particular, we observe that Eq. 2 will lead to the following
realizations.

G0 � In

G1 � A −D α, 1( )
G2 � A2 − AD α, 1( ) −D α, 1( )A +D α, 1( )2 −D α, 2( )
G3 � A3 − AD α, 1( ) −D α, 1( )A2 +D α, 1( )2

− A2D α, 1( ) + AD α, 1( )2 +D α, 1( )AD α, 1( )
+D α, 1( )3 − AD α, 2( ) +D α, 1( )D α, 2( )
−D α, 2( )A +D α, 2( )D α, 1( ) −D α, 3( )
..
.

(5)

Using Equation 2, we show that a DTLFOS as in Eq. 1 can be
represented as a discrete-time linear time-varying (DTLTV)
system under mild assumptions. First, we notice that a
DTLTV is described by
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x k + 1[ ] � Mkx k[ ], (6)

with a state-transition matrix (that follows from using Eq. 6
recursively)

x k[ ] � ∏k−1
i�0

Mk−1−i⎛⎝ ⎞⎠x 0[ ], (7)

which provides a mapping from the initial state to the state at any
time k. Consequently, from Eqs 2, 7, we find the conditions for
which a DTLFOS can be represented as a DTLTV by equating the
state-transition matrices Gk � ∏k−1

i�0 Mk−1−i,∀k.
Next, we observe thatMk �Gk+1G−1

k under the assumption that
Gk is invertible for all k. In particular, we notice that∏k−1

i�0 Mk−1−i �∏k−1
i�0 Gk−iG−1

k−1−i � (GkG
−1
k−1)(Gk−1G−1

k−2)(Gk−2G−1
k−3) . . . , G1G

−1
0 �

GkG
−1
0 � Gk.

Notice that the assumption on the invertability ofGk for all k can
be seen as a mild assumption by invoking measure theoretical
arguments. Simply speaking, consider any randommatrix A, which
is invertible almost surely since having a non-invertible A would
require the determinant ofA to be zero, which has a zero probability
of occurring. From Eq. 5, we see that there would need to be a very
specific combination to make Gk have a determinant of zero and
thus be non-invertible, which again occurs with probability zero.
Since the specific combinations required to make Gk have a zero

determinant are different for each k, we do not define the specific
combination; however, we can give some intuition as to what this
combination might be by providing some examples. We remark
that for G1, the diagonal entries of D (α, 1) would need to be such
that when subtracted from A, the matrix A − D (α, 1) is not
invertible. Similarly for G3, we see that there needs to be specific
combinations of the matrices A, D (α, 1), D (α, 2), D (α, 3) and any
certain powers of these to attain a non-invertible matrix G3. From
these examples, we see that the specific combination for a matrixGk

to be non-invertible is dependent on A, D (α, i), and any powers of
these up to i, where i � {1,. . ., k}.

By showing that the DTLFOS can be re-cast as a DTLTV system
under certain assumptions, we can now leverage the stability results
from DTLTV systems to derive a stability condition for DTLFOS.

We start by introducing the definition of stability.
Theoretical Stability: (Section 4.1, (Khalil, 2014)) A DTLFOS

system (Eq. 1) where Gk is invertible for all k system is said to be

• stable if for any ϵ > 0 and for any k0, there exists a δ(k0, ϵ) > 0
such that ‖x [k0]‖2 ≤ δ(k0, ϵ) 0 ‖x [k]‖2 ≤ ϵ, ∀k ≥ k0.

• unstable if it is not stable.

In the main result, we provide the necessary and sufficient
conditions of stability for DTLFOS (1).

FIGURE 1 | The top left figure shows the location of the EEG sensors on Subject 1 in the dataset. The top middle figure shows the corresponding EEG signals,
including the one second windows used to model the two DTLFOS that correspond to rest (in blue) and task (in red). The bottom middle figures depict the two
autonomous A matrices for the two DTLFOS representing resting state and task. The rows and columns correspond to the sensor scheme, where odd numbered
sensors are on the left and even on the right. On the left are the fractional exponents (α) for the two DTLFOS representing resting state and task. Finally, on the right,
the figures show the stability analysis for the two systems representing resting (top) and task (bottom).
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Theorem1.ADTLFOS (1), whereGk is invertible for all k ∈ N, is stable
if and only if there exists some constant 0 < c(k0) < ∞ such that

‖GkG
−1
k−1‖2 ≤ c k0( ),∀k, k0, (8)

where k ≥ k0.
PROOF. Assuming that Gk is invertible for all k ∈ N, it follows
that we can represent the DTLFOS as a LTV system, i.e., x[k + 1]
� Mkx[k], where Mk � Gk+1G−1

k . Leveraging the fact that the
DTLFOS can be represented as a LTV, we know that a discrete-
time LTV system is stable if and only if for any k0, there exists a 0
< c(k0) < ∞, such that ‖Φ(k, k0)‖2 ≤ c(k0), ∀k, k0, where k ≥ k0
and Φ(k, k0) is the state-transition matrix from the state at k0 to
the state at k [Lemma 1, (Zhou and Zhao, 2017)]. Therefore, to
show sufficiency, we notice that

‖Φ k, k0( )‖2 � ‖Mk−1 . . . ,Mk0‖2
≤ ‖GkG

−1
k−1‖2‖Gk−1G−1

k−2‖2 . . . ‖Gk0+1G
−1
k0
‖2

≤ c k0( )k−k0 � c k0( ).

The necessary condition can be shown by contradiction.
Suppose that there exists an index ki for which there does
not exist a 0 < c (k0) < ∞ such that ‖GkiG

−1
ki−1‖2 ≤ c(k0), then

it must mean that ‖GkiG
−1
ki−1‖2 >∞, so ‖Φ(ki, k0)‖2 > ∞, so the

system is unstable.
We define the quantification of stability at time k in the

following definition.
Definition 1. The quantification of stability at time k is defined by
the magnitude of the stability metric ‖GkG

−1
k−1‖2 given

that ‖GkG
−1
k−1‖2 <∞.

Given EEG signals during a period when a subject is resting
and when s/he is performing task, we will fit these signals to
two distinct DTLFOS for the rest and task periods by using the
method outline in Xue et al. (2016b), which finds the
parameters using least-squares regression. By comparing
the stability and quantifying the stability metric ‖GkG

−1
k−1‖2

of these two systems, we expect to observe differences that not
only help distinguish these two activities but also aid in

FIGURE 2 | The top left figure shows the one-step prediction (Gupta et al., 2019) for the EEG signal from C5 of Subject 1 corresponding to rest for a 1 s time
window. The top right figure shows the Q-Q plot for the distributions of the predicted and observed EEG signal corresponding to rest for Subject 1. The bottom right
figure shows the one-step prediction for the EEG signal fromC5 of Subject 1 corresponding to task for a 1 s time window. The bottom right figure shows the Q-Q plot for
the distributions of the predicted and observed EEG signal corresponding to task for Subject 1.
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establishing and verifying new and existing conclusions in
cognitive motor control.

3 ASSESSING THE QUANTIFICATION OF
STABILITY OF EEG SIGNALS AS A
BIO-MARKER FOR COGNITIVE MOTOR
CONTROL

In this section, we leverage the stability of DTLFOS systems (Eq. 1)
to assess EEG signals for motor movement. DTLFOS systems are
stable if and only if ‖GkG

−1
k−1‖2, is bounded by a finite constant for

all time steps k.
We explore the stability of EEG signals in the motor cortex for

106 subjects completing simple motor tasks. In each trial, a target

appears on the left side of a screen, at which point the subject
opens and closes the left fist until the target disappears, then the
subject relaxes (Schalk et al., 2004). This data set consists of over
1,500 trials corresponding to one- and 2-min EEG recordings,
obtained from 106 volunteers (Goldberger et al., 2000).

We use the data collected from the six sensors over-top the
motor cortex to fit two distinct DTLFOS (Xue et al., 2016b), one
corresponding to when the subject is resting and the other
corresponding to when the subject is completing the motor
task. For each subject, we chose a one second window of time
at which point the subject is resting and a subsequent one second
window when the subject begins to perform the task (open and
close the left fist). Using these two windows of data, we fit two
DTLFOS, one corresponding to the resting period and the other
corresponding to the movement task. With these two systems, we
use Algorithm 1 to evaluate the stability of the DTLFOS for
160 time-steps. We note that if the stability metric, namely
‖GkG

−1
k−1‖2 exceeded a threshold of 300, we replaced it with the

value 300. We note that for the selected time windows all of the
values of ‖GkG

−1
k−1‖2 were less than infinity, so all systems were

found to be stable. The time window should be selected carefully
to avoid numerical instability (Xue et al., 2016b).

Briefly, we note that in general, these systems are stable. The
stability metric ‖GkG

−1
k−1‖ captures the overall activity of the

motor cortex. More specifically, ‖GkG
−1
k−1‖ over time captures

FIGURE 3 | The top left figure shows the location of the EEG sensors on Subject 2 in the dataset. The top middle figure shows the corresponding EEG signals,
including the one second windows used to fit the two DTLFOS that correspond to rest (in blue) and task (in red). The bottommiddle figures depict the two autonomous A
matrices for the two DTLFOS representing rest and task. The rows and columns correspond to the sensor scheme, where odd numbered sensors are on the left and
even numbered sensors are on the right. On the left are the fractional exponents (α) for the two DTLFOS representing rest and task. Finally, on the right, the figures
show the stability analysis for the two systems representing rest (top) and task (bottom).

Algorithm 1 | This algorithm is used to assess the stability of the DTLFOS (1) for a
finite time horizon.
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the qualitative change of behavior of the underlying system as
seen in the transient of the stability metric for Subjects 1, 2, and 3.
We notice that during the task, the system has larger ‖GkG

−1
k−1‖2

values when compared to the resting system. Previous work has
shown that the neural activity in the motor cortex increases as
muscles contract to perform a task (Chapter 37, Kandel et al.
(2000)). This might explain why the task DTLFOS has higher
‖GkG

−1
k−1‖2 values when compared to the resting DTLFOS since

the higher brain activity while performing a task might be
associated with an increase in ‖GkG

−1
k−1‖2. Therefore, by

observing that the stability metric quantitatively changed when
comparing the rest system to the task system, this suggests that
the behavior of the underlying system also changes. The larger
‖GkG

−1
k−1‖2 values for the task system indicate that the

quantification of the stability of DTLFOS can serve as a bio-
marker for the brain’s change in behavior when switching from
resting to movement tasks. We provide evidence to support this
claim both by exploring several subjects and by statistically

analyzing all 106 subjects through a Kolmogorov-Smirnov test
(Hogg et al., 2010). The results for Subjects 1, 2, and 3 are
presented in Figures 1, 3, 5, respectively. Furthermore, we
evaluate the quality of fit by performing a one-step prediction
for the rest and task DTLFOS and their corresponding Q-Q plots
for Subjects 1, 2, and 3 in Figures 2, 4, 6, respectively.

In Figure 1, we observe several yellow squares appearing in the
autonomous A matrix during the task. This is synonymous with
the right side of the brain being activated during the movement of
the left fist, which matches the conclusions of movement drawn
by neuroscientists. These conclusions state that the right side of
the brain controls the left side of the body and vice versa. Also
during the task, we notice that the fractional exponents (α) are
closer to 0.5 indicating that the system depends more heavily on
information from signals in the very distant past. Therefore, a
higher weight is being placed on previous states in the task
system. However, in the resting system, the fractional
exponents are closer to 1 indicating that the system does not

FIGURE 4 | The top left figure shows the one-step prediction (Gupta et al., 2019) for the EEG signal from C5 of Subject 2 corresponding to rest for a 1 s time
window. The top right figure shows the Q-Q plot for the distributions of the predicted and observed EEG signal corresponding to rest for Subject 2. The bottom right
figure shows the one-step prediction for the EEG signal fromC5 of Subject 2 corresponding to task for a 1 s time window. The bottom right figure shows the Q-Q plot for
the distributions of the predicted and observed EEG signal corresponding to task for Subject 2.
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depend on signals in the very distant past and requires less
dependence on the previous states. The fact that the rest
system does not depend heavily on previous states may be due
to a possible transition between different cognitive states as
expected in default mode (Breakspear, 2017).

In Figure 2, we evaluate the quality of fit by performing a one-
step prediction for the rest and task DTLFOS and their
corresponding Q-Q plots for Subject 1. The Q-Q plots shows
that the fit is good when the points exhibit a linear relationship
(Hogg et al., 2010). Figure 2 provides evidence that the estimated
DTLFOS is a good fit for the EEG signals.

In the stability metric plots on the right side of Figure 1, the
rest system and task system tend towards stability as the time-step
increases, which is likely due to the fact that we are modeling an
excited system driven by the inputs. As such, the behavior
appearing in the stability analysis is similar to what would
happen when applying an impulse or step input to a system,
where we notice an initial transient followed by a return to
stability.

We notice in the rest system that the value of ‖GkG
−1
k−1‖2

peaks around 1.5, whereas in the task system the value of
‖GkG

−1
k−1‖2 peaks around 3. In general the values of ‖GkG

−1
k−1‖2

are larger for the task system than the rest system. Hence, we
conclude that the quantification of stability of DTLFOS can

help in providing further intuitions about the dynamics of
the brain and serve as a bio-marker for its change in
behavior.

In Figure 3, we see similar results to that of Subject 1, where
during the task, the right side of the brain is activated and the
fractional exponents are lower indicating that the task system
depends heavily on previous states. We also see a similar behavior
in the stability analysis where ‖GkG

−1
k−1‖2 is larger during the task

and reaches a peak around 2.2, whereas in the rest system, the
peak is around 1.8.

While the Q-Q plots in Figure 4 do not exhibit a truly linear
relationship, we argue that the results from Subject 2 still produce
good results and so the fit of the estimated DTLFOS to the EEG
signals is still fairly good.

Finally, in Figure 5 while despite being similar to that of
Subjects 1 and 2, the results are less dramatic. However, we again
note the same trends of the fractional exponents and the stability
metrics for rest and task. In particular, the fractional-order
exponents are lower for the task than for the rest system.
Furthermore, the peak value for ‖GkG

−1
k−1‖2 is around 1.4 for

the task system and 1.1 for the rest system. The activation in
the autonomous matrix is evident but much less pronounced
and occurs in the middle of the motor cortex as opposed to on
the presumed right side. Still, the results from Subject 3

FIGURE 5 | The top left figure shows the location of the EEG sensors on Subject 3 in the dataset. The top middle figure shows the corresponding EEG signals,
including the one second windows used to fit the two DTLFOS that correspond to rest (in blue) and task (in red). The bottommiddle figures depict the two autonomous A
matrices for the two DTLFOS representing rest and task. The rows and columns correspond to the sensor scheme, where odd numbered sensors are on the left and
even numbered sensors are on the right. On the left are the fractional exponents (α) for the two DTLFOS representing rest and task. Finally, on the right, the figures
show the stability analysis for the two systems representing rest (top) and task (bottom).
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support the fact that significant and important conclusions
regarding motor movement, including the transition from
rest to task, can be drawn from determining the quantification
of stability of the EEG signals when fit as a DTLFOS.
Furthermore, the quality of fit of the DTLFOS to the EEG
signals is very good for Subject 3 as evidenced by the plots
shown in Figure 6.

Figure 7 show the average stability metric (‖GkG
−1
k−1‖2 for k � 1

{1, . . . , 160}) across all 106 subjects during rest and task periods,
respectively. It is important to point out that the average stability
metric is larger during the task period than the rest period. Next,
we provide statistical evidence that quantifying the average
stability metric of EEG signals for rest and movement tasks
indicates a change in the brain’s behavior and subsequently a
bio-marker for cognitive motor control.

We use the Kolmogorov-Smirnov test to show that indeed the
distributions of the average values of the stability metric across
160 time steps ( 1

160∑160
k�1‖GkG

−1
k−1‖2 for the rest and task systems are

significantly different. We start by finding the histogram plots of
the average values of the stability metric across 160 time steps
( 1
160∑160

k�1‖GkG
−1
k−1‖2) for the rest and task systems for all 106

subjects in Figure 8. Next, we find the Kolmogorov-Smirnov
statistic to be 0.0943. With an α level of 0.001, we find that the
Kolmogorov-Smirnov statistic rejects the null hypothesis, meaning
that the two distributions are statistically different. In particular,
the rest distribution has more lower average values of the stability
metric than the task distribution. This supports the conclusion
found in Subjects 1-3 that the quantification of the stability of EEG
signals modeled as a DTLFOS during rest and task are different,
where the values of ‖GkG

−1
k−1‖2 are generally larger for the task

system when compared with the rest system.
We find that the results hold for different window sizes. When

considering a window size of 0.875 s, the Kolmogorov-Smirnov
statistic is 0.0849, so the null hypothesis is rejected with an α level of
0.001. Similarly, when considering a window size of 1.25 s, the
Kolmogorov-Smirnov statistic is 0.0755, so again the null

FIGURE 6 | The top left figure shows the one-step prediction (Gupta et al., 2019) for the EEG signal from C5 of Subject 3 corresponding to rest for a 1 s time
window. The top right figure shows the Q-Q plot for the distributions of the predicted and observed EEG signal corresponding to rest for Subject 3. The bottom right
figure shows the one-step prediction for the EEG signal fromC5 of Subject 3 corresponding to task for a 1 s time window. The bottom right figure shows the Q-Q plot for
the distributions of the predicted and observed EEG signal corresponding to task for Subject 3.
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hypothesis is rejected with an α level of 0.001. Hence, we provided
evidence that the quantification of stability, namely how large the
stability metric ‖GkG

−1
k−1‖2 is compared to the baseline, can be used

as a bio-marker for cognitivemotor control, where the baseline is the
subject at rest. This is significant because the quantification of
stability can be used to design a discriminator for classifying EEG
signals corresponding to rest or task.

In summary, this real-world example of fitting EEG signals to
DTLFOS models and determining their quantification of stability
leads to a deeper understanding of brain dynamics and motor
movement.

4 CONCLUSIONS AND FUTURE WORK

The quantification of stability plays a key role in unveiling
important characteristics of biological systems. Notably,
spatiotemporal discrete-time linear fractional-order systems can
accurately and efficiently represent a variety of biological networks.
We focused on physiological systems, especially EEG signals, and
we leveraged the stability conditions for DTLFOS introduced in
this paper to identify features that could serve as biomarkers for
cognitive motor control. Specifically, we studied a real-world EEG
data set consisting of 106 subjects and fit two different DTLFOS

FIGURE 7 | The left figure shows the average stability metric ‖GkG
−1
k−1‖2 for the rest DTLFOS across all 106 subjects for time steps k � {1,. . ., 160}. The shaded

region indicates the standard deviation and the solid blue line is the mean. The right figure shows the average stability metric ‖GkG
−1
k−1‖2 for the task DTLFOS across all

106 subjects for time steps k � {1,. . ., 160}. The shaded region indicates the standard deviation and the solid red line is the mean.

FIGURE 8 | The left figure shows the histogram plot of the average stability metric 1
160∑160

k�1‖GkG
−1
k−1‖2 for the rest DTLFOS for all 106 subjects. The right figure shows

the histogram plot of the average stability metric 1
160∑160

k�1‖GkG
−1
k−1‖2 for the task DTLFOS for all 106 subjects.
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corresponding to the recordings during a subject’s rest and
movement. We showed that analyzing the quantification of
stability of these two systems is useful in distinguishing a
change in the brain’s behavior, which can help enhance our
understanding of motor movement and control.

In future work, we seek to determine necessary and sufficient
conditions for stability of DTLFOS that are computationally
tractable. In addition, we want to understand the trade-offs
between the stability of the system and the memory captured
by the system’s temporal parameters (fractional-order
exponents), which will ultimately lead to a better
understanding of how memory affects cognitive motor control
and also neurological diseases (e.g., epilepsy).
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