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This paper investigates the multi-agent persistent monitoring problem via a novel
distributed submodular receding horizon control approach. In order to approximate
global monitoring performance, with the definition of sub-modularity, the original
persistent monitoring objective is divided into several local objectives in a receding
horizon framework, and the optimal trajectories of each agent are obtained by taking
into account the neighborhood information. Specifically, the optimization horizon of each
local objective is derived from the local target states and the information received from their
neighboring agents. Based on the sub-modularity of each local objective, the distributed
greedy algorithm is proposed. As a result, each agent coordinates with neighboring agents
asynchronously and optimizes its trajectory independently, which reduces the
computational complexity while achieving the global performance as much as possible.
The conditions are established to ensure the estimation error converges to a bounded
global performance. Finally, simulation results show the effectiveness of the proposed
method.
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1 INTRODUCTION

In recent years, the multi-agent persistent monitoring problem has received much attention because
of the wide range of applications such as smart cities, intelligent transportation, and industrial
automation (Nigam, 2014; Yu et al., 2015; Ha and Choi, 2019; Maini et al., 2020). It involves a finite
set of targets with dynamical behaviors that need to be monitored, and the main objective is to design
the motion strategy for a team of agents equipped with sensors to move between these targets to
collect information or minimize the uncertainty metric of targets over a long period of time. In
persistent monitoring tasks, due to the dynamic characteristics of the target states, agents need to visit
these targets and stay for some time to collect enough information or avoid unbounded estimation
errors. In other words, the dynamic target states make the agents perform time-varying monitoring
tasks continuously, which makes it difficult for agents to interact with each other effectively and
brings challenges to the design of effective monitoring strategies (Rajkumar et al., 2010).

At present, most approaches for multi-agent persistent monitoring problems are exploited in a
centralized fashion, such as reinforcement learning (Chen et al., 2020; Liu et al., 2020), approximate
dynamic programming (Deng et al., 2017), data-driven (Alam et al., 2018) and others (Smith et al.,
2011; Zhao et al., 2018; Asghar et al., 2019; Ostertag et al., 2019; Hari et al., 2020). An incremental
sampling-based algorithm is proposed (Lan and Schwager, 2013) to plan a periodic monitoring
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trajectory for sensing robots in Gaussian Random Fields. Aiming
to solve the road-network persistent monitoring problem, (Wang
et al., 2020) designed a heuristic path planning algorithm from a
decision-making perspective, which enables a UGV to
persistently monitor the viewpoints of the road network
without traversing them. (Pinto et al., 2020) described the
multi-agent persistent monitoring process as a hybrid system,
and the Infinitesimal perturbation analysis (IPA) was adopted to
solve this problem.

However, as the number of targets and agents increases, the
computational complexity of designing a centralized controller can
be overwhelmingly high and unreliable under uncertainty
monitoring tasks such as the existence of stochastic disturbances.
Therefore, a decentralized approach where agents act upon only
local information or communicate with only local targets and agents
is more desirable. To overcome this issue, (Cassandras et al., 2012;
Zhou et al., 2018; Zhou et al., 2020) proposed some decentralized
IPA algorithms which significantly reduce communication costs.
However, these approaches often converge to poor locally optimal
solutions and still need complex calculations because they involve
the gradient parameter mentioned in (Pinto et al., 2020). Moreover,
the dynamics of targets could be subject to stochastic uncertainties,
and the form of the optimization problem could be subjected to
multiple constraints such as agent dynamics, whichmakes it difficult
to solve by the methods mentioned above.

Actually, considering the definition of submodular
optimization (Gharesifard and Smith, 2017; Mackin and
Patterson, 2018; Lee et al., 2021) and the event-driven nature
of the multi-agent persistent problem, distributed model
predictive control (DMPC) is an attractive strategy because of
its ability to deal with complex constraints effectively and the
flexibility of solving optimization problems online (Zeng and Liu,
2015; Mi et al., 2018; Zou et al., 2019; Li and Li, 2020). Within the
receding horizon framework, the agents only need to rely on local
information to optimize decisions on a short horizon each time,
which greatly reduces the computational requirements.
(Rezazadeh and Kia, 2021) assigned to each target a concave
and increasing reward function, and a distributed sub-optimal
greedy algorithm with bounded performance was designed based
on the submodularity of the objective function. However, this
approach does not take into account the need of dwell time for
agents to monitor targets, which is related to the agents’ real-time
strategies, thus limiting their application. Although (Welikala and
Cassandras, 2021) proposed an event-driven receding horizon
control strategy for distributed persistent monitoring problems,
aiming to optimally control each of the agents in an online
distributed manner using only a minimal amount of
computational power, yet it only provided a basic distributed
control method in the receding horizon control framework, and
the cost of transforming the global persistent monitoring problem
into multiple distributed optimization subproblems can not be
effectively evaluated, which means that the agent strategies
derived from local information can be locally optimal.

Based on the discussions mentioned above, the centralized
methods require plenty of computing resources, while the
existing distributed strategies are difficult to achieve a good
monitoring performance. It is still challenging to balance the

demand of computing resources and monitoring performance.
In this paper, a distributed submodular receding horizon control
method was proposed for multi-agent persistent monitoring tasks.
In the submodular optimization framework, we first decompose the
global optimization objective into multiple local optimization
problems driven by monitoring events, then a distributed
receding horizon control strategy is proposed, where each agent
optimizes its trajectory of the next horizon, including the target to
be visited and the dwell time. The utility function that measures the
monitoring targets of the agent on each finite horizon is defined and
proved to be a submodular function. Additionally, a distributed
greedy algorithm using only local information of neighborhood
targets and agents is proposed to obtain the optimal solution.
Finally, some basic properties of the strategy are analyzed, and
the performance of the algorithm is demonstrated by a simulation
example. It is worth emphasizing that the algorithm doesn’t require
any parameters and only involves a finite number of calculations to
obtain a bounded monitoring performance.

The structure of the paper is as follows: Section 2 formulates the
persistent monitoring problem. Section 3 presents the distributed
optimization problem under the receding horizon control strategy
and the distributed optimal decision of each agent; Section 4
discusses the submodular properties of the distributed
optimization problem, and Section 5 gives a distributed greedy
algorithm. A simulation is given in section 6 to verify the
effectiveness of the algorithm. Section 7 concludes the paper.

2 PROBLEM STATEMENT

Consider M targets and N mobile agents equipped with sensing
capabilities in an undirected graph G � (V, ζ), where every vertex
in V � {1, 2, . . . ,M} represents a target, and the edge set
ζ ⊆ (i, j): i, j ∈ V represents the trajectory segments available
for agents to travel between targets i and j, the travel time
over nodes i and j is represented by an associated value ρij.
The neighbor set of target i is N i, including all points directly
connected to it. The main focus of this problem is to persistently
reduce the uncertainty of targets by exploiting mobile agents as
target state sensors.

Target Dynamics. The target states are dynamically changing
with time, and the uncertainty estimation of target i is denoted by
Ri(t) according to the following model:

_Ri(t) �
0 if Ri(t) � 0&Ai ≤Bira
Ai −∑

a∈Γ
Bira otherwise,

⎧⎪⎨⎪⎩ (1)

Where Ri(t) increases with a prespecified rate Ai if no agent is
visiting it, and decreases with a rate of ∑

a∈Γ
Bira − Ai otherwise.∑

a∈Γ
Bira indicates the joint monitoring capability of agents to

target i and Γ is the set of current agents on target i. Each agent
can have different monitoring capabilities, denoted by r. Note
that Ri(t) ≥ 0 for all t.

Agent sensing model. In this graph topology, agents a ∈ N can
only be on the vertex i ∈ V or edges in ζ. If an agent is on a vertex i,
it means that this agent is monitoring the current target i;
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otherwise, it is on the way to the next target j. Assume that the
velocity of each agent is v � {0, 1}, the velocity is 0 if an agent stays
at a target, otherwise the velocity becomes 1.

Assumption 1. For any given agent a ∈ Ψ, it’s monitor
capability ra will always guarantee Bira − Ai ≥ 0 and Bira − Aj

≥ 0, where j ∈ N i.
The goal of the persistent monitoring tasks is to minimize the

average estimation error of the targets, aiming to solve the
following optimization problem:

min J � 1
T
∫T
0

∑M
i�1

Ri(t)dt, (2)

subject to target dynamics in (1).
Note that some studies have considered the correlation between

the monitoring capability of an agent and the distance to the target.
This paper simplifies the monitoring model of agents, where the
targets on a given topology represent the detection range of the
agent. In fact, only when the agent reaches the target, will it perform
the monitoring task. This simplification does not affect the
effectiveness of the proposed method.

3 DISTRIBUTED RECEDING HORIZON
STRATEGY

A complete solution to the problem (2) requires the determination
of the access trajectory and dwell time of the agents, which is usually
computationally intractable. Moreover, the process requires global
information about all agents and targets. It has beenmentioned that
the agent will leave the current target to perform the next
monitoring task after completing the current monitoring target
task, i.e., the global monitoring process of agents is composed of
multiple continuous switching events. Each event represents the
descent of a target’s estimation error, and the length of the event is
determined by the target state described in (1). Therefore, the
problem (2) can be formulated as:

J � 1
T
∑M
i�1

∑K
k�0

∫t1
t0

Ri(t)dt, (3)

Where k � 0, 1, . . .K is the number of times the target i has been
visited in period T, and Ji(t0, t1) � ∫t1

t0
Ri(t)dt denotes the local

contribution to the global objective J by a target i ∈ V during a
time period t ∈ [t0, t1].

The form of problem (3) contains multiple block optimization
problems. This enables us to use an event-driven receding
horizon control strategy to solve this problem, which has been
widely used in multi-agent cooperative control and other fields.

Assumption 2. Each agent has access to the following
information and communication.

• Once an agent a reaches a target i, it obtains the current
uncertain states and models of all targets in the local set N i,
but only when agent reaches the target can make Ri(t)
decrease.

• Agent communicates with the target in local setN i to know
whether it is monitored by other agents, and if so, the
current agent communicates with them.

Remark 1. Both the communication andmonitoring actions of
agents depend on the local graph topology. Agents with the same
accessible targets can communicate between them, and the
current target acts as a relay for the communication. This
communication constraint is much more relaxed than the
centralized method, especially for applications such as marine
environmental monitoring where communication is expensive.
This assumption can be relaxed to the task scenario considering
the monitoring distance under certain conditions.

Definition 1. If an agent a performs a monitoring task at target
i, then only targets in the local set N i(a, t) are allowed to access
the next time. The local agent set of agent a is
Aa(t) � {N i(a, t) ∩ N j(b, t) ≠ ∅}, including agents that can
access the same target in N i, that is, if there are more than
one agent have access to the same target in N (a, t),
communication can be established between them.

As mentioned in Section 2, in order to minimize the
optimization objective 3, agents need to determine the dwell
time at each target first. Under Assumption 1, when an agent a
completes the task of target i at time ti and goes to j, according
to (1), it holds that Rj(t) ≥ 0 for all t ∈ [0, T]. Besides, agent
needs to leave the current target j immediately once the
monitoring task is completed. Therefore, Rj is maximum
when agent a reaches agent j, and then begins to decrease
until it reaches 0 during [t0, t1]. It follows that its optimal dwell
time ukj in j is

uk
j(ti, t1) �

Rj(ti) + ρijAj

Bjra − Aj
. (4)

Lemma 1. Suppose agent a ready to go to the next target i, at
time t0, and arrives target i at time tb, finish the monitor task of
target i at time t1. The local objectives during t ∈ [t0, t1] can be

formulated as Ji(t0, t1) � u0i
2 (2Ri(t0) + Aiu0i )+ u1i

2 (2(Ri(t0) +
Aiu0i )− (Bira − Ai)u1i ), Jj(t0, t1) � u0i +u1i

2 (2Rj(t0)+ Aj(u0i + u1i )),
where j ∈ N i, u0i � tb − t0 indicates the travel time to i, and u1i �
t1 − tb denotes the visiting time at target i.

Proof. According to the definition of optimization objective 2,

J can be discribed as J � 1
T [ ∑

j∈M\i
∫T

0
Rj(t)dt] + 1

T [∫t0
0
Ri(t)dt+

∫t1

t0
Ri(t)dt + ∫T

t1
Ri(t)dt]. Based on (1), Ji(t0, t1) �

Ri(t0)+Ri(t1)
2 (t1 − t0) � t1−t0

2 [2Ri(t0) + _Ri(t)(t1 − t0)]. In the
period [t0, t1], the time of agent a at target i is divided into
two sections, including monitoring period and movement period.
Meanwhile, the target j in the neighborhood changes at the
original rate, as shown in Figure 1. Then, Ji(t0, t1) �
u0i
2 (2Ri(t0) + Aiu0i ) + u1i

2 (2(Ri(t0) + Aiu0i ) − (Bira − Ai)u1i ) for
j ∈ N i, where u0i � tb − t0 indicates the travel time to i, and u1i �
t1 − tb denotes the visiting time at target i, and Jj(t0, t1) �
u0i +u1i

2 (2Rj(t0) + Aj(u0i + u1i )). This completes the proof.
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When agent a decides the next visiting target, the local
objective Ji cannot guarantee global performance, agent a
needs to consider the neighborhood targets and agents. The
local optimization objective can be described as

Ji(t0, t1) � Ji(t0, t1) + ∑
j∈N j

Jj(t0, t1). (5)

In the design of each controller, the interaction of agents is
distributed since only the states of neighboring nodes and agents
rather than global information are considered.

4 SUBMODULAR UTILITY FUNCTION

To achieve the global monitoring performance, the amount of
reduced target estimation error during each event is evaluated
by adopting the utility function. When target i is monitored
by agents for the kth time, since the global optimization
objective of agent a ∈ N is related to the total time of
monitoring task, the utility function can be defined as the
difference between the uncertainty of the target in the
remaining time [tk0, T] before and after the start of the kth
monitoring, i.e

Uk
i � ∫T

tk0

Ri(t)dt − ∫T
tk0

Rk
i (t)dt, (6)

where Rk
i (t) indicates the estimation error of target i under the

strategy before the kth monitoring, Ri(t) denotes the estimation
error of target i under the strategy after the start of kth
monitoring, tk0 is the starting time when one agent decides to
access target i.

In the process of multi-agent persistent monitoring tasks, the
utility of targets will decrease marginally with the number of
agents dwelling on them.

Lemma 2. The utility function of target i is submodular and
satisfies Uk

i (∅) � 0.
Nondecreasing: Uk

i (~P)≤Uk
i (P), ∀~P ⊂ P ⊂ Ψ.

Submodular: Uk
i (P ∪ {a}) − Uk

i (P)≤Uk
i (~P ∪ {a}) − Uk

i (~P),
∀~P ⊂ P ⊂ Ψ and a ⊂ Ψ.

Proof. When target i is not being monitored by any agent a ∈
N, it holds that Uk

i (∅) � 0 due to the definition of Uk
i in function

(6). Define L~P � ∑
b∈~P

Birb and LP � ∑
b∈P

Birb, where ~P ⊂ P ⊂ N/

{a}, {a} ⊂ N, Δk
i � P − ~P. According to (4), one agent spend at

most ti � Ri(t0)∑Bira−Ai
to make the estimation error of target i

decrease to 0, then the cumulative monitoring error Jki of
target i in the remaining time can be expressed as:

Ji � ∫T
tk0

Ri(t)dt

� ∫ti
tk0

R2
i (t)∑Bira − Aidt

� R2
i (t0)

2 ∑Bira − Ai( ),
While,

Uk
i (~P) − Uk

i (P) � ∫T
tk0

Ri(t)dt − ∫T
tk0

Rk
i, ~P
(t)dt − ∫T

tk0

Ri(t)dt − ∫T
tk0

Rk
i,P(t)dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� ∫T
tk0

Rk
i,P(t)dt − ∫T

tk0

Rk
i,~P
(t)dt

� R2
i (t0)
2

1∑
b∈~P

Birb + ∑
a∈Δk

i

Bira − Ai

− 1∑
b∈~P

Birb − Ai

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� −R
2
i (t0)
2

∑
a∈Δk

i

Bira

∑
b∈~P

Birb + ∑
a∈Δk

i

Bira − Ai
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ ∑

b∈~P
Birb − Ai

⎛⎝ ⎞⎠
< 0,

(7)

Which means that the utility function of target i is nondecreasing.
Similarly,

(a) Uk
i (~P ∪ {a}) − Uk

i (~P) � R2
i (t0)
2

Bira−∑
b∈ ~P

Birb

(∑
b∈ ~P

Birb−Ai)(Bira−Ai),

FIGURE 1 | The real-time estimation error R of agents ((A) presents the real-time estimation error of target i when it is monitored by agents, and (B) presents the
real-time estimation error of target i if it is not monitored by agents).

Frontiers in Control Engineering | www.frontiersin.org January 2022 | Volume 2 | Article 7868774

Zhao et al. Multi-Agent Persistent Monitoring

https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles


(b) Uk
i (P ∪ {a}) − Uk

i (P) � R2
i (t0)
2

Bira−∑
b∈P

Birb

(∑
b∈P

Birb−Ai)(Bira−Ai),

thus the submodulariry of the utility function can be proved by
simple comparison.

Lemma 3. For local optimization objective 5, the targets
in the local set N k

i are monitored by agents, and the local
utility function Uk

N i
� �Ji

0(tk0, T) − �Jki (tk0, T) is nondecreasing
and submodular, and Uk

N i
(∅) � 0, where �J0i denotes the initial

strategy of local monitoring tasks.
Proof. For submodularity, we consider ~P ⊂ P ⊂ Ψ/{a},

and a ⊂ Ψ. Define ~P1 � ~P ∪ {a}, ~P2 � P ∪ {a} and π �
(a, i, uki ) ∈ Ψ× H ×M, where uki ∈ H for i ∈ N i denotes the

possible dwell time set of each target visited by possible
agents. Then

Uk
N i
(P ∪ {a}) − Uk

N i
(P) � Jk(tk0, T) − J ~P2

(tk0, T)
− (Jk(tk0, T) − J ~P(tk0, T))

� JP(tk0, T) − J ~P2
(tk0 , T)

� Uk
N i
(P) − Uk

N i
(~P2)

≤Uk
N i
(~P) − Uk

N i
(~P1).

(8)

For monotonicity, for any P ⊂Ψ and a ∈Ψ,Π ⊂Ψ ×H ×M and
π ∈ Ψ × H × M, Uk

N i
(Π ∪ {π}) − Uk

N i
(Π) � Uk

N i
(P ∪ {a}) −

FIGURE 2 | Initial position of targets and agents (The black points represent the targets and the five-pointed stars represent the position of agents).

FIGURE 3 | The real-time monitoring targets of agents (1–9 on the Y-axes repersent the labels of targets, and the X-axes denotes the monitoring time t).
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FIGURE 4 | The performance of proposed distributed monitoring method.

FIGURE 5 | The real-time estimation error R of each target.
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Uk
N i
(P)≥ 0 due to Lemma 2. Obviously, Uk

N i
(∅) � 0 follows

from Uk
i (∅) � 0 for each i ∈ M.

Lemma 4. For global optimization objective 3, the global utility
function Uk � Jki (tk0, T) − Ji(tk0, T) is nondecreasing and
submodular. Moreover, Uk

N i
(∅) � 0.

Proof. For submodularity, we consider ~P ⊂ P ⊂ Ψ/{a}, and a ⊂
Ψ. Define ~P1 � ~P ∪ {a}, ~P2 � P ∪ {a}, then

Uk(P ∪ {a}) − Uk(P) � Jk(tk0, T) − J ~P2
(tk0, T)

− (Jk(tk0, T) − JP(tk0, T))
� JP(tk0, T) − J ~P2

(tk0, T).
(9)

Since the cost of monitoring local targets is submodular by
Lemma 3, it can be obtained that

JP(tk0, T) − J ~P2
(tk0, T) � Uk(P) − Uk(~P2)

≤Uk(~P) − Uk(~P1). (10)

For monotonicity, for any P ⊂Ψ and a ∈Ψ,Π ⊂Ψ ×H ×M and
π ∈ Ψ × H × M, it can be obtained that Uk(Π ∪ {π}) − U(Π) �

Uk(P ∪ {a}) −Uk(P) ≥ 0 due to Lemma 2 and Lemma 3. Obviously,
Uk(∅) � 0 follows from Uk

i (∅) � 0 for each i ∈ M.
Remark 2. The analysis of the utility function of targets is equal

to the objective 3. Lemma 2–4 proves that the designed utility
function is a submodule function, it reduces the complexity of
target performance analysis under a distributed receding horizon
control strategy.

5 DISTRIBUTED GREEDY ALGORITHM

A distributed greedy algorithm is proposed in this section,
which does not require synchronous actions of agents,
meaning that at each visiting time t, an agent takes its
action independently, and the motion of an agent is
determined by the completion of the event of monitoring
the current target. If the agent is going to move, then the
agent will perform the decision-making procedures as shown
in algorithm 1. Otherwise, the agent will continue to execute
the previous strategy.

In algorithm 1, if there is more than one agent in the local set
A to make decisions at the same time, only the one with high
monitoring ability will be calculated, and the rest will make
decisions at the next computing time in turn. This ensures
that agents fully consider the behavior of other agents in the
neighborhood to make more rational decisions.

Remark 3. It is possible that agents can not complet the next
monitoring tasks in the remaining time tr, considering that time T
is limited. The situation that the remaining time tr is less than the

TABLE 1 | The mean cost and computing time of 200 simulations.

Method Mean cost J Computing time t
of running 200
simulations

Sub-modular based DRHC 299.32 204.2676s
Basic DRHC 390.97 229.5898s
Centralized RHC 275.13 387.2561s

Algorithm 1 | The distributed greedy strategy for Multi-agent persistent monitoring
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travel time ρij to any next target is considered first. According to 5
and Lemma 1, the global estimation error of an agent going
anywhere will be greater than stay at the current target. In this
case, the optimal strategy of the agent is to stay at the current
target. In another situation, the remaining time tr can be less than
the optimal dwell time. The local estimation error of agent staying
at the current target is Ji � ∑

i∈N i

Ritr, and the local estimation error

of agent going to other target j ∈ N i is Jj � ∑
j∈N i

Rj(t1)ρij+
∑

j∈N i

Rj(t2)(tr − ρij), where t1, t2 are the moments to visit and

arrive the next target, respectively. In this case, the optimal
strategy of an agent is to access the target corresponding to
the smallest �J.

Assumption 3. Let κπ � U (Π ∪ π) − U(Π), each agent a has to
acess target i at time t with a strategy π � {a, i, uki }, suppose that for
any π ∈ Π − �Π, there exist a constant ] ∈ (0, 1) thatmakes κπ2 > ]κπ1,
where κπ1 � U(Π ∪ π1) − U(Π) and κπ2 � U(Π ∪ π1 ∪ π2)−
U(Π ∪ π1).

Obviously, this assumption can be satisfied easily due to the
submodularity of utility functions.

Theorem 1. The cost of constructing feasible strategies of agents
byAlgorithm 1 is of orderO( ∑

a∈N
KaD), whereKa denotes the total

number of observed targets in time T, N � maxi∈MN i and
D � maxa∈NiAi. Let J* be an optimal solution of (2) and �J be
the output of Algorithm 1, then Ji − J*< 2(J0 − �J), where J0
represents the global cost when there is no agent monitoring targets.

Proof. The proposed algorithm can obtain a solution within
limited computing resources is proved first. According to the
definition of persistent monitoring tasks, agents moving to the
next target will take ρij seconds. For a finite time T, the number of
events Ka would satisfy Ka <T/(ρij)min, where (ρij)min denotes
the minimum travel time in the graph. For each agent, at the kth
decision, it needs to calculate the utility of a limited number of
potential access targets in the neighborhood after being
monitored. The number of calculations in this process is only
determined by the number of targets in the neighborhood. That is,
the agent only needs to make decisions KaD times in t ∈ [0, T].
Meanwhile, agent decisions are independent of each other.
Communication between agents relies on neighborhood targets,
which only occurs when the agent makes its next access decision.
This kind of communication can be asynchronous each time a new
access target is determined. This shows that for the global
objective in 2, only O( ∑

a∈Ψ
KaD) complexity of communication

and computing is needed to obtain a global solution at most.
The performance boundary of the algorithm is discussed next.

Suppose U* as the optimal utility to objective 2, and U(Π) as the
final solution based on the algorithm 1, then, it can be formed that

U(Π ∪ Π̂) �(e)U(Π̂) + ∑
π∈{Pi−Π̂}

κπ(Π). Considering the fact that

Π* � ∪a∈M,i∈Ψ(a, i, uki ), ∑
π∈{Pi−Π̂}

κπ(Π) can be redescribed as

∑
i∈M

∑K
k�0 ∑

π∈{Pi−Π̂}
κπ(Π). From the submodularity of U

mentioned in Lemma 4, it follows that U(Π̂) + ∑
i∈M

∑K
k�0

∑
π∈{Pi−Π̂}

κπ(Π)≤U(Π̂) + ∑
i∈M

∑K
k�0 ∑

π∈{Pi−Π̂}
κπ(Πk), that is:

U(Π ∪ Π̂)≤U(Π̂) + ∑
i∈M

∑K
k�0

∑
π∈{Pi−Π̂}

κπ(Πk). (11)

Similarly, considering the submodularity bound of U defined
in Assumption 3,

U(Π ∪ Π̂) � U(Π*) + ∑
π∈{Pi−Π̂}

κπ(Π)

� U(Π*) + ∑
i∈M

∑K
k�0

∑
π∈{Pi−Π̂}

κπ(Π)

≥U(Π*) + ]∑
i∈M

∑K
k�0

∑
π∈{Pi−Π̂}

κπ(Πk).

(12)

Combine Eqs 11, 12, then

U(Π*)≤U(Π̂) + (1 − ])∑
i∈M

∑K
k�0

∑
π∈{Pi−Π̂}

κπ(Πk)

≤U(Π̂) + (1 − ])U(Π̂)
≤ 2U(Π̂).

(13)

According to the utility function defined in 4, Ji − J*<
2(J0 − �J), which means that J0−�J

J0−J*≥
1
2 and the proof is conculuded.

Remark 4. At each time t, if the agent completes monitoring
of the current target, which means R(t) � 0, the agent will
immediately move to the next target. It’s the key to ensuring
the efficiency guarantee of the algorithm. Algorithm 1 returns
feasible strategies of agents when they visit the next targets each
time, making objective J decrease continuously.

Remark 5. The monitoring performance is affected by the
number of targets and agents, the monitoring and movement
ability of agents, and the distance between targets, etc. As the
number of targets increases in a persistent monitoring task with
a given number of agents, the monitoring performance of the
proposed method could be worse. Thus, the computation burden
could be heavier. Theorem 1 proves that the monitoring
performance of the proposed method is close to the result of the
centralized method, even if the graph size increases.

6 SIMULATION

Consider three agents equipped with different monitor capabilities,
they are used to move between nine targets to minimize the total
estimation error in a given graph. The position of targets are [2, 1], [2,
2], [3, 0], [3, 3], [4, 0], [4, 3], [5, 1], [5, 2], [3.5], [1.5], and the initial
position of each agent are at target 3, 6, and 8, as shown in Figure 2.
The dynamic set of targets is defined asA � [0.87; 0.74; 1.09; 1.1; 1.02;
0.93; 1.05; 0.87; 1.2]; B � [1.69; 1.95; 1.95; 2.18; 2.37; 2.93; 2.60; 1.95;
2.60]; And the ability set of agents is r � [1; 1.5; 2]; The initial
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uncertainty set of targets is R0 � [5; 10.5; 8.7; 9.2; 13; 9.4; 12; 10.5; 5];
The overall time period is T � 500 and the time step is 1. The resluts
are shown in Figures 3–5.

Figure 3 provides the real-time monitoring targets of the
agents during t ∈ [0, 500]. Agents perform monitoring tasks in
different sequences after starting from their initial targets. The
dwell time of the agent at each target is represented by the length
of the horizontal line, and the vertical axes represents different
targets. As described above, the agent can switch between
different targets by only using limited local information. In the
process of monitoring tasks, agents may obtain different
strategies at the same target, which is mainly affected by the
states of other target points in the neighborhood and the
monitoring states of agents in the neighborhood.

The result of this simulation is shown in Figure 4, in comparison
with the centralized receding horizon control method and the basic
distributed receding horizon control strategy designed in Welikala
and Cassandras (2021). From the observed results, the performance
of proposed sub-modular based DRHC method is closer to the
centralized method. The optimal result of the centralized RHC
approach is an upper bound of the proposed distributed method,
which is a trade-off formonitoring performance and calculating costs.

The real-time estimation errors for each target are displayed in
Figure 5. The estimation error of each target increases
continuously until the agents arrive, and decreases to 0 when
agents dwell at the current target.

To further illustrate the effect of the proposed method, 200 times
simulations are run to obtain an average cost, aiming to reduce the
impact of different initial positions of agents on monitoring
performance. The results are shown in Table 1. It can be
concluded that the proposed method can converge to a bounded
global performance while costing less computing time.

7 CONCLUSION

In this paper, a submodular receding horizon control strategy
is proposed for distributed multi-agent persistent monitoring
problem, aiming to obtain a guaranteed bound monitoring
performance with the finite number of calculations. Considering
the submodular characteristics of the monitoring objective
function, the global monitoring objective is decomposed into

multiple optimization problems based on the receding horizon
control strategy, and the optimal dwell time of each agent in a
target is determined first. The utility function of an agent
monitoring targets is proved to be submodular, based on which
a distributed greedy algorithm is proposed to obtain optimal
strategies for agents to persistent monitor targets. In particular,
the analysis is presented to prove each agent can only use limited
computing resources to obtain a guaranteed performance.
Numerical results show that the proposed method has better
stability and convergence speed. Future work will pay more
attention to the performance assurance of the proposed
algorithm in stochastic environments.
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