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This paper presents a nonlinear control design for the stabilization of parallel and circular
motion in a school of robotic fish actuated with internal reaction wheels. The closed-loop
swimming dynamics of the fish robots are represented by the canonical Chaplygin sleigh.
They exchange relative state information according to a connected, undirected
communication graph to form a system of coupled, nonlinear, second-order
oscillators. Prior work on collective motion of constant-speed, self-propelled particles
serves as the foundation of our approach. However, unlike a self-propelled particle, the fish
robots follow limit-cycle dynamics to sustain periodic flapping for forwardmotion with time-
varying speed. Parallel and circular motions are achieved in an average sense without
feedback linearization of the agents’ dynamics. Implementation of the proposed parallel
formation control law on an actual school of soft robotic fish is described, including system
identification experiments to identify motor dynamics and the design of a motor torque-
tracking controller to follow the formation torque control. Experimental results demonstrate
a school of four robotic fish achieving parallel formations starting from random initial
conditions.

Keywords: bio-inspired robotics, formation control, network systems control, DCmotor control and estimation, AUV
control

1 INTRODUCTION

Collective behavior of mobile agents has received significant interest recently in fields such as biology,
physics, computer science, and control engineering (Reynolds, 1987; Vicsek et al., 1995; Ren et al.,
2007). Research in this area is allowing scientists to better understand swarming behavior in nature
and benefits control engineers in numerous applications by mimicking nature’s behavior in
engineered mobile systems such as unmanned ground, air, and underwater vehicles.

Previous investigations of bioinspired underwater vehicles include the design, sensing, and
control of a single fish-inspired robot that is driven by an internal reaction wheel (Zhang et al., 2016;
Free et al., 2017; Lee et al., 2019). Here, we present control laws that stabilize planar formations of a
school of such robotic fish (Figure 1). Related work involving formation experiments of fish robots
propelled by tail flapping was presented in (Berlinger et al., 2021; Zhang et al., 2021). In (Berlinger
et al., 2021), a school of fish robots achieves circular formations and other collective behaviors using
vision-based behaviors based on relative position. Similarily, in (Zhang et al., 2021), parallel and
circular formations are achieved using an overhead camera to provide absolute positions of all the
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agents. Our work differs in that we investigate synchronized
motion of multiple fish robots driven by an internal reaction
wheel. We utilize consensus control to achieve collective motion
by communicating only relative position and/or orientation with
nearby agents. This approach is particularly well suited to
challenging underwater environments where small, low-power
robots have limited communication or sensing range.

Consensus control in Euclidean space, which assumes that the
states of the system live on RN, is a well-studied topic (Cao et al.,
2013). The goal of consensus control is to steer N agents into
identical states. Similarly, average-consensus control laws steer
agents towards the average value of the initial conditions of the
agents (Olshevsky, 2015). Consensus and average consensus are
typically studied for single-integrator dynamics (Ren and Beard,
2005), which may contain linear or nonlinear drift vector fields
(Cao and Ren, 2012). Interactions between agents can be static
(Chopra, 2012), time-varying (Moreau, 2005), all-to-all (Chopra,
2012), or limited (Li et al., 2011). These interactions are typically
described using the Laplacian matrix from algebraic graph theory
(Horn and Johnson, 1990) to compute relative state information,
such as relative position. Consensus and average consensus in
Euclidean space have also been studied for double-integrator
dynamics (Zhang and Tian, 2009) and second-order systems with
a nonlinear drift vector field that represents the vehicle dynamics
(Yu et al., 2010). Furthermore, consensus control on a nonlinear
manifold has been investigated (Scardovi et al., 2007; Paley,
2009). For example, consensus on the N-torus—also called
synchronization—arises in the control of planar formations,
where the heading orientation is a phase angle on the unit
circle (Sepulchre et al., 2007). Orientation and translation
control of agents in the plane utilizes the special Euclidean
group (Justh and Krishnaprasad, 2004). Many synchronization
approaches are based on the theory of coupled oscillators, such as
the celebrated Kuramoto model (Sepulchre et al., 2007), and

invoke the graph Laplacian for cooperative control of first-order
dynamics on the N-torus (Sepulchre et al., 2008). Second-order
consensus of coupled oscillators with double-integrator dynamics
(Napora and Paley, 2013) uses the gradient of a phase potential.

Another class of collective behaviors of multi-agent systems
are circular formations. Previous work in this area studied
circular formations of first-order, self-propelled particles with
unit velocity. Feedback control laws designed in (Sepulchre et al.,
2007) stabilize a circular formation having a fixed center and a
constant radius. Some extensions to this work consider a circular
formation in a flow field (Paley, 2008) and constant non-unitary
velocity, or with a constraint bounding the circular formation to a
region of interest (Jain and Ghose, 2019). Other extensions
include time-varying centers, so that the circular formation
position is not fixed (Brinón-Arranz et al., 2014; Yu and Liu,
2017). Some authors assume agents use relative-position sensing
to achieve circular formations around a given center and radius
that is known only to a subset of agents (Yu et al., 2018). Circular
formation control on the tangent bundle of the N-torus has also
been investigated where agents are second-order self-propelled
particles (Sepulchre et al., 2007; Napora and Paley, 2013).

This work investigates planar formations in a novel setting: a
system of second-order oscillators with nonlinear dynamics
and nonholonomic constraints on the tangent bundle of the N-
torus. The closed-loop swimming dynamics of the fish robots
are represented by the Chaplygin sleigh (Kelly et al., 2012), (Lee
et al., 2019), a nonholonomic mechanical system driven by an
internal reaction wheel. Our control design is inspired by prior
work on collective motion of self-propelled particles (Paley,
2007; Sepulchre et al., 2007; Paley, 2008; Napora and Paley,
2013); however, a key distinction is that agents have second-
order limit-cycle dynamics with time-varying speed. Thus,
novel parallel and circular formations are achieved in an
average sense.

The contributions of this paper are 1) a control design that
achieves parallel motion for a school of robotic fish, represented
by a system of coupled, nonlinear, second-order oscillators with
Chaplygin sleigh dynamics using only relative state information;
2) a control design that achieves circular motion for the same
system; 3) system identification of the reaction-wheel motor
dynamics and the design of an optimal estimation and
tracking controller that follows the torque commands of the
formation control; and 4) experimental validation of the
parallel formation control law on a school of bio-inspired
robotic fish (Figure 1). The proposed control algorithms are
illustrated through both numerical simulations and experiments
in the University of Maryland’s Neutral Buoyancy Research
Facility.

The remainder of the paper is organized as follows. Section
2 provides preliminaries on graph theory, the self-propelled
particle model, and Chaplygin sleigh dynamics. Section 3
present control designs to achieve parallel and circular
formations for a robotic fish school. Section 4 presents the
experimental implementation and results for the parallel
formation control for a school of robotic fish. Lastly,
Section 5 summarizes the paper and discusses ongoing and
future work.

FIGURE 1 | A school of soft robotic fish serves as a testbed for formation
control experiments at the University of Maryland’s Neutral Buoyancy
Research Facility.

Frontiers in Control Engineering | www.frontiersin.org December 2021 | Volume 2 | Article 7821212

Paley et al. Planar Formation of Robotic Fish

https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles


2 BACKGROUND

This section reviews concepts from graph theory, presents the
self-propelled particle model, and summarizes the dynamics of a
Chaplygin sleigh, used to model our robotic fish.

2.1 Graph Theory
A graph is used to represent the communication topology of an
interacting system of agents. The communication graph is built
upon a set of nodes V � {1, . . . , N} that represent agents. An edge
denoted by the pair (k, j) exists between agent k ∈ V and j ∈ V if
information flows from j to k. The set of all edges is denoted
E4V2. The set of nodes V and the edges E define a graph G �
(V, E) (Diestel, 2000). A sequence of edges {(k, k1), (k1, k2), . . .,
(kξ, j)} with distinct nodes kl ∈ V, kl ≠ k, kl ≠ j, for l � 1, 2, . . ., ξ is
called a path from node k to node j. A graphG is called undirected
if (k, j) ∈ E implies (j, k) ∈ E. For a undirected graph, the set of
neighbors to node k is denoted N k � {v ∈ V : (k, v) ∈ E}. If
there exists a path between any pair of distinct nodes k, j ∈ V,
then an undirected graph G is called connected. Edges are
expressed using the adjacency matrix A ∈ RN×N, where the
entry on the kth row and jth column is

Akj � 1 if k, j( ) ∈ E
0 otherwise.

{
The degree matrix D ∈ RN×N encodes how many unique

edges are connected to each node and has nonzero elements
on the diagonal, i.e.,

Dkj � ∑N

n�1Akn if k � j

0 otherwise.
{

The symmetric and positive semi-definite Laplacian matrix
L ∈ RN×N associated with the undirected graph G is L � D − A.
The Laplacian is used to compute relative state information
communicated between agents. The quadratic form zTLz ≥ 0,
where z ∈ RN, is equal to zero if and only if zk � zj, for all k, j ∈ V.

2.2 Self-Propelled Particle Model
The self-propelled particle model (Justh and Krishnaprasad,
2004) has often been used to describe the collective motion of
N planar vehicles that move at a constant speed with steering
controls inputs. The planar position of the kth particle with
respect to the origin of the inertial frame is expressed using
complex coordinates as rk � xk + iyk ∈ C, where k ∈ V. The
dynamics of the kth particle are

_rk � vke
iθk

_θk � uk,
(1)

where, for the kth particle, vkb
������
_x2
k + _y2

k

√
∈ R is a constant speed,

θkbatan( _yk/ _xk) ∈ T is the orientation of the velocity (also called
the phase of the particle), TbS is the torus, and uk ∈ R is the
steering control. The unit vector eiθk is called the phasor of
particle k and is aligned with its heading, whereas ieiθk is
perpendicular to the heading (Figure 2A). For a constant
speed, vk � v0, and a constant turn-rate, _θk � ω0, the particle
moves on a circle with radius |v0ω−1

0 | and center
ck � rk + iv0ω−1

0 eiθk . This fixed-radius circle will later serve as a
reference for stabilizing circular formations.

When referring to the positions, phase arrangement, reference
circle centers, and control inputs of the collective of N particles, we
use bold letters, i.e., rb[r1, . . . , rk]T ∈ CN, θb[θ1, . . . , θk]T ∈ TN,
cb[c1, . . . , ck]T ∈ CN, and u � [u1, . . . , uk]T ∈ RN, respectively.
Similarly, eiθb[eiθ1 , . . . , eiθk ]T ∈ CN. For complex numbers,
z1, z2 ∈ C, the inner product is defined as 〈z1, z2〉 � Re{z1z2},
where z1 is the complex conjugate of z1. This inner product is
equivalent to the standard inner product onR2. For complex vectors,
z, y ∈ CN, the inner product is similarly defined as
〈z, y〉 � ∑N

i�1Re{ziyi}. The modulus of a complex number is
denoted | · | � ����

〈·, ·〉√
.

Cooperative control laws for stabilizing the collective motion
of identical, unit-speed, self-propelled particles in parallel or
circular formations have been extended to include an external
flow field (Paley, 2008), motion on spherical surfaces (Paley,
2009), and various communication topologies (Sepulchre et al.,

FIGURE 2 | Coordinates and unit vectors: (A) the self-propelled particle; (B) the Chaplygin-sleigh model of a robotic fish. In (B), the hydrofoil shape represents the
fish robot body and a bronze-colored reaction wheel is shown at the center of mass.
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2007; Sepulchre et al., 2008). For parallel formations, all particles
are synchronized when they have equal and constant phase, θ �
θ01, where 1 � [1,. . .,1]T is the N-by-1 vector of ones, for some
constant θ0 ∈ T. For synchronization, the relative positions of
particles are arbitrary. For circular formations, all particles move
in the same direction along the same circle, that is, _θ � ω01 for
some constant ω0 and c � c01 for some constant c0 ∈ C. In a
circular formation, the relative phases of the particles are
arbitrary.

Parallel and circular formations may be achieved using
Lyapunov-based control design to minimize a potential
function for a desired formation. Consider the Laplacian
parallel formation potential (Paley, 2007)

Up θ( )b1
2
〈eiθ, Leiθ〉, (2)

which is minimized when the agents are synchronized. Assume
the Laplacian matrix L corresponds to a time-invariant,
connected, and undirected graph G representing the
communication topology of the agents. The time-derivative of
Up(θ) along trajectories of Eq. 1 is (Paley, 2007)

_Up θ( ) � ∑N
k�1

zUp θ( )
zθk

zθk
zt

� ∑N
k�1

〈ieiθk , Lke
iθ〉uk, (3)

where Lk is the kth row of the Laplacian matrix. The term Lke
iθ is

the sum of the phasor of the kth agent relative to the phasors of all
connected agents, i.e., Lkeiθ � |N k|eiθk − ∑j∈N k

eiθj . Choosing the
gradient control (Paley, 2007)

uk � −K〈ieiθ, Lke
iθ〉, (4)

for K > 0, makes Eq. 3 negative semi-definite and drives Up(θ) to
zero so that agents converge to the set of synchronized parallel
formations.

Similarly, to achieve a circular formation, the Laplacian
circular formation potential (Paley, 2007)

Uc r, θ( )b1
2
〈c, Lc〉 (5)

may be used. The potential Uc(r, θ) has a minimum value when the
agents are in a circular formation. The time-derivative of Uc(r, θ)
along trajectories of the self-propelled particle Eq. 1 is (Paley, 2007)

_Uc r, θ( ) � v0ω
−1
0 ∑N

k�1
v−10 ω0vk − uk( )〈eiθj , Ljc〉. (6)

Choosing the circular formation control (Paley, 2007)

uk � v−10 ω0 vk +K0〈eiθk , Lkc〉( ) (7)

makes Eq. 6 negative semi-definite and drives Uc(r, θ) towards
zero so that the agents’ time-averaged circle centers coincide to a
common point.

2.3 Chaplygin Sleigh Dynamics
The Chaplygin sleigh is a canonical nonholonomic mechanical
system consisting of a rigid body moving in the plane that is

supported by two frictionless sliding points and a single knife
edge that allows no motion perpendicular to its edge (Bloch,
2003). Previous studies have demonstrated that a fish robot
driven by an internal reaction wheel can be modeled as a
Chaplygin sleigh due to the nonholonomic constraint imposed
by the Kutta condition (Kelly et al., 2012), (Lee et al., 2019), which
constrains the fluid flow at the trailing edge. As the reaction wheel
spins back and forth, it flaps the robot’s body, which interacts
with the surrounding fluid to generate thrust.

Consider a system of N fish robots each modeled as a
Chaplygin sleigh with the following dynamics in state-space
form (Lee et al., 2019):

_rk � vke
iθk

_θk � ωk

_vk � lω2
k − dvk

_ωk � −mlvk
b

ωk − uk

b
,

(8)

where rk ∈ C is the position of the trailing edge of the fish robot
(Figure 2B), vk ∈ R is the swimming speed, θk ∈ T is the velocity
orientation, ωk ∈ R is the angular rate of the kth fish, and uk ∈ R

is the applied torque, where k � 1, . . .,N. Furthermore, d ≥ 0 is the
drag coefficient, and m > 0, l > 0, and b > 0 are the mass, length,
and moment of inertia, respectively. Unlike the self-propelled
particle Eq. 1, the speed of the Chaplygin sleigh Eq. 8 is not
constant and the control input is a torque rather than an
angular rate.

Prior work has established that the Chaplygin-sleigh model
exhibits limit-cycle dynamics under open-loop periodic control
inputs (Pollard et al., 2019), as well as feedback control (Lee et al.,
2019) (Free et al., 2020). Consider the feedback control (Lee et al.,
2019)

uk � b −K1ωk − K2 sin �θk − θk( )( ), (9)

where �θk is the desired heading angle of the kth fish, and K1, K2 >
0 are feedback gains. Substituting Eq. 9 into Eq. 8 yields the
closed-loop system (Lee et al., 2019)

_rk � vke
iθk

_θk � ωk

_vk � lω2
k − dvk

_ωk � −ml

b
vkωk +K1ωk + K2 sin �θk − θk( ).

(10)

The system Eq. 10 can be divided into a slow and fast
subsystem (Lee et al., 2019), where the fast vk-subsystem (Lee
et al., 2019), _vk � d( l

dω
2
k − vk),

converges to vk → l/dω2
k for a sufficiently large drag coefficient

d. Let a � ml2/bd > 0. The slow (θk, ωk)-subsystem becomes (Lee
et al., 2019)

_θk � ωk

_ωk � −aω3
k + K1ωk +K2 sin �θk − θk( ). (11)
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Observe that Eq. 11 gives the equations of motion of a
pendulum with nonlinear damping and natural frequency���
K2

√
(Lee et al., 2019). The system Eq. 11 has two

equilibrium points corresponding to a fish robot heading
that is parallel (θk,ωk) � (�θk, 0) and anti-parallel (θk,ωk) �
(�θk − πmod 2π, 0) to the desired heading. Both equilibria are
unstable and the system exhibits a stable limit cycle centered
on (�θk, 0) in the (θk, ωk) plane (Lee et al., 2019). The
corresponding limit cycle of Eq. 10 is evident in the (vk,
ωk) plane as well. The limit cycle propels the robot in the
desired direction by flapping; however, the limit cycle is
achieved only for certain values of the control gains K1 and
K2 (Lee et al., 2019). The average swimming velocity is
proportional to K1, but if K1 is too large, then the angular
rate in the resulting limit cycle does not switch signs and the
robot spins in a circle (Lee et al., 2019). The control law Eq. 9
that enables each fish robot to swim in a desired direction can
be modified, with interactions from neighboring fish, to
achieve collective motion of the school, as described next.

3 PLANAR FORMATION CONTROL

We propose a nonlinear control design for the stabilization of
parallel and circular formations in a model of a school of robotic
fish. Our approach bridges collective motion of self-propelled
particles (Paley, 2007) and feedback control of a fish robot
modeled by Chaplygin sleigh dynamics (Lee et al., 2019). Since
(Paley, 2007) assumes a constant-speed particle, it cannot be
applied directly to control fish robots that follow limit-cycle
dynamics with a varying speed. Furthermore, since the fish
robots oscillate, parallel and circular motions are achieved in
an average sense. Novel formation potential functions are
required for Lyapunov-based control design.

3.1 Parallel Formations
Consider a collection of N identical fish robots modeled by the
Chaplygin sleigh system Eq. 8. Assume a sufficiently large drag
coefficient so that vk → (l/d)ω2

k and the (θk, ωk) dynamics follow
Eq. 11. For the purposes of control design, the simplified
Chaplygin sleigh system Eq. 8 becomes

_rk � l/d( )ω2
ke

iθk

_θk � ωk

_ωk � −aω3
k −

uk

b
.

(12)

Inspired by the Laplacian parallel formation potential Eq. 2 for
the self-propelled particle, consider the potential

Vp θ,ω( ) � 1
2
ωTω + 1

2N
K2〈eiθ, Leiθ〉. (13)

The time-derivative of Vp(θ) is

_Vp θ,ω( ) � _ωTω + 1
N
K2〈

d

dt
eiθ, Leiθ〉, (14)

where, along trajectories of Eq. 12,

_ωTω � ∑N
k�1

−aω3
k − b−1uk( )ωk, (15)

and

〈 d
dt
eiθ, Leiθ〉 � ∑N

k�1
〈ieiθk , Lke

iθ〉ωk. (16)

By choosing the control

uk � b −K1ωk + K2

N
〈ieiθk , Lke

iθ〉( )
� b −K1ωk + K2

N
∑
j∈N k

sin θj − θk( )⎛⎝ ⎞⎠,
(17)

and substituting Eqs 15–17 into Eq. 14, _Vp(θ,ω) becomes

_Vp θ,ω( ) � ∑N
k�1

−aω2
k + K1( )ω2

k. (18)

The feedback control law Eq. 17 relies only on relative-state
measurements between agents and does not include feedback
linearization of the agents’ dynamics. Recall K1, K2 > 0 are control
gains. Since Eq. 18 is a summation of quartic functions with roots at
ωk � 0 and |ωk| � ����

K1/a
√

, then _V< 0 outside
Ωp � {(θ,ω) ∈ TN × RN : |ωk|≤ ����

K1/a
√

∀ k ∈ V}. Therefore, all
trajectories are trapped in Ωp. The gain K2 in Eq. 17 is chosen to
ensure forward flappingmotion forEq. 8, as discussed in Section 2.3.

The control law Eq. 17 is illustrated by numerical simulation
using control Eq. 17 and the full dynamics Eq. 8. The simulation
was conducted for 150 s with N � 8 robots using the parameters
listed in Table 1. The robots were initialized with random
headings and zero linear and angular velocities. A
communication range of 3 m determined the communication
topology, which remained invariant during the simulation based
on the agent’s random initial positions. Figures 3A,B show all N
robots converging to the same limit cycle in the (θk, ωk) and (vk,
ωk) planes. As a result, all robots move in the same direction (on
average), as shown in Figure 3C. The parallel potential, Vp(t),
initially decreases (Figure 3D), but instead of converging to zero,
it oscillates around a fixed value as the robots converge to
different phases on the same limit cycle.

3.2 Circular Formations
The parallel formation control Eq. 17 is based on the forward
swimming control Eq. 9; however, a desired heading was not

TABLE 1 | Parameters used to simulate the fish robot system, based on the
experimental testbed.

Parameter Symbol Value

Mass m 1.4 kg
Length l 0.31 m
Drag coefficient d 0.5
Moment of inertia b 0.1395 kg ·m2

Control gains (K1, K2, K3) (0.5, 3, 1)
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prescribed, but rather the average heading emerged through
interactions among agents depending on their initial
conditions. Similarly, a circular formation control is
proposed here that drives the fish robots to continuously
adjust their heading at a known average rate, while aligning
the center position of the nominal circles to an (average)
consensus value. Virtual fish can be introduced to achieve a
reference heading or position (Sepulchre et al., 2007, 2008).
Consider the following circular formation potential inspired
by Eq. 5:

Vc t, r, θ,ω( ) � 1
2
ωTω − K2γ

T1 + 1
2
K3〈c, Lc〉, (19)

where γ � [c1, . . . , ck]T with γk(t) � cos(θk − ω0t) and K2, K3 > 0.
The time-derivative of Vc along trajectories of Eq. 12 is

_Vc t, r, θ,ω( ) � _ωTω −K2 _γ
T1 + K3〈 _c, Lc〉, (20)

where _γT1 � −∑N
k�1 sin(θk − ω0t)(ωk − ω0) , and _ωTω is given in

Eq. 15.
When averaged over time, the motion of a fish robot

resembles that of a self-propelled particle. Recall that the
reference circle center for a self-propelled particle is
ck � rk + v0ω−1

0 ieiθk . Since the average swimming speed of the

robots is bK1/ml (Lee et al., 2019), then by setting v0 � bK1/ml,
the parameter ω0 may be chosen to yield an average turn rate
and reference circle with radius |v0ω−1

0 |. However, ω0 should be
sufficiently small to ensure that ωk switches signs along the
limit-cycle so that the robots flap. The third term in Eq. 20,
evaluated along trajectories of Eq. 12, is

〈 _c, Lc〉 � ∑N
k�1

l

d
ωk − v0

ω0
[ ]ωk〈eiθk , Lkc〉. (21)

Therefore Eq. 20 may be rewritten as

_Vc t, r, θ,ω( ) �∑
k�1

N

−aω3
k − b−1uk( )ωk[

+K2 sin θk − ω0t( ) ωk − ω0( )

+K3
l

d
ωk − v0

ω0
[ ]ωk〈eiθk , Lkc〉].

(22)

Choosing the control

uk � b −K1ωk +K2 sin θk − ω0t( )(

+K3
l

d
ωk − v0

ω0
[ ]〈eiθk , Lkc〉),

(23)

FIGURE 3 | Simulation of Eq. 8with parallel formation control Eq. 17 and N �8 identical fish. The black circular markers in (A–C) indicate the simulation states. The
last 10 s of the limit cycle in (A) and (B) are shown with colored lines. The parallel potential Eq. 13 in (D) shown for 150 s.

FIGURE 4 | Simulation of Eq. 8 with circular formation control Eq. 23 and N � 8 identical fish. Black circular markers in (A–D) indicate initial simulation states. The
last 5 s of the simulation are shown with colored lines in (A) and (B), and the last 90 s in (C).
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the derivative Eq. 22 becomes

_Vc �∑
k�1

N

−aω2
k +K1( )ω2

k −K2ω0 sin θk − ω0t( )[ ]
≤ ∑

k�1

N

−aω2
k + K1( )ω2

k[ +K2|ω0|].
(24)

Thus, _Vc < 0 outside Ωc � {(θ,ω)
∈ TN × RN : ω2

k ≤ (K1 +
������������
K2

1 + 4aK2|ω0|
√

)/2a ∀ k ∈ V}, which
implies the system is driven to a bounded set containing the
desired limit cycle. The K3 term in Eq. 23 biases the torque to
align the reference circles, whereas the remaining terms produce a
flapping motion with a given average turn rate. Although Eq. 24
remains negative for any positive K3, this gain must be chosen
sufficiently small to ensure flapping. As with Eq. 17, the feedback
control Eq. 23 relies only on relative-state measurements between
agents and does not include feedback linearization of the agents’
dynamics.

The circular formation feedback control Eq. 17 is numerically
illustrated by simulating Eq. 8 with parameters from Table 1 and
using ω0 � 0.05 rad/s. The simulation was conducted for ten
minutes to demonstrate circular motion. Figure 4A shows all N
robots converge to the same limit cycle in the (vk, ωk) plane. The
orbits in Figure 4B resemble the limit cycle in Figure 3B;
however, due to the time-varying term in Eq. 19, they
translate along the perimeter of the phase cylinder. The net
result is motion along a circle whose center position is
determined by the initial conditions of the agents (Figure 4C).
Since the oscillating centers are aligned when all robots have
identical position and phase, the controller drives all the robots to
one side of the circle. In ongoing work, we seek to stabilize
symmetric circular formations (Sepulchre et al., 2007; Sepulchre
et al., 2008), which evenly distribute the agents around the
formation. The circular potential exhibits low and high
frequency oscillations (Figure 4D), which correspond to
motion around the reference circle and flapping, respectively.

4 EXPERIMENTAL RESULTS

This section describes the implementation of the parallel
formation control law Eq. 17 on a school of robotic fish and
experimental results. First, the experimental testbed used in this
work is briefly described. Next, results from system identification
experiments are presented that provide parameters for a model of
the reaction wheel dynamics. Based on this model, an inner-loop
linear-quadratic-Gaussian (LQG) controller is implemented to
track a desired reference torque generated from the formation
control law using the onboard motor’s angular velocity
measurements. Lastly, results from a series of in-water
experiments demonstrating the parallel formation control are
presented.

4.1 Experimental Testbed
The fish-inspired soft robots used in the experiments (Figure 1)
are each driven by a Pololu 12 V DC motor (with a 4.4 to 1 gear
ratio) that oscillates a reaction wheel located at each robot’s center

of mass. Each fish robot measures its orientation with an onboard
BNO055 inertial measurement unit (IMU) sensor that features a
built-in extended Kalman filter. A micro-SD card is used to store
sensor data and a 900 MHz xBee radio enables each fish robot to
communicate with a ground station and other fish robots on the
water’s surface. Each fish robot performs onboard sensor
processing and control with a Teensy 3.2 microcontroller. For
a more detailed discussion of the fish robots’ design, refer to (Lee
et al., 2019).

The experiments were conducted in a 367,000 gallon water
tank at the Neutral Buoyancy Research Facility at the University
of Maryland, College Park. An overhead camera is mounted
above the experimental area to record the true position of each
robotic fish; however, the position data is not used in real time by
the fish for formation control. Instead, during formation control
experiments, each robot exchanges orientation data from their
onboard IMU with other fish in the school using the xBee radios.
Since the position of each robotic fish is not computed in real-
time, an invariant complete communication graph was used in
the experiments; whereas, a proximity-based communication
graph was used in simulation.AT The overhead camera images
are post-processed after each experiment to visualize the
trajectory of each robotic fish. The image processing uses
MATLAB’s built-in corner/object detection based on a
minimum eigenvalue algorithm (The MathWorks, 2019) and
a built-in constant velocity Kalman filter for object tracking.
Since all of the sensing and control law computations occur
onboard, the school of robotic fish are a self-contained system
when performing formation control experiments. The block
diagram in Figure 5 gives an overview of the experimental
testbed.

The nonlinear control laws Eq. 17 or Eq. 23 generate a
reference torque command that steers the fish robots to their
respective formations. However, this torque cannot be
commanded directly since the control input into the reaction
wheel system is the voltage applied to the DC motor generated by
the motor driver and Teensy micro-controller. Furthermore, the
only available measurement is the angular velocity of the motor’s
shaft measured by an encoder. Thus, to track the reference torque
a linear-quadratic-Gaussian (LQG) controller and estimator was
implemented. The LQG controller assumes the following motor
dynamics (Kim, 2017):

Λ � μ
di

dt
+ Ri + e (25)

e � Ke _ψ (26)

τ � Kτ i (27)

J€ψ � τ − ζm _ψ, (28)

where Λ is the voltage input, R is the motor’s electrical resistance,
μ is the inductance, i is the current, e is the motor’s back
electromotive force (EMF), _ψ is the angular rate of the output
shaft, J is the sum of inertias between the reaction wheel and
motor’s output shaft, τ is the torque applied by the motor, ζm is
the internal damping friction applied to output shaft, and Ke and
Kτ are the motor’s generator and torque constants, respectively.
To identify the values of the DC motor and reaction wheel
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parameters, a series of system identification experiments were
conducted, as described next.

The resistance of the motor R was measured directly with an
ohmmeter, and the sum of the motor and reaction wheel inertias
J was approximated using analytical expressions for the moment
of inertia of a cylinder about its axis of symmetry with a known
mass and diameter. To determine the motor generator constant

Ke, substitute Eq. 26 into Eq. 25 and examine the system at steady
current state, i.e., di/dt � 0. Solving for _ψ yields

_ψ � 1
Ke

Λ − Ri( ). (29)

Using a Rigol DP711 power supply and quadrature encoder
attached to the motor’s output shaft, a series of constant voltages
were applied to the motor. For each voltage, the current through the
motor and the angular velocity of the output shaft at steady state
were recorded. A linear regression was used to determine the
quantity 1/Ke, which is the slope of the line in Eq. 29 and Figure 6A.

The internal frinction coefficient ζm was found by setting the
torque to zero, i.e., τ � 0 in Eq. 28, and solving the resulting
differential equation to obtain

ln _ψ t( )( ) � −ζm
J
t + ln _ψ 0( )( ), (30)

where _ψ(0) is the initial shaft angular velocity. Notice that Eq.
30 is a linear equation that describes ln( _ψ) as a function of time.

FIGURE 6 | Experimental data used to identify motor-reaction wheel dynamics: Panels (A–C) are used to infer the values of the generator constant, linear damping,
and torque constant through linear regression. Panel (D) compares the motor’s simulated and actuated response with a best guessed value of the inductance.

FIGURE 5 |Block diagram of the experimental testbed. Since all of the sensing and control law computations occur onboard, the school of robotic fish are a closed
self-contained system when performing parallel formation control experiments.

TABLE 2 |Motor parameters identified through system identification for the Pololu
12 V DC Motor (with 4.4 to 1 gear ration) and reaction wheel.

Parameter Symbol Value

Inductance μ 0.005 H
Generator constant Ke 0.0506 V·s/rad
Torque constant Kτ 0.2137 N·m/A
Damping coefficient ζm −1.1016 × 10−4 N·m ·s/rad
Resistance R 2.5 Ω
Inertia J 1.7405 × 10−4 kg ·m2

Deadband — ± 4 V
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A similar technique as described previously can be used to find
− ζm/J from a time-history of torque-free motor data. To
identify the damping parameter, the motor was initialized with
a constant nonzero angular velocity and the input voltage was
removed. The motor’s angular velocity was recorded as it decays
under internal friction. As before, a linear regression was used to
determine the slope− ζm/J inEq. 30 from Figure 6B and, hence, ζm
can be inferred since J is known.

To determine the torque constant Kτ, substitute Eq. 27 into
Eq. 28 at steady state ( _ψ constant) and solve for _ψ to obtain

_ψ � Kτ

ζm
i. (31)

By repeating the procedure used to determine Ke, using the
value of ζm, the value of Kτ is found from the slope Kτ/ζm in Eq.
31 and Figure 6C.

Since the inductance μ only plays a role in the transient
response of the motor, which are sufficiently fast, we estimate
this parameter heuristically. The simulated response of the motor
to a sinusoidal voltage input is visually compared to the actual
response of the motor under the same input. The process is
repeated while adjusting the value of μ to obtain a similar
response, as shown in Figure 6D.

Lastly, the motor was found to exhibit a range of deadband
voltages near zero that resulted in the motor being unresponsive.
To determine the range of this deadband, a series of incrementally
increasing voltages were applied to the motor, giving an

approximate deadband range of ± 4V. The parameter values
determined through this system identification process are
summarized in Table 2.

4.2 DC Motor Torque Tracking Controller
To implement the LQG torque controller and state estimator for
the DC motor, convert Eqs 25–28 into state space form where
q � [τ, _ψ]T denotes the states of the motor and the output is
Y � _ψ. The continuous-time state space equations take the form

_q � Aq + BΛ (32)

Y � Cq (33)

where

A �
−R
μ

−KeKτ

μ

1
J

−ζm
J

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, B �

Kτ

μ

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, and C � 0 1[ ]. (34)

For implementation onboard the micro-controller, the
continuous system Eqs 32, 33 is converted into a discrete-time
system (with an addition of torque process noise and heading
measurement noise):

qk+1 � Φqk + ΓΛk + ξwk (35)

Yk � Cqk + ηk, (36)

where (Crassidis and Junkins, 2011)

Φ � eAΔt , Γ � ∫Δt

0
eAτdτ( )B , ξ � 1

0
[ ] , (37)

k is an integer indexing the discrete state, Δt � 100Hz is the time-
step of the microcontroller, wk is zero-mean, Gaussian, additive
process noise with variance σ2w, and ηk is zero-mean, Gaussian,
additive measurement noise with variance σ2η. We adopt the

TABLE 3 | Parameters used in a LQG controller and estimator.

Parameter Symbol Value

Process noise variance σ2ω 1 V2

Measurement noise variance σ2η 0.89 (rad/s)2

LQR gain κ [−9.57,0.24]T

FIGURE 7 | Experimental data from a closed loop heading controller Eq. 9: (A) the reference torque produced by Eq. 9 and the estimated torque from the LQG
controller. (B) fish robot’s closed loop heading response to a step input reference heading.
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standard approach outlined in (Crassidis and Junkins, 2011) and
(Brown and Hwang, 1997) to implement a discrete-time Kalman
filter for the system Eqs 35, 36. The estimated state q̂k is used in a
linear-quadratic-regulator (LQR) feedback control law of the
form Λk � κT(qd − q̂k), where the κ is a gain matrix found by
solving the discrete-time algebraic Riccati equation and qd are the
desired state values. Numerical values used in the LQG controller
and estimator design are given in Table 3.

To evaluate the LQG torque controller/estimator, the control
law Eq. 9 was used to generate a reference torque for a step input
change in desired heading. The performance of the torque
tracking controller is shown in Figure 7A, and the heading
trajectory of the fish robot during this experiment is examined
in the next section.

4.3 Heading Control Experimental Results
We first examine the accuracy of the closed-loop directional
controller Eq. 9, where θd is a desired heading. After testing Eq. 9
on a single robotic fish, we found that the DC motor’s deadband
does not allow the average heading to completely converge to θd.
When the fish robot’s heading is close to the desired heading, the
voltage required to close the gap is too small and falls within the
dead zone making the motor unresponsive. The accuracy of Eq. 9
is limited on our testbed due to this voltage deadband, but can
also be mitigated by choice of the values of the nonlinear control
gains K1 and K2. In both Eq. 9 and Eq. 17, increasing the value of
K2 makes the control laws more sensitive to relative heading
errors and increases the torque required to minimize the error.
Similarly K1 amplifies the torque and, therefore the voltage input
required to keep the fish swimming. Tuning these control gains

increases the accuracy of the aforementioned control laws. The
experimental results of this test with a step input for θd is shown
in Figure 7B. The fish robot’s heading oscillates about a desired
heading with a small persistent error between the average and
desired headings. The control gains used in this experiment are
K1 � 0.5 and K2 � 7.

4.4 Parallel Formation Experimental Results
To validate the theoretical results of the parallel formation control
law Eq. 17, the results from six experiments are presented. The
fish robots’ micro-controller uses IMU measurements for the
heading and xBee radios for communication within the school.
An overhead camera observes the positions of each fish robot;
these were not used by the school during the experiments.

Four fish robots were initialized with random initial positions
and orientations at the beginning of each parallel formation
control experiment (implemented with gains K1 � 3 and K2 �
5). Consensus was achieved by the four fish with a small phase
shift (up to 20 degrees) of the mean heading for each fish. This
offset may be attributed to excess noise in angular velocity
measurements and the aforementioned voltage dead zone. An
example heading time-history from one of the experiments is
shown in Figure 8A.

The excess noise in the angular velocity measurements caused
large spikes to appear when computing the Lyapunov potential
Eq. 13 from experimental data. Thus, to illustrate the
convergence of this potential, the 1

2ω
Tω term was removed,

leaving only the heading alignment term K2
2N< eiθ, Leiθ > plotted

in Figure 8B for each of the six experiments. As mentioned in
Section 3, the potential function does not decrease completely to

FIGURE 8 | Parallel formation control onboard sensor data: (A) orientationmeasurements from onboard IMU for each fish robot while achieving a parallel formation.
(B) experimental parallel formation misalignment potential computed for six independent experiments.
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zero when consensus is achieved because each robot converges to
a different phase on the limit cycle.

An example trajectory of the fish robots in Figure 9A and the
Supplementary Material S1 shows the fish robots achieving
consensus and swimming in a parallel formation. However,
since the ground truth orientations of the fish robots are not
used, errors in the IMU measurements sometimes cause a subset
of the school to swim in a different direction than the rest of the
school, as shown in Figure 9B. The error in IMU measurements
may be caused by an erroneous calibration or magnetic anomalies
in the water tank interfering with the onboard magnetometer.

5 CONCLUSION

Nonlinear control laws are proposed that stabilize parallel and
circular formations in a model of N planar fish robots. The
control design approach extends prior work on collective
motion of self-propelled particles to a school of robotic fish
with Chaplygin sleigh dynamics. The feedback control laws
rely only on relative-state measurements between agents that
interact according to a connected, undirected,
communication graph and do not include feedback
linearization of the agents’ dynamics. Implementing the
parallel control law on a testbed of fish robots required
conducting system identification experiments to
characterize the motor dynamics and designing a torque
tracking motor controller and estimator. Numerical
simulations and experiments on a school of robotic fish
demonstrate the proposed approach. In ongoing work, we

seek to model the fluid interactions between fish robots and
instrument the robotic fish with pressure sensors to exploit
the hydrodynamic benefits of close-proximity swimming.
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