
Time and Action Co-Training in
Reinforcement Learning Agents
Ashlesha Akella and Chin-Teng Lin*

Faculty of Engineering and Information Technology (FEIT), School of Computer Science, Australian Artificial Intelligence Institute,
University of Technology Sydney, Sydney, NSW, Australia

In formation control, a robot (or an agent) learns to align itself in a particular spatial
alignment. However, in a few scenarios, it is also vital to learn temporal alignment along
with spatial alignment. An effective control system encompasses flexibility, precision,
and timeliness. Existing reinforcement learning algorithms excel at learning to select an
action given a state. However, executing an optimal action at an appropriate time
remains challenging. Building a reinforcement learning agent which can learn an
optimal time to act along with an optimal action can address this challenge. Neural
networks in which timing relies on dynamic changes in the activity of population
neurons have been shown to be a more effective representation of time. In this
work, we trained a reinforcement learning agent to create its representation of time
using a neural network with a population of recurrently connected nonlinear firing rate
neurons. Trained using a reward-based recursive least square algorithm, the agent
learned to produce a neural trajectory that peaks at the “time-to-act”; thus, it learns
“when” to act. A few control system applications also require the agent to temporally
scale its action. We trained the agent so that it could temporally scale its action for
different speed inputs. Furthermore, given one state, the agent could learn to plan
multiple future actions, that is, multiple times to act without needing to observe a
new state.

Keywords: reinforcement learning, recurrent neural network, time perception, formation control, temporal scaling

1 INTRODUCTION

A powerful formation control system requires continuously monitoring the current state, comparing
the performance, and deciding whether to take necessary actions. This process does not only need to
understand the system’s state and optimal actions but also needs to learn the appropriate time to
perform an action. Deep reinforcement learning algorithms which have achieved remarkable success
in the field of robotics, games, and board games have also been shown to perform well in adaptive
control system problems Li et al. (2019); Oh et al. (2015); Xue et al. (2013). However, the challenge of
learning the precise time to act has not been directly addressed.

The ability to measure time from the start of a state change and use it accordingly is an essential
part of applications such as adaptive control systems. In general, the environment encodes as four
dimensions: the three dimensions of space and the dimension. The role of representation of time
affects the decision-making process along with the spatial aspects of the environment Klapproth
(2008). However, in the field of reinforcement learning (RL), the essential role of time is not explicitly
acknowledged, and existing RL research mainly focuses on the spatial dimensions. The lack of time
sense might not be an issue when considering a simple behavioral task, but many tasks in control

Edited by:
Qin Wang,

Yangzhou University, China

Reviewed by:
Peng Liu,

North University of China, China
Tianhong Liu,

Yangzhou University, China

*Correspondence:
Chin-Teng Lin

chin-teng.lin@uts.edu.au

Specialty section:
This article was submitted to

Nonlinear Control,
a section of the journal

Frontiers in Control Engineering

Received: 08 June 2021
Accepted: 12 July 2021

Published: 06 August 2021

Citation:
Akella A and Lin C-T (2021) Time and
Action Co-Training in Reinforcement

Learning Agents.
Front. Control. Eng. 2:722092.

doi: 10.3389/fcteg.2021.722092

Frontiers in Control Engineering | www.frontiersin.org August 2021 | Volume 2 | Article 7220921

ORIGINAL RESEARCH
published: 06 August 2021

doi: 10.3389/fcteg.2021.722092

http://crossmark.crossref.org/dialog/?doi=10.3389/fcteg.2021.722092&domain=pdf&date_stamp=2021-08-06
https://www.frontiersin.org/articles/10.3389/fcteg.2021.722092/full
https://www.frontiersin.org/articles/10.3389/fcteg.2021.722092/full
http://creativecommons.org/licenses/by/4.0/
mailto:chin-teng.lin@uts.edu.au
https://doi.org/10.3389/fcteg.2021.722092
https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org/journals/control-engineering#editorial-board
https://doi.org/10.3389/fcteg.2021.722092

systems require precisely timed actions for which an artificial
agent is required to learn the representation of time and
experience the passage of time.

Research on time representation has yielded several
different supervised learning models such as the ramping
firing rate Durstewitz (2003), multiple oscillator models
Matell et al. (2003); Miall (1989), diffusion models Simen
et al. (2011), and the population clock model Buonomano
and Laje (2011). In some of these models, such as the two
presented in the studies by Hardy et al. (2018) and Laje and
Buonomano (2013), timing relies on dynamic changes in the
activity patterns of neuron populations. More specifically, it
relies on nonlinear firing rate neurons connected recurrently,
and research has shown that these models are the most
effective Buonomano and Laje (2011) and the best at
accounting for timing and temporal scaling compared to
other available models. Extending this work on a rote sense
of time for agents, we used a population clock model recurrent
neural network (RNN) consisting of nonlinear firing rate
neurons as our timing module and trained a reinforcement
learning agent to create its own representation of time.

It is arguable that a traditional artificial neural network,
such as a multilayer perceptron, which was proven to learn
complex spatial patterns, could also be used to learn time
representation. However, these networks might not be well
suited to perform a simple interval-discrimination task, due to
the lack of the implicit representation of time Buonomano and
Maass (2009). One argument is that a traditional artificial
neural network processes inputs and outputs as a static spatial
pattern. However, to achieve an effective control system, the
agent needs to continuously process the state of the system. For
instance, if we want an agent to process continuous-time input,
such as a video in a game, we divide the input into multiple
time-bins. Similarly, deep neural network (DNN) models with
long short-term memory (LSTM) units Hochreiter and
Schmidhuber (1997) or gated recurrent units (GRUs)
Chung et al. (2014) can implicitly represent time by
allowing the state of the previous time step to interact with
the state of the current time step. These networks still treat
time as a spatial dimension because they expect the input to be
discretised into multiple time bins Bakker (2002) Buonomano
and Maass (2009). Because these networks treat time as a
spatial dimension, they might lack explicit time
representation.

Through the lens of RL algorithms, the problem of discretising
input into multiple time bins can be explained as follows. Given
the current state of the environment St , a DNN function
approximator (for example, a policy network) outputs an
action at At at every time step t. If an action At is more
valuable when executed at time t + δx or t − δy, then to
effectively maximize the summation of future rewards, we
should further divide the input into smaller time steps. By
dividing these time steps more finely, an agent could learn the
true value of the state, although at the expense of a higher
computation cost and with increased state value variance
Petter et al. (2018). A few studies Carrara et al. (2019); Tallec
et al. (2019); Doya (2000) have elegantly extended reinforcement

learning algorithms to continuous time and state space, which
generalizes the value function approximators over time. However,
if an agent has developed a representation of the time, it could
learn to explicitly encode the optimal time intervals itself and in
turn, learn to decide when to act. In this study, we present the
model of how the time representation is learned and the
subsequent encoding process could take place.

In this research, we have developed a new scenario called “task
switching,” where an agent is presented with multiple circles to
click (task), and each circle should be clicked within a specific
time window in a specific order. This scenario attempts to
encapsulate both spatial and timing decisions. This task was
built analogous to a multi-input multi-output (MIMO) system
in process control tasks, where the system should compare the
state of the current system and decide when making parameter
changes to the system.

This research aims to investigate the co-learning of decision
making and development of timing by an artificial agent using a
reinforcement learning framework. We achieve this by
disentangling the process of learning optimal action (which
circle to click) and time representation (when to click a circle).
We designed a novel architecture that contains two modules: 1. a
timing module that uses a population clock model, a recurrent
neural network (RNN) consisting of nonlinear firing rate
neurons, and 2. an action module that employs a deep
Q-network (DQN) Mnih et al. (2015) to learn the optimal

FIGURE 1 | Task-switching scenario with four circles. Circle 1 (in blue)
must be clicked at a time point between 800 and 900 ms from the start of the
experiment. Circles 2 (in green), 3 (in orange), and 4 (in yellow) must be clicked
in the 2,300–2,400, 3,300–3,400, and 1,500–1,600 ms intervals,
respectively.

TABLE 1 | Model parameters.

Parameter Values

Number of recurrent neurons 300
Δt 10 ms
Zmin −0.3
Zmax 0.6
Rmin −0.4
Rmax 0.6
P I p 1e − 3
Positive reward 3
Negative reward −0.05
Recurrent neuron connection probability 0.2
g (gain of the network) 1.6
τ 25 ms

Frontiers in Control Engineering | www.frontiersin.org August 2021 | Volume 2 | Article 7220922

Akella and Lin Time and Action Co-Training

https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles

action given a specific state. The RNN and DQN are co-trained to
learn the time to act and action. The RNN was trained using a
reward-based recursive least squares algorithm, and the DQNwas
trained using the Bellman equation. The results of a series of task-
switching scenarios show that the agent learned to produce a
neural trajectory reflecting its own sense of time that peaked at the
correct time-to-act. Furthermore, the agent was able to
temporally scale its time-to-act more quickly or more slowly
according to the input speed. We also compared the performance
of the proposed architecture with DNN models such as LSTM,
which can implicitly represent time. We observed that for tasks
involving precisely timed action, neural network models such as
the population clock model perform better than the LSTM.

This article first presents the task-switching scenario and
describes the proposed architecture and training methodology
used in the work. Section 3 presents the performance of the
trained RL agent on six different experiments. In Section 4, we
present the performance of LSTM in comparison with the
proposed model. Finally, Section 5 presents an extensive
discussion about the learned time representation with respect
to prior electrophysiology studies.

2 METHODS

2.1 Task-Switching Scenario
In the scenario, there are n different circles, and the agent must
learn to click on each circle within a specific time interval and in a
specific order. This task involves learning to decide which circle to
click and when that circle should be clicked. Figure 1 shows an
example scenario with four circles. Circle 1 must be clicked at
some point between 800 and 900 ms. Similarly, circles 2, 3, and 4
must be clicked at 1,500–1,600, 2,300–2,400, and 3,300–3,400 ms,
respectively. If the agent clicks the correct circle in the correct
time period, it receives a positive reward. If it clicks a circle at the
incorrect time, it receives a negative reward (refer to Table 1 for
the exact reward values). Each circle becomes inactive once its
time interval has passed. For example, circle 1 in Figure 1
becomes inactive at 901 ms, meaning that the agent cannot
click it after 900 ms and receives a reward of 0 if it attempts
to click the inactive circle. Each circle can only be clicked once
during an episode.

The same scenario was modified to conduct the following
experiments:

FIGURE 2 | Proposed reinforcement learning architecture. (A) State input is received by the agent over an episode with a length of 3,600 ms. The agent contains an
RNN (B) and a deep Q-network (C). The RNN receives a continuous input signal with state values for 20 ms and zeros for the remaining time. The state values shown
here are s1 � 1.0, s2 � 1.5, s3 � 2.0, s4 � 2.5, and s5 � 3. The weights W ln (the orange connections) are initialized randomly and held constant throughout the
experiment. The weights WRec and Wout (the blue connections) are initialized randomly and trained over the episodes. The DQN with one input and four output
nodes receives the state value as its input and outputs the Q-value for each circle.

Frontiers in Control Engineering | www.frontiersin.org August 2021 | Volume 2 | Article 7220923

Akella and Lin Time and Action Co-Training

https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles

• Co-training time and action in a reinforcement learning
agent on a simple task-switching scenario.

• Temporal scaling: the time intervals of each circle occur at
different speeds. For instance, at Speed 2, circle 1 in Figure 1
must be clicked between 750 and 850 ms; similarly, circles 2,
3, and 4 must be clicked at 1,450–1,550, 2,250–2,350, and
3,250–3,350 ms, respectively.

• Multiple clicks: one circle should be clicked multiple times
without any external cue. For instance, after circle 1 is
clicked and without any further stimulus input, the agent
should learn to click the same circle after a fixed time
interval.

• Twenty circles: To understand if the agent can handle a large
number of tasks, we trained the agent on a scenario
containing 20 circles.

• Skip state: in the task-switching scenario, the learned time-
to-act should be a state-dependent action. In other words,
when the state input is eliminated, the agent should not
perform an action. For instance, if circle 4 in Figure 1 is
removed from the state input, the agent should skip clicking
on circle 4.

2.2 Framework
To disentangle the learning of temporal and spatial aspects of the
action space, the temporal aspect being when to act and the
spatial being what to act on, we used two different networks: a
DQN to learn which action to take and an RNN which learns to
produce a neural trajectory that peaks at the time-to-act.

2.2.1 Deep Q-Network
In recent years, RL algorithms have given rise to tremendous
achievements Vinyals et al. (2019); Mnih et al. (2013); Silver et al.
(2017). RL manifests as a Markov decision process (MDP)
defined by the state space S, the action space A, and the
reward function R: S ×A→R. At any given time step t, the
agent receives a state st ∈ S, which it uses to select an action
at ∈ A and execute that action on the environment. Next, the
agent receives a reward rt+δt ∈ R, and the environment changes
from state st to st+δt ∈ S. For each action the agent performs on
the environment, it collects (st , at , rt+δt , st+δt), also called an
experience tuple. An agent learns to take actions that
maximize the accumulated future rewards, which can be
expressed as Rt as follows:

FIGURE 3 | Trained activity of four different scenarios. Each scenario contains different times to act. Each colored bar represents the time-to-act interval. The
orange line in each figure represents the threshold (�0.5).

Frontiers in Control Engineering | www.frontiersin.org August 2021 | Volume 2 | Article 7220924

Akella and Lin Time and Action Co-Training

https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles

Rt � ∑
∞

t�1
ctrt (1)

where cϵ[0, 1] is the discount factor that determines the
importance of the immediate reward and the future reward. If
c � 0, the agent will learn to choose actions that produce an
immediate reward. If c � 1, the agent will evaluate its actions
based on the sum of all its future rewards. To learn the sequence
of actions that lead to the maximum discounted sum of future
rewards, an agent estimates optimal values for all possible actions
in a given state. These estimated values are defined by the
expected sum of future rewards under a given policy π.

Qπ(s, a) � Eπ {Rt/st � s, at � a} (2)

where Eπ is the expectation under the policy π, and Qπ(s, a) is the
expected sum of discounted rewards when the action a is chosen
by the agent in the state s under a policy π. Q-learning Watkins
and Dayan (1992) is a widely used reinforcement learning
algorithm that enables the agent to update its Qπ(s, a)
estimation iteratively by using the following formula:

Qπ(st , at) � Qπ(st , at) + α(rt + (cmaxQπ(st+δt , a) − Qπ(st , at)))
(3)

where α is the learning rate, and Qπ(st+1, a) is the future value
estimate. By iteratively updating the Q values based on the agent’s
experience, the Q function can be converged to the optimal Q
function, which satisfies the following Bellman optimality
equation:

Qπ*(s, a) � E {rt + cmaxQπ*(s′, a′)} (4)

where π* is the optimal policy. Action a can be determined as
follows:

a � argmaxa Q
*(s, a) (5)

When the state space and the action space are discrete and
finite, the Q function can be a table that contains all possible state-
action values. However, when the state and action spaces are large
or continuous, a neural network is commonly used as a
Q-function approximator Mnih et al. (2015); Lillicrap et al.
(2015). In this work, we model a reinforcement learning agent
which uses a fully connected DNN as a Q-function approximator
to select one of the four circles.

2.2.2 Recurrent Neural Network
In this study, we used the population clock model for training the
RL agent to learn the representation of time. In previous studies,
this model has been shown to robustly learn and generate simple-
to-complex temporal patterns Laje and Buonomano (2013);
Hardy et al. (2018). The population clock model (i.e., RNN)
contains a pool of recurrently connected nonlinear firing rate
neurons with random initial weights as shown at the top of
Figure 2. To achieve “time-to-act” and temporal scaling of timing
behavior, we trained the weights of both recurrent neurons and
output neurons. The network we used in this study contained 300
recurrent neurons, as indicated by the blue neurons inside the
green circle, plus one input and one output neuron. The dynamics
of the network Sompolinsky et al. (1988) are governed by Eqs
6–8. The learning showed a similar performance on a larger
number of neurons, and the performance started to decline when
200 neurons were used.

FIGURE 4 | RNN with speed as the input and state input (A) to the RNN (B).

Frontiers in Control Engineering | www.frontiersin.org August 2021 | Volume 2 | Article 7220925

Akella and Lin Time and Action Co-Training

https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles

τ
dxi
dt

� −xi(t) +∑
N

j�1
WRec

ij frj(t) +∑
I

j�1
WIn

ij yj(t) (6)

z � ∑
N

j�1
WOut

j rj (7)

fri � tanh(xi) (8)

Given a network that contains N recurrent neurons, fri
represents the firing of the ith � [1, 2...,N] recurrent neuron.
WRec, which is an NxN weight matrix, defines the connectivity of
the recurrent neurons, which is initialized randomly from a
normal distribution with a mean of 0 and a standard deviation
of 1/

�����
g pN

√
, where g represents the gain of the network. Each

input neuron is connected to every recurrent neuron in the
network with a W ln, which is an Nx1 input weight matrix.
W ln is initialized randomly from a normal distribution with a
mean of 0 and a standard deviation of 1 and is fixed during
training. Similarly, every recurrent neuron is connected to each

output neuron with aWout , which is a 1xN output weight matrix.
In this study, we trained WRec and Wout using a reward-based
recursive least squares method. The variable y represents the
activity level of the input neurons (states), and z represents the
output. xi(t) represents the state of the ith recurrent neuron, which
is initially zero, and τ is the neuron time constant.

Initially, due to the high gain caused by WRec (when g � 1.6),
the network produces chaotic dynamics, which in theory can
encode time for a long time Hardy et al. (2018). In practice, the
recurrent weights need to be tuned to reduce this chaos and
locally stabilize the output activity. The parameters, such as
connection probability, Δt, g (gain of the network), and τ,
were chosen based on the existing population clock model
research Buonomano and Maass (2009); Laje and Buonomano
(2013). In this work, we trained both recurrent and output
weights using a reward-based recursive least square algorithm.
During an episode, the agent chooses to act when the output
activity exceeds a threshold (in this study, 0.5). We experimented
with other threshold values between 0.4 and 1, but each produced

FIGURE 5 | RNN activity with a training speed of 1 and test speeds of 0.01, 0.8, and 1.3. The colored bars indicate the expected time-to-act intervals.

Frontiers in Control Engineering | www.frontiersin.org August 2021 | Volume 2 | Article 7220926

Akella and Lin Time and Action Co-Training

https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles

similar results to 0.5. If the activity never exceeds a threshold, then
the agent chooses a random time point to act. This is to ensure
that the agent tries different time points and acts before it learns
the temporal nature of the task.

As illustrated in Figure 2 (left side), a sequence of state
inputs are given to an agent during an episode lasting
3,600 ms, where each state for the RNN network is a 20-
ms input signal and a single value for the DQN. The agent
receives state s1 at 0ms. At this point, all circles are active. At
900ms, the first circle turns inactive, and the agent receives
state s2. In other words, the agent only receives the next state
after the previous state has changed. In this case, the changes
are caused by the circle turning inactive due to time
constraints preset in the task. The final state, s5, is a
terminal state where all the circles are inactive. Note that
each action given by the Q network is only executed at the
time points defined by the RNN network.

2.3 Time and Action Co-Training in
Reinforcement Learning Agent
At the start of an episode, an agent explores the environment
by selecting random circles to click. At the end of the episode,
the agent collects a set of different experience tuples
(st , at , rt+δt , st+δt) that are used to train the DQN and RNN.

2.3.1 DQN
The parameters of the Q network θ are iteratively updated
using Eqs. 9, 10 for action at taken in state st , which results in
reward rt+δt .

θt+1 � θt + α(y − Q(st , at; θt))∇θtQ(at , at; θt) (9)

y � rt+1 + cmax
t

Q(st+1, a; θt) (10)

2.3.2 Recurrent Neural Network
In the RNN, both the recurrent weights and output weights were
updated at every Δt � 10ms, using the collected experiences. The
recursive least square algorithm (RLS) Åström and
Wittenmark (2013) is a basic recursive application of the
least square algorithm. Given an input signal x1, x2,xn
and the set of desired responses y1, y2,yn, the RLS
updates the parameters WRec and WOut to minimize the
mean difference between the desired and the actual output
of the RNN (which is the firing rate fri of the recurrent
neuron). In the proposed architecture, we generate the
desired response of recurrent neurons by adding a reward
to the firing rate fri(t) neuron i at time t such that the desired
firing rate decreases at time t if rt < 0 and increases if rt > 0. The
desired response of output neurons was generated by adding a
reward to output activity z, as defined in Eq 7.

The error ereci (t) of recurrent neurons is computed using Eq 12,
where fri(t) is the firing rate of neuron i at time t, and rt is the reward
received at time t. The desired signal ri(t) + reward(t) is clipped
between Rmin and Rmax due to the high variance of the firing rate. The
update of parameters WRec is dictated by Eq 11, where WRec

ij is the
recurrent weight between the ith neuron and the jth neuron. The exact
values of Zmin,Zmax,RminandRmax are shown in Table 1. Zmin and
Zmax act as clamping values of the desired output activity. So, in this
study, the value of Zmax was chosen to be close to the positive
threshold (+0.5), and the value of Zmin was chosen to be close to
the negative threshold (−0.5). The parameter Δt was set based on the
existing population clock model research Buonomano and Maass
(2009); Laje and Buonomano (2013).

In this study, we trained only a subset of recurrent neurons,
which were randomly selected at the start of training. SubRec is a
subset of randomly selected neurons from the population. For the
experiments in this study, we selected 30% of the recurrent

FIGURE 6 |Multiple times to act. The state input (A) and output activity (B)which peaks at three different intervals after state s1 and at one interval after state s2. The
colored bars indicate the correct time-to-act.

Frontiers in Control Engineering | www.frontiersin.org August 2021 | Volume 2 | Article 7220927

Akella and Lin Time and Action Co-Training

https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles

neurons for training. The square matrix Pi governs the learning
rate of the recurrent neuron i, which is updated at every Δt using
Eq 13.

WRec
ij (t) � WRec

ij (t − Δt) − ereci (t) ∑
k∈SubRec

Pi
jk(t) frk(t) (11)

ereci (t) � fri(t) − max (Rmin,min((fri(t) + rt),Rmax)) (12)

Pi(t) � Pi(t − Δt) − Pi(t − Δt) fr(t) fr′(t)Pi(t − Δt)
1 + fr′(t) Pi(t − Δt) fr(t) (13)

The output weightsWOut
ij (weight between recurrent neuron j and

output neuron i) are also updated in a similar way; the error is
calculated using Eq 14 as follows:

eoutj (t) � z(t) −max(Zmin,min((z(t) + reward(t)),Zmax)) (14)

3 EXPERIMENTS

3.1 Different Scenarios
To understand the proficiency of this model, we trained and
tested the agent on multiple different scenarios with different
time intervals and different numbers of circles. We observed that
the agent learned to produce a neural trajectory that peaked at the
time-to-act intervals with near-perfect accuracy. Figure 3
demonstrates the learned neural trajectory of a few of the
scenarios we trained. The colored bars in Figure 3 indicate
the correct time-to-act interval.

The proposed RNN training method exhibited some notable
behavioral features, such as the following: 1) the agent learned to
subdue its activity as soon as it observed a new state, analogous to
restarting a clock, and 2) depending on the observed state, the

FIGURE 7 | Results of the skip state test. The top figures show the state input (left) and the corresponding RNN output (right), where all states are present in the
input. The bottom figures show the state input with the fourth skipped state (left), which results in subdued output activity from 3,200 to 3,300 ms (right).

Frontiers in Control Engineering | www.frontiersin.org August 2021 | Volume 2 | Article 7220928

Akella and Lin Time and Action Co-Training

https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles

agent learned to ramp its activity to peak at the time-to-act. We
also observed that the agent could learn to do the same without
training the recurrent weights (i.e., by only training the output
weightsWOut). However, by training a percentage of the recurrent
neurons, we observed that the agent could learn to produce the
desired activity in relatively fewer episodes of training.

3.2 Temporal Scaling
It is interesting how humans can execute their actions, such as
speaking, writing, or playing music at different speeds. Temporal
scaling is another feature we observed in our proposed method. A
few studies have explored temporal scaling in humans
Diedrichsen et al. (2007); Collier and Wright (1995),
particularly the study by Hardy et al. (2018), which modeled
temporal scaling using an RNN and a supervised learning
method. Their approach involved training recurrent neurons
using a second RNN that generates a target output for each of
the recurrent neurons in the population. Unfortunately, this
approach is not feasible with an online learning algorithm
such as reinforcement learning. So, to explore the possibility
of temporal scaling with our method, we trained the model using
an additional speed input (shown in Figure 4), using the same
approach as is outlined in Eqs. 11, 12, 14. In this set-up, the RNN
receives both a state input and a speed input. The speed input is a
constant value given only when there is a state input; for the rest

of the time, the speed input is zero. We trained the model only
with one speed (speed � 1) and tested it at three different speeds:
speed � 1.3, speed � 0.01, and speed � 0.8. Figure 5 shows the
results. We observed that the shift in click time with respect to
speed could be defined using Eq 15. We used a similar procedure
to that described in Section 2.3.2 to train for temporal scaling.

click time � click time + ((speed / default speed) + 200) (15)

3.3 Learning to Plan Multiple Future
Times-to-Act
One of the inherent properties of an RNN is that it can produce
multiple peaks at different time points, even with only one input
at the start of the trial. Results of the study by Hardy et al. (2018)
showed that the output of the RNN (trained using supervised
learning) peaked at multiple time points given a single input of
250 ms at the start of the trial. To understand whether an agent
could learn to plan such multiple future times-to-act given one
state using the proposed training, we trained an agent on a slightly
modified task-switching scenario. Here, the agent needed to click
on the first circle at three different time intervals, 400–500 ms,
1,000–1,100 ms, and 1,700–1,800 ms, and on the second circle at
2,300–2,400 ms. The first circle was set to deactivate at 1,801 ms.

FIGURE 8 | RNN output when trained on a scenario with 20 circles. The colored bars indicate the expected time-to-act.

Frontiers in Control Engineering | www.frontiersin.org August 2021 | Volume 2 | Article 7220929

Akella and Lin Time and Action Co-Training

https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles

At the first state s1, the agent learned to produce a neural
trajectory that peaked at three intervals, followed by state s2,
which peaked at 2,300–2,400 ms, as shown in Figure 6.

3.4 Skip State Test
As seen in experiment-3, the multiple peaks (multiple times-to-
act) that the agent was producing could be based on its inherent
property of the RNN. In reinforcement learning, however, the
peak at the time-to-act should be truly dependent on each input
state and also leverage the temporal properties of the RNN.

Hence, to evaluate whether the learned network was truly
dependent on the state, we tested it by skipping one of the
input states. As Figure 7 shows, when the agent did not
receive a state at 2,400 milliseconds, it did not choose to act
during the 3,200–3,300 interval, proving that the learned time-to-
act is truly state dependent.

3.5 Task Switching With 20 Tasks
To investigate the scalability of the proposed method to a
relatively large state space, we trained and tested the model in

FIGURE 9 | RNN output when trained on a scenario with two circles, where the first circle must be clicked after 2,000 ms. The colored bars indicate the expected
time-to-act.

Frontiers in Control Engineering | www.frontiersin.org August 2021 | Volume 2 | Article 72209210

Akella and Lin Time and Action Co-Training

https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles

a scenario consisting of 20 circles with 20 different times-to-act.
Figure 8 demonstrates that the agent could indeed still learn the
time-to-act with near-perfect accuracy.

3.6 Memory Task
From the above experiments, the agent was able to learn and employ
its time representation in multiple ways. However, we are also
interested to know for how long an agent can remember a given
input. To investigate this, we delayed the time-to-act for 2,000ms after
the offset of the input and trained the agent. The trained agent
remembered a state seen at 0–20ms until 2,000ms (see Figure 9),
which is indicated by the peak in the output activity. We also trained
the agent to remember a state at 3,000ms.With the current amount of
recurrent neurons (i.e., 300 neurons), the agent was not able to
remember for 3,000ms from the offset of an input.

3.7 Shooting a Moving Target
Similar to the task-switching experiment, we trained the RL agent
to learn “when to act” on a different scenario. In this scenario, the
agent is rewarded for shooting a moving target. The target is the

blob of a moving damped pendulum. The length of the pendulum
is 1 m, and the weight of the blob is 1 kg. We trained the DQN to
select the direction of shooting and the RNN to learn the exact
time to release the trigger. The agent was rewarded positively for
hitting the blob with an error of 0.1 m and negatively if the agent
missed the target. The learned activity is shown in Figure 10; the
left shows the motion of the pendulum and the right shows the
learned RNN activity. The threshold in this experiment was 0.05,
and the agent was able to hit the blob 5 times in 3,000 ms.
Although it is still not clear why the agent did not peak its activity
from 0 to 1,500 ms, the agent showed better performance after
1,500 ms.

4 COMPARISON WITH LONG
SHORT-TERM MEMORY (LSTM)
NETWORK
A recent study by Deverett et al. (2019) investigated the interval
timing abilities in a reinforcement learning agent. In the study, an

FIGURE 10 | Left shows the pendulum scenario. The pendulum rod (the black line) is 1 m long, and the blob (blue dot) weighs 1 kg. Right shows the training RNN
activity.

FIGURE 11 | Input difference between the RNN and the LSTM network.

Frontiers in Control Engineering | www.frontiersin.org August 2021 | Volume 2 | Article 72209211

Akella and Lin Time and Action Co-Training

https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles

RL agent was trained to reproduce a given temporal interval.
However, the time representation in the study was in the form of
movement (or velocity) control. In other words, the agent had to
move from one point to the goal point within the same interval as
presented at the start of the experiment. The agent which used the
LSTM network in this study by Deverett et al. (2019) performed
the task with near-perfect accuracy, indicating the ability to learn
temporal properties using LSTM networks. Following these
findings, our study endeavors to understand if an agent can
learn a direct representation of time (instead of an indirect

representation of time, such as velocity or acceleration)
using LSTM.

In order to investigate in this direction, we trained an RL agent
with only one LSTM network as its DQN network (no RNN was
used in this test) on the same task-switching scenario. The input
sequence for an RNN works in terms of dt (as shown in Eq 6),
whereas input for LSTM works in terms of sequence length, as
shown in Figure 11. For example, an input signal with a length of
3,000 ms can be given as 1 ms at a time to an RNN, and for LSTM,
the same input should be divided into a fixed length to effectively

FIGURE 12 | Output activity of the trained LSTM network for a task-switching scenario containing four circles, with time-to-act intervals shown in colored bars.

Frontiers in Control Engineering | www.frontiersin.org August 2021 | Volume 2 | Article 72209212

Akella and Lin Time and Action Co-Training

https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles

capture the temporal properties in the input. We used an LSTM
with 100 input nodes and gave an input signal of 100 ms to the
network, followed by the next 100 ms. Indeed, the sequence
length can be smaller than 100 ms. In our experiments, we
trained the agent with different sequence lengths (50, 100, 200,
and 300 ms), and the agent showed better performance for
300 ms (results for 50, 100, and 200 ms are given in the
Appendix). The architecture of the LSTM we used contained
one LSTM layer with 256 hidden units, 300 input nodes, and two
linear layers with 100 nodes each. The output size of the network
was 300, which resulted in an activity of n points for a given input
signal of nms. The hidden states of the LSTM network were
carried on throughout the episode.

The trained activity of the LSTM network is shown in
Figure 12 (bottom), where the light blue region shows the
output activity of the network. The colored bars in Figure 12
show the output activity of the LSTM network and the correct
time-to-act intervals for clicking each circle. The LSTM network
did learn to exceed the threshold indicating when to act at a few
time-to-act intervals. However, there is periodicity learned by the
network, meaning that for every 300 ms, the network learned to
produce similar activity.

5 DISCUSSION

In this study, we trained a reinforcement learning agent to learn “when
to act” using an RNN and “what to act” using a DQN.We introduced
a reward-based recursive least square algorithm to train the RNN. By
disentangling the process of learning the temporal and spatial aspects
of action into independent tasks, we intend to understand explicit time
representation in anRL agent. Through this strategy, the agent learned
to create its representation of time. Our experiments, which employed
a peak-interval style, show that the agent could learn to produce a
neural trajectory that peaked at the time-to-act with near-perfect
accuracy. We also observed several other intriguing behaviors.

• The agent learned to subdue its activity immediately after
observing a new state. We interpreted this as the agent
restarting its clock.

• The agent was able to temporally scale its actions in our
proposed learning method. Even though we trained the
agent with a single-speed value (speed � 1), it learned to
temporally scale its action to speeds that were both lower

(speed � 0.01) and higher (speed � 1.3) than the trained
speed. Notably, the agent was not able to scale its actions
beyond speed � 1.3.

• We observed that neural networks such as the LSTM might
not be able to learn an explicit representation of time when
compared with population clock models. Deverett et al.
(2019) showed that an RL agent can scale its actions
(increase or decrease the velocity) using the LSTM
network. However, when we trained the LSTM network
to learn a direct representation of the time, it learned
periodic activity.

• In this research study, we trained an RL agent in a similar
environment to task switching; shooting a moving target.
The target in our experiment is a blob of a damped
pendulum with a length of 1 m and a mass of 1 kg. The
agent was able to shoot the fast-moving blob by learning to
shoot at a few near-accurate time points.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

ACKNOWLEDGMENTS

This work was supported in part by the Australian Research
Council (ARC) under discovery grant DP180100656 and
DP210101093. Research was also sponsored in part by the
Australia Defence Innovation Hub under Contract No. P18-
650825, US Office of Naval Research Global under
Cooperative Agreement Number ONRG - NICOP - N62909-
19-1-2058, and AFOSR ‒ DST Australian Autonomy Initiative
agreement ID10134. We also thank the NSWDefence Innovation
Network and NSW State Government of Australia for financial
support in part of this research through grant DINPP2019 S1-03/
09 and PP21-22.03.02.

REFERENCES

Åström, K. J., and Wittenmark, B. (2013). Computer-controlled Systems: Theory
and Design. Englewood Cliffs, NJ: Courier Corporation.

Bakker, B. (2002). “Reinforcement Learning with Long Short-Term Memory,” in
Proceedings of the 14th International Conference on Neural Information
Processing Systems: Natural and Synthetic, Vancouver, Canada, 1475–1482.

Buonomano, D. V., and Laje, R. (2011). “Population Clocks,” in Space, Time And
Number In the Brain (Elsevier), 71–85. doi:10.1016/b978-0-12-385948-8.00006-2

Buonomano, D. V., and Maass, W. (2009). State-dependent Computations:
Spatiotemporal Processing in Cortical Networks. Nat. Rev. Neurosci. 10,
113–125. doi:10.1038/nrn2558

Carrara, N., Leurent, E., Laroche, R., Urvoy, T., Maillard, O. A., and Pietquin, O.
(2019). “Budgeted Reinforcement Learning in Continuous State Space,” in
Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, Vancouver, BC,
December 8–14, 2019, 9295–9305.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling in NIPS 2014 Workshop on
Deep Learning, Quebec, Canada, December, 2014. preprint arXiv:1412.3555.

Collier, G. L., and Wright, C. E. (1995). Temporal Rescaling of Simple and
Complex Ratios in Rhythmic Tapping. J. Exp. Psychol. Hum. Perception
Perform. 21, 602–627. doi:10.1037/0096-1523.21.3.602

Deverett, B., Faulkner, R., Fortunato, M., Wayne, G., and Leibo, J. Z. (2019).
“Interval Timing in Deep Reinforcement Learning Agents,” in 33rd Conference

Frontiers in Control Engineering | www.frontiersin.org August 2021 | Volume 2 | Article 72209213

Akella and Lin Time and Action Co-Training

https://doi.org/10.1016/b978-0-12-385948-8.00006-2
https://doi.org/10.1038/nrn2558
https://doi.org/10.1037/0096-1523.21.3.602
https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles

on Neural Information Processing Systems (NeurIPS 2019), Vancouver,
Canada, 6689–6698.

Diedrichsen, J., Criscimagna-Hemminger, S. E., and Shadmehr, R. (2007).
Dissociating Timing and Coordination as Functions of the Cerebellum.
J. Neurosci. 27, 6291–6301. doi:10.1523/jneurosci.0061-07.2007

Doya, K. (2000). Reinforcement Learning in Continuous Time and Space. Neural
Comput. 12, 219–245. doi:10.1162/089976600300015961

Durstewitz, D. (2003). Self-organizing Neural Integrator Predicts Interval Times
through Climbing Activity. J. Neurosci. 23, 5342–5353. doi:10.1523/
jneurosci.23-12-05342.2003

Hardy, N. F., Goudar, V., Romero-Sosa, J. L., and Buonomano, D. V. (2018).
A Model of Temporal Scaling Correctly Predicts that Motor Timing
Improves with Speed. Nat. Commun. 9, 4732–4814. doi:10.1038/s41467-
018-07161-6

Hochreiter, S., and Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Comput. 9, 1735–1780. doi:10.1162/neco.1997.9.8.1735

Klapproth, F. (2008). Time and Decision Making in Humans. Cogn. Affective,
Behav. Neurosci. 8, 509–524. doi:10.3758/cabn.8.4.509

Laje, R., and Buonomano, D. V. (2013). Robust Timing and Motor Patterns by
Taming Chaos in Recurrent Neural Networks. Nat. Neurosci. 16, 925–933.
doi:10.1038/nn.3405

Li, D., Ge, S. S., He,W., Ma, G., and Xie, L. (2019). Multilayer Formation Control of
Multi-Agent Systems. Automatica 109, 108558. doi:10.1016/
j.automatica.2019.108558

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2015).
Continuous Control with Deep Reinforcement Learning. 4th International
Conference on Learning Representations, (ICLR), San Juan, Puerto Rico, May
2–4, 2016. preprint arXiv:1509.02971.

Matell, M. S., Meck, W. H., and Nicolelis, M. A. L. (2003). Interval Timing and the
Encoding of Signal Duration by Ensembles of Cortical and Striatal Neurons.
Behav. Neurosci. 117, 760–773. doi:10.1037/0735-7044.117.4.760

Miall, C. (1989). The Storage of Time Intervals Using Oscillating Neurons. Neural
Comput. 1, 359–371. doi:10.1162/neco.1989.1.3.359

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,Wierstra, D., et al. (2013).
Playing Atari with Deep Reinforcement Learning. arXiv. preprint arXiv:1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al.
(2015). Human-level Control through Deep Reinforcement Learning. Nature
518, 529–533. doi:10.1038/nature14236

Oh, K.-K., Park, M.-C., and Ahn, H.-S. (2015). A Survey of Multi-Agent Formation
Control. Automatica 53, 424–440. doi:10.1016/j.automatica.2014.10.022

Petter, E. A., Gershman, S. J., and Meck, W. H. (2018). Integrating Models of
Interval Timing and Reinforcement Learning. Trends. Cogn. Sci. 22, 911–922.
doi:10.1016/j.tics.2018.08.004

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al.
(2017). Mastering the Game of Go without Human Knowledge. Nature 550,
354. doi:10.1038/nature24270

Simen, P., Balci, F., deSouza, L., Cohen, J. D., and Holmes, P. (2011). A Model of
Interval Timing by Neural Integration. J. Neurosci. 31, 9238–9253. doi:10.1523/
jneurosci.3121-10.2011

Sompolinsky, H., Crisanti, A., and Sommers, H.-J. (1988). Chaos in
Random Neural Networks. Phys. Rev. Lett. 61, 259. doi:10.1103/
physrevlett.61.259

Tallec, C., Blier, L., and Ollivier, Y. (2019). Making Deep Q-Learning Methods
Robust to Time Discretization. International conference on machine learning
(ICML), Long Beach. arXiv. preprint arXiv:1901.09732.

Vinyals, O., Babuschkin, I., Czarnecki,W.M,Mathieu, M., Dudzik, A., Junyoung, C., et al.
(2019). Grandmaster level in StarCraft II using multi-agent reinforcement learning.
Nature 575, 350–354.

Watkins, C. J., and Dayan, P. (1992). Q-learning. Machine Learn. 8, 279–292.
doi:10.1023/a:1022676722315

Xue, D., Yao, J.,Wang, J., Guo, Y., andHan, X. (2013). Formation Control of Multi-Agent
Systems with Stochastic Switching Topology and Time-Varying Communication
Delays. IET Control. Theor. Appl. 7, 1689–1698. doi:10.1049/iet-cta.2011.0325

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Akella and Lin. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Control Engineering | www.frontiersin.org August 2021 | Volume 2 | Article 72209214

Akella and Lin Time and Action Co-Training

https://doi.org/10.1523/jneurosci.0061-07.2007
https://doi.org/10.1162/089976600300015961
https://doi.org/10.1523/jneurosci.23-12-05342.2003
https://doi.org/10.1523/jneurosci.23-12-05342.2003
https://doi.org/10.1038/s41467-018-07161-6
https://doi.org/10.1038/s41467-018-07161-6
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3758/cabn.8.4.509
https://doi.org/10.1038/nn.3405
https://doi.org/10.1016/j.automatica.2019.108558
https://doi.org/10.1016/j.automatica.2019.108558
https://doi.org/10.1037/0735-7044.117.4.760
https://doi.org/10.1162/neco.1989.1.3.359
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/j.automatica.2014.10.022
https://doi.org/10.1016/j.tics.2018.08.004
https://doi.org/10.1038/nature24270
https://doi.org/10.1523/jneurosci.3121-10.2011
https://doi.org/10.1523/jneurosci.3121-10.2011
https://doi.org/10.1103/physrevlett.61.259
https://doi.org/10.1103/physrevlett.61.259
https://doi.org/10.1023/a:1022676722315
https://doi.org/10.1049/iet-cta.2011.0325
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles

	Time and Action Co-Training in Reinforcement Learning Agents
	1 Introduction
	2 Methods
	2.1 Task-Switching Scenario
	2.2 Framework
	2.2.1 Deep Q-Network
	2.2.2 Recurrent Neural Network

	2.3 Time and Action Co-Training in Reinforcement Learning Agent
	2.3.1 DQN
	2.3.2 Recurrent Neural Network

	3 Experiments
	3.1 Different Scenarios
	3.2 Temporal Scaling
	3.3 Learning to Plan Multiple Future Times-to-Act
	3.4 Skip State Test
	3.5 Task Switching With 20 Tasks
	3.6 Memory Task
	3.7 Shooting a Moving Target

	4 Comparison With Long Short-Term Memory (LSTM) Network
	5 Discussion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

