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Modelling Fractional Behaviours
Without Fractional Models

Jocelyn Sabatier*

IMS Laboratory, UMR 5218 CNRS, Cours de la Liberation, Bordeaux University, Talence, France

This paper first warns about the confusion or rather the implicit link that exists in the
literature between fractional behaviours (of physical, biological, thermal, etc. origin) and
fractional models. The need in the field of dynamic systems modelling is for tools that can
capture fractional behaviours that are ubiquitous. Fractional models are only one class of
models among others that can capture fractional behaviours, but with associated
drawbacks. Several other modelling tools are proposed in this paper, thus showing
that a distinction is needed between fractional behaviours and fractional models.

Keywords: fractional integration, fractional differentiation, fractional models, non singular kernels, volterra
equations, nonlinear models, distributed time delay models, diffusion equations

INTRODUCTION

The domains of fractional calculus and fractional models have grown significantly thanks to the
dynamism of the related community. But this community has sometimes tended to generalize
existing results to fractional orders without any real interest in or justification of their physical
meaning, a tendency that has been called “fractionalization” in the literature (Dokoumetzidis et al.,
2010). Consequently, fundamental questions are now catching up with this community. In
particular, the emergence of questions and critical analyses on fractional calculus and fractional
models is becoming increasingly common in the literature:

- It is shown in (Dokoumetzidis et al., 2010) that physical interpretations can invalidate non-
commensurate fractional pseudo state space representations;

- The inability of the Caputo derivative definition to take into account the initial conditions
correctly is discussed in (Sabatier et al., 2008; Sabatier et al., 2010; Sabatier and Farges 2018)

- The singularity of fractional calculus operators is questioned and solutions are proposed in
(Caputo and Fabrizio, 2015), (Atangana and Baleanu, 2016)

- (Balint and Balint, 2020) explored the mathematical description of the groundwater flow and
that of the Impurity Spread and showed that this description is non-objective if Caputo or
Riemann-Liouville fractional partial derivatives with integration on a finite interval are used in
this description;

- Several drawbacks of fractional models are highlighted in (Sabatier et al., 2020), that mainly
result in the doubly infinite dimension of fractional models (Sabatier, 2021).

These studies in fact raise questions about the physical consistency and the limits of fractional
models and warrant the questions: what are the needs met by fractional calculus and fractional
models? Do fractional calculus and Fractional models solve fundamental problems? Fractional
calculus and fractional models are frequently used to capture fractional dynamic behaviours. There is
no exact definition to describe a fractional dynamic behaviour. In this paper we therefore assume that
a system has a fractional behaviour if its input and output are linked by a function of the form #-1,
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v € R, v <1 atleast over a time range, or by a function of the form
w™” at least over a frequency range. These kinds of behaviours are
ubiquitous (Ionescu and al., 2017; Zhang et al., 2017; Zou et al,,
2018; Bonfanti et al., 2020) and it is thus of interest to have
efficient models to capture them. But fractional models and
fractional behaviours are two different things, contrary to what
the abstract of this paper might suggest (Tarasov, 2013) and many
others previously cited. Fractional models are only one class of
models that can capture fractional behaviours.

As indicated in the title, this paper wants to show that it is
important to question the modelling of fractional behaviours
(because they are very widespread) and that several modelling
tools other than fractional models allow it without the drawbacks
of fractional models. This paper is the result of intense research
activity which has already led to the publication of several results
each relating to an idea or a particular modelling tool. In order to
create a self-content but didactic document, some of these papers are
not only cited but partially included to allow a detailed description of
what is to be demonstrated. Thus, the following alternative models
that can generate fractional behaviours are proposed:

- New kernels in convolution operators (that still enable
fractional behaviours to be generated but in a limited
frequency or time range);

- The Volterra integro-differential equation,

- Distributed time delay models,

- Nonlinear models,

- Time-varying models

- Partial differential
coefficients.

equations with spatially variable

NEW KERNELS

The fractional integral of order vof a function f(t), denoted
I’[f(1)], can be viewed as the convolution of this function with
the kernel

Vi 1
n(t) = O (1)

and thus
PLFO)= [ - o (s @)
0

If the Riemann-Liouville or the Caputo definitions are used,
the fractional derivative of order v of a function f(¢)also involves
kernel (1) and a convolution product similar to (2) (Samko et al.,
1993). Clearly, fractional derivatives and integrals involve a
singular kernel, which prompted some authors to introduce
new definitions based on non-singular kernels (Caputo and
Fabrizio, 2015; Atangana and Baleanu, 2016; Gao and Yang,
2016; Yang et al., 2017). The kernels introduced in these papers
are not used in this work, but that clearly highlights that there is a
common tendency in the community to introduce new kernels.
Although it was not the first time that modifications of fractional
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derivation and integration operators were proposed (Sandev
et al., 2015; Liemert et al.,, 2017), these publications triggered
reactions that were sometimes strong. For example, they have
been accused of:

- leading to the definition of operators that are no longer
fractional (Tarasov, 2018; Ortigueira and Tenreiro Machado,
2019),

- making it impossible to capture the dynamic behaviour of
certain systems (Ortigueira et al., 2019),

- leading to restrictions (Stynes, 2018; Hanyga, 2020; Diethelm
et al., 2020).

However, one can question the validity of some of these
conclusions. For instance, the results in (Stynes, 2018; Hanyga,
2020; Diethelm et al., 2020) are not correct, since they are based
on a definition of the initial conditions that is not consistent with
an intrinsic property of fractional operators: memory. And this
memory must also be taken into account at the initial time. This is
proved in (Sabatier 2020a) and the proof is reinforced by the
interpretation of fractional models described (Sabatier, 2021) and
the analysis in (Sabatier and Farges, 2021).

In spite of these reactions, perhaps dictated by a conservative
spirit in an area which has prospered greatly, the author believes
on the contrary that this is one of the ways to eliminate several
drawbacks associated to fractional calculus and models. The
kernels introduced in (Caputo and Fabrizio, 2015; Atangana
and Baleanu, 2016; Gao and Yang, 2016; Yang et al, 2017)
permit to eliminate the singularity of the kernel used in the
definition of fractional operators. But it is possible to go further
and to solve others drawbacks among those mentioned in the
introduction. This is highlighted with the following kernel:

rly(t) = C (wmax)v (pz ('V — 1, 1- Vs 17 wmint: wmaxt)
(wmin) 1 ?
vith co @t 3)
- 1

(@1’

where ¢,(B,8',y; x, )is a two-variable hypergeometric function
defined by (Erdelyi, 1954)

B).(8), . .

$, (BB, yix%y) =) Ky (4)

m,n (y)m+nm!n!

The Laplace transform of this kernel is defined by (Erdelyi,
1954) (p. 238):

(=+1)"”
(1)

The Bode diagrams of transfer functions #”(s) are shown in
Figure 1 with w,, = 0.001 rd/s, wya = 1000 rd/s, and for
various values of v, showing that this kernel exhibits a
fractional behaviour of order v in the frequency band
[wmin) wmax] .

7' (s)=C ©)
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FIGURE 1 | Bode diagrams of transfer functions #”(s) with wmi» = 0.001 rd/s, wmax = 1000 rd/s, for » varying from 0.1 to 0.9.
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A property (and advantage) of this kernel is a distribution of its
poles on a limited frequency band. To demonstrate such a property,
the impulse response of the transfer function (5) is computed using
Cauchy’s theorem as demonstrated in the appendix and in (Sabatier
et al,, 2019) (Sabatier, 2020b). For ¢ > 0, it is given by

(1) = c(ii) 7 (1 +sin(<1n— )m) I x((»;— w_;)l exfdx)He(t) (6)

i

where H,(t) is the Heaviside function. The Laplace transform of
relation (6) gives:

'max

, W\ (1 sin((1=)m) (x = @)™
”(S)_C<M) <s+ | ) O

Relation (7) demonstrates that the poles [variable x in relation
(7)] of the kernel #”(¢) are distributed in a limited frequency band
defined by [wmin> Wmax]-

Now, the definition of the fractional integration in relation (2)
is modified in order to limit its memory. The following modified
operator is thus introduced:

t

o) = [f@dre [ xe-or@ar®)
0 t—Tf
with

'max

X 0= c4<m>”sin<<1 —9)) J

Wmin T

1-v
X — Wy
( mm) e”“dx.

1—
x(wmax - x) Y

Wmin

)

Using the change of variable { =t — 7 and thus, d¢ = —df,
relation (8) becomes

t

Iy
1f0) = [fodrs [y @Fe-oa o

0

The Laplace transform of relation (10) without considering
initial conditions is
T

clrlr ol =2k [0 @eCascis o = Fo) an

0

and thus, the operator corresponding to this modified fractional
integrator is:

Ty

ACEE PG (12

0

Figure 2 compares the gain diagram of n’}f(s) (computed
numerically) with the gain diagram of #”(s) given by relation
(7) in the domain of interest. It shows that the frequency
response of 7, (s) remains similar to that of #”(s) under the
condition Tf > 1/@pmiy. In such a situation, parameter T can be
viewed as the memory length of this kernel. Note that the
memory length is connected to the corner frequency below
which the kernel frequency response has a pure integrator
behaviour.

At first glance, this kind of operator might not solve the
problem of objectivity mentioned in (Balint and Balint, 2020).
But it must be noticed that the objectivity of the fractional
models studied in (Balint and Balint, 2020) can be restored by
adding an appropriate initialization function as Lorenzo and
Hartley did (Lorenzo and Hartley, 2000). This initialisation
should be used to cancel relations (33) and (37) that appear in
(Balint and Balint, 2020), and thus to restore objectivity.
However, as shown in (Sabatier, 2021), (Sabatier and Farges,
2021), with a fractional model, the initialisation must take into
account all its past from -oo to 0 (infinite length memory). The
interest of the kernel proposed (but also those proposed in
(Sabatier 2020b) (Sabatier 2020c), of course with memory, is the
limited length of its memory in relation (12) that facilitates its
initialisation.
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FIGURE 2| A comparison of Bode diagrams of 17, (s) and of 1”(s) in the domain of interest for v = 0.5, wmi, = 0.001 rd/s, and wyax = 1000 rd/s and various values of
Tr. Note that with kernels #”(t) or 17, (t) previously defined and for a given function f(t), an integral fractional-like operator can be obtained with the relations.
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104

t

Jf(z)n" (t —2)dz

0

(13)

[, -2z (13)

Also, a derivative fractional-like behaviour is obtained using
the relations
t t

d d
= Jf(z)n" (t - 2)dz or J J;—(Zz)q”(t - 2z)dz (14)
0 0
and
d | (d
& @, -od or [ LEy ¢-0i a5
0 0

It thus can be concluded that the proposed non-singular
kernel and the new integration/derivation operator introduced
make it possible to solve some of the drawbacks described
in (Sabatier et al, 2020) (double infinite dimension,
infinite memory, distribution of time constants and poles on
an infinite domain) and can be used to model fractional
behaviours.

VOLTERRA EQUATIONS

The kernel previously studied define operators that exhibit a
fractional behaviour but can also be used to define new models
involving a Volterra equation of the first kind. This class of
equations, associated to appropriate kernels, is more general than
the fractional differential equation or pseudo state space model
very frequently used in the literature, and can be described by:

(16)

D" [x(t)] = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

where x(t) € R” is the pseudo state vector, vis the fractional order
of the system and A € R™", Be R™, C ¢ R™and D € Rare
constant matrices. D” denotes the fractional differentiation
operators of orders v € R.

According to (Samko et al., 1993) (p. 46) (if the fractional
integral of order v of each component of vector x(t) exists) and as
shown in (Sabatier 2020c), and after first-order integration of
both sides of the first equation in relation (16), the following
equation can be obtained:

t t

[ D1 cdr = e < |

0 0
t
|
where the kernel (#)7"/T(1 —v) multiplies each component of
vector x(t).

Representation (16) can thus be rewritten under the form of a
Volterra equation of the first kind:

(t-1)"
71“(1 ~) x(t)dt

= | [Ax(7) + Bu(7)]dr (17)

J n(t—71)x(1)dr =v(t)
0
with

v(t) = | Bu(1)dr, y(t) = Cx(t) + Du(t),

_A)

t
0
-y

t
n() = <m1n (18)
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where I, denotes an identity matrix of dimension nxn. Relation
(17) demonstrates that a pseudo state space description is a
particular case of a Volterra equation of the first kind, as the
kernel #(t) in (17) has a fixed structure. Using a Volterra equation
with a more general kernel, it is thus possible to generalise a
pseudo state space description in two ways:

e By adapting the kernel #(t) in relation (18), it is possible to
produce, with the same kind of equation, power law
behaviours of various types (denoted explicit, implicit),
but also many other long memory behaviours;

e In relation (18), if x(¢) € R", then #(¢) is a matrix of kernels
such that 5(f) = [WZj(t) |, thus permitting great flexibility in
the tuning of relation (18).

Description (18) has another important advantage. With a
more general kernel #”(¢), model memory can be limited by
introducing a parameter Ty in the integral bounds such that

t

J 7' (t = )x(1)dt = v(¢). (19)

=Ty

Using the change of variable & = ¢ — 7, relation (19) becomes

Tj/.
jwmwu—a&=vm. 20)

Relation (19) explicitly shows that knowledge of the model
state x(t) is required on [0, Tf] to compute its future.
Modification of the lower bound of relation (18) to produce
relation (20) is thus of interest in the initialisation problem. The
initialisation of relation (20) only requires knowledge of the past
of the variable x(t) on the interval [ty — Ty, ty ] if £, denotes the
initial time, while knowledge of the past on [-00, f; ] is required
for the fractional model (16) for instance.

For all these reasons, in a modelling approach it is better to
work with model (20) than with models (16), since it is more
general as previously demonstrated. This can be done by
searching the kernel #”(t) directly without any assumption on
its structure.

By choosing an appropriate kernel #”(¢) in relation (20), it is
possible to produce fractional behaviours of various kinds. To
highlight this, the following model involving a Volterra equation
of the first kind is considered:

t t

Jn”(t— Tx(r)dr =v(t) with v(t)= Ju(r)dr, y(t) = x(1).

0 0

(1)

It is assumed that u(t) € R denotes the input of the model and
that y(¢) € R is its output. The Laplace transform of relation (21)
is, without considering initial conditions,

7 (9x(s) = v(s)  with vw=§waym:xw, (22)

Fractional Behaviours Without Fractional Models

and from an input-output point of view, the following transfer
function is thus obtained:

y(s) 1

u(s) sn(s)’

(23)

Several kernels producing fractional behaviours for transfer
function (23) were proposed in (Sabatier, 2020c).

DISTRIBUTED TIME DELAY MODELS

Volterra equations or more generally integro-differential
equations are one of the ways to define models for fractional
behaviours without the drawbacks cited in (Sabatier et al., 2020).
Other solutions exist and for instance, the following class of
distributed time delay model (Gouaisbaut, 2005) was considered
in (Sabatier, 2020d).

Tr
%x(t) :on(t)+A1qu(r)x(t—r)dT+Bu(t). (24)
0

This class of model is particularly interesting to make
interpretation of fractional behaviours produced by adsorption
phenomena (Tartaglione et al., 2020), (Tartaglione et al., 2021) as
it will be shown soon by the author. The Laplace transform of
relation (24) is given by

Ty
sx(s) = Apx(s) + A, J 7" (1)x(s)e "dr + Bu(s) (25)

I
and thus  sx(s) = Agx(s) + A x(s) J n'(1)e " dt + Bu(s). (26)

0

The transfer function linking the system input u(t) to the
system output x(¢) is thus defined by:

x(s) B
us) I iy
uls) s—-A,-A, JO n' (r)e " dr

@7)

As an example, among the infinity of possible functions, some
of which are given in (Sabatier 2020d), kernel #”(t) in (24) is
assumed to be defined by:

M Whin -1 ot Poin 7-1 —~omant E—"
rl (t) — CO min t'V e Wmin _ min t'l/ e Wmax + a)v w v e Wmax

F(V) I‘(v) min"" max
(28)
v v -1
1 Wi 1 Wi 1
.th C — . _ min i min ; i
v e t((wf v1) <wm> (L + 1)V+ <wm> Ly 1>
(29)

As t tends towards 0, the following relation holds [using Taylor
expansions of the exponential function in relation (28)]:
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() = G MtH (= Wmint + Wpaxt) + @7, W (30)
I‘(,V) min max
t—0
and thus lirrol n'(t) = Coa)fnmwin‘;. (31)
t—l

This highlights the non-singularity of kernel (28) as time ¢
tends towards 0. Integral
Ty

I(s)= Jiy” (1)e ™dt (32)
0

is defined by:

(s+@min) Ty

7 T (s + Wmax)

¥
7 -

I(S) = K(((S"’wmin)’]}) e

vv 1
WM(E; z + E: (S + 6‘)min)Tf)
v (stemax) Ty

~((s+ @ma) Ty) "€ 7 T} (5 + Winay)

v 1
WM<g,E 3 (st wmax)Tf) — 1+ »((wr o
+ va (s+ wmax))e’(”‘“m“")Tf

FTY (5 + Wpa)e T — 17T (v))) (33)

1+v
m T @

b 2+v)

min

2, v
Co (S, + 25w

with K = (34)

(5 + wmax)r(v) (5 + wmin)zv(l + V)

where Wy(a, b, z) is the Whittaker M function defined by

@, b—a+%
w ,l’), — bt1/2 -z/2 ( 2)n _n
w(abz)=2"e ZO A(2b+1),°

1
= 2 R (5 +b-a, 1+2b,z ) (35)

Figure 3 shows the gain and phase diagrams of integral I(s) for
various values of v and with w,;; = 1073 rd/s, Wy = 10* rd/s and
Tf =10/ Win-

Parameters Ay, A; and B in model (24), can be used to control
the frequency band on which the fractional behaviour takes place.
As an example, Figure 4 shows the Bode diagram of the transfer
function x(s)/u(s) given by relation (27) under the following
conditions:

® v =07, Wpnin = 107 1d/s, Wpay = 10* rd/s, Ty = 10/@pin,
Ag = —36969, A; = -10%, B = 10®

® v=0.3, Wmin = 107 1d/s, @pay = 10* 1d/s, Ty = 10/@pin,
Ag = —3686, A; =-10°, B = 10°

These Bode diagrams exhibit a fractional behaviour of order
1 - in a limited frequency band.

NONLINEAR MODELS

The idea of using non-linear models to model systems with
fractional behaviours came from analysing the evolution of

Fractional Behaviours Without Fractional Models

the top of a pile of sand h(t) under a constant flow Q(t) of
sand, and assuming the angle of repose a(t) constant (see
Figure 5). The radius of the heap r(f) is deduced from a(t)
and h(t): tan(a(t)) = h(t)/r(t).

The kinetics of the evolution of this heap is of the form K¢,
and can be very well fitted by a fractional transfer function model
Ks™'. But such a model is no longer suitable if the flow of falling
sand is doubled or if this flow is stopped (the fractional model
relaxes while the height of the top remains constant). By analysing
this system a little more closely (Sabatier et al, 2020), we
can analytically demonstrate that a model of this system is of
the form

dh(t) K
dt  h(t)
that is to say a non-linear input affine (or distributional) model
form:

Q(®), (36)

B f o, @)
t

where x(t) is the state and the output of the system, and where
u(t) denotes its input.

Such a modelling approach solves a large part of the problems
described in section 2 and has been applied to the modelling of
adsorption/desorption phenomena (Tartaglione et al, 2020)
which are used in many fields and in particular for the design
of Love wave based sensors (Hallil et al., 2009).

TIME VARYING MODELS

Without referring to fractional models, the Avrami model is often
used to model the kinetics of crystallization, as well as other phase
changes or chemical reactions (Avrami, 1939; Fanfoni and
Tomellini, 1998). This model is described by the relation

x(t)=K(1-e“"). (38)
The Laplace transform of relation (38) is given by:
1 1& (a) T(1+r)
=K[--= — ) 39
x(s) <S a ;} T! (£)1+‘W > ( )

Figure 6 shows the frequency response of x(s) and
demonstrates a fractional behaviour.

Function x(¢f) in relation (38) is also a solution of the
differential equation:

dx(t)
dr

—va’t" " x (1) + Kva't™! (40)
This equation involves singular coefficients. Such a matter can

be solved by a differential equation of the form

d);(tt) = —va’ (t+¢) "% (t) + Kva’ (t + ¢)"™ (41)

which also exhibits a fractional behaviour and thus shows that
time varying models are possible models to capture fractional
behaviours.
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PARTIAL DIFFERENTIAL EQUATIONS
(HEAT EQUATIONS) WITH SPATIALLY
VARIABLE COEFFICIENTS

With a judicious choice of the spatial functions y(z)and (), it is
shown in (Sabatier, 2020e) that the following heat equation

0T (z,1) _ 0T (z, t)) (0 = 0T (z,t)

0
ot Y(@&(ﬁ(z)T 5% Zzou(t) =T(0,¢)

(42)

generates fractional behaviours.

An infinite number of combinations are possible for the
functions y(z) and f(z). This leaves considerable room for
theoretical investigations in the search for these functions,
then for the analysis of the properties of Eq. 42, and also for
the development of methods to identify the functions y(z) and
B(z) on real data. It is also possible to generalize this result to
partial differential equations other than diffusion equations
(Sabatier, 2020e). These results seem promising for modelling
phenomena in fractal environments, in order to relate the
geometry with the spatially variable coefficients of the equation.

CONCLUSION

This paper demonstrates that several other modelling tools than
fractional models can be used to produce fractional behaviours
that are ubiquitous and that can be encountered in many domains
(physical, chemical, biological, electrical, etc.). These alternative
models, i.e.

- new kernels in convolution operators (that still enable
fractional behaviours to be generated but in a limited
frequency or time range).

- the Volterra integro-differential equation.

- distributed time delay models.

- nonlinear models.

- time-varying models.

partial differential equations with spatially variable coefficients,

Enable the drawbacks and limitations suffered by fractional

models to be overcome. Either way, fractional models remains
interesting fitting tools for quickly capturing the input-output
behaviour of physical systems. But we must not try to make them
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