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Introduction: Climate warming, combined with grazing pressures, poses

significant challenges to vegetation cover and ecosystem stability. In particular,

livestock grazing is a primary factor in vegetation degradation, adversely affecting

plant diversity, soil health, and key ecological interactions.

Methods: This study investigates the impact of grazing on vegetation in the Alborz

region of Iran, focusing on the comparison between native herbivores (Artiodactyla) and

livestock in the Central Alborz Protected Area (CAPA). We utilized 30 years of NDVI

(NormalizedDifference Vegetation Index) data fromMay to June (1994–2024) to assess

vegetationdynamics andevaluate the influenceof climate andgrazing. ANOVA, Pearson

correlation, and regression analyses were performed to identify relationships between

vegetation cover, climate variables (temperature and rainfall), and grazing intensity.

Results: Results show a significant increase in vegetation cover, with Golestanak

(without livestock) exhibiting a stronger positive response to climate variables (R² =

65%), while Zānoos (higher livestock density) showed greater variability (R² = 58%).

Vegetation in Golestanak demonstrated a more significant positive correlation with

temperature and rainfall, reflecting resilience to climatic stressors and the beneficial

effect of moderate grazing by native Artiodactyla. In contrast, Zānoos showed more

fluctuation in vegetation trends due to high livestock grazing pressure.

Discussion: This study highlights that while climate warming can positively affect

vegetation cover, intensive livestock grazing can impede these gains, underlining the

importance of adaptive management strategies for maintaining ecosystem health.
KEYWORDS

ecosystem resilience, restoration, biodiversity conservation, ecosystem management,
temperature, rainfall, plant ecology
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcosc.2025.1534034/full
https://www.frontiersin.org/articles/10.3389/fcosc.2025.1534034/full
https://www.frontiersin.org/articles/10.3389/fcosc.2025.1534034/full
https://www.frontiersin.org/articles/10.3389/fcosc.2025.1534034/full
https://www.frontiersin.org/articles/10.3389/fcosc.2025.1534034/full
https://orcid.org/0000-0002-1517-9061
https://orcid.org/0000-0003-3057-8981
https://orcid.org/0000-0001-7844-3758
https://www.frontiersin.org/journals/conservation-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcosc.2025.1534034&domain=pdf&date_stamp=2025-01-28
mailto:fa.salmanpour@gmail.com
mailto:r_sayahnia@sbu.ac.ir
https://doi.org/10.3389/fcosc.2025.1534034
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/conservation-science#editorial-board
https://www.frontiersin.org/journals/conservation-science#editorial-board
https://doi.org/10.3389/fcosc.2025.1534034
https://www.frontiersin.org/journals/conservation-science


Salmanpour et al. 10.3389/fcosc.2025.1534034
1 Introduction

Livestock grazing is widely recognized as a primary driver of

vegetation degradation, particularly in natural ecosystems rich in

diverse native plant species. Overgrazing significantly alters plant

community structures, reduces diversity, and disrupts interactions

essential for ecosystem resilience (Crovo et al., 2021; Pelliza et al.,

2021; Macheroum and Chenchouni, 2022; Abebe et al., 2024).

Beyond altering vegetation directly, livestock grazing can cause

physical and biochemical changes to soil. The trampling and

grazing activities of livestock often result in soil compaction and

physical damage, diminishing soil porosity and aeration (Jones

et al., 2022; Song et al., 2023; Xu et al., 2023; Blanco-Sepúlveda

et al., 2024; Ma et al., 2024; Mushinski et al., 2024). These processes

disrupt nutrient cycles, impair biogeochemical functions, and

negatively impact soil biota, ultimately reducing ecological health

and productivity.

The ecological impact of livestock grazing extends to the

disruption of biological community balance and stability, affecting

both interspecific and intraspecific relationships within ecosystems

(Tian et al., 2019; Öllerer et al., 2019; Filazzola et al., 2020). For

instance, overgrazing can interfere with pollination dynamics,

altering the mutualistic interactions between native plants and

their pollinators (Chen et al., 2022; Kral-O’Brien et al., 2023;

SStevenson, 2023). It also disrupts natural herbivory patterns and

seed dispersal mechanisms, which can even indirectly affect

carnivores by altering the availability of prey species reliant on

healthy plant communities (Filazzola et al., 2020; Ugarte et al., 2019;

Thapa-Magar et al., 2020; Wilkinson et al., 2020; Pozo et al., 2021).

The severity of grazing impacts is influenced by factors such as

livestock density, the duration of grazing practices, and the

effectiveness of grazing management strategies. In particular, a

lack of seasonal timing and control of grazing events exacerbates

resource overuse, further degrading vegetation and soil quality

(Narantsetseg et al., 2018; Pulido et al., 2018). These pressures

become especially concerning in the context of climate change,

where warming temperatures and altered precipitation patterns add

additional stressors. As habitats experience shifts in temperature

and moisture, the resilience of native plant communities becomes

increasingly compromised (Oñatibia et al., 2020; Wei et al., 2022).

This synergistic effect of climate-induced stress and unmanaged

grazing accelerates vegetation loss, posing a severe threat to the

long-term sustainability of these ecosystems. Consequently, there is

a critical need for adaptive management strategies that mitigate the

combined impacts of climate change and grazing pressures to

promote ecosystem stability and resilience.

Seed dispersal through animal ingestion is a critical ecological

process that supports the persistence and regeneration of plant

populations (Karimi et al., 2018; Pires, 2024; Ghasemi et al., 2024).

Large native mammals, in particular, play a crucial role in

facilitating seed dispersal, which is essential for maintaining plant

diversity and ecosystem functionality. However, these animals are

increasingly threatened by anthropogenic pressures such as habitat

destruction, poaching, and fragmentation, which can disrupt their

dispersal activities and, in turn, impact vegetation dynamics

(Gelmi-Candusso and Hämäläinen, 2019; Leclerc et al., 2020;
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Nield et al., 2020; Draper et al., 2022; Estrada-Villegas et al.,

2023). The loss of these ecological services highlights the urgent

need for conservation efforts to protect these key species, whose

roles in maintaining ecological balance are indispensable.

In contrast, livestock grazing, which is prevalent in northern

Iran’s natural pastures, can exert considerable pressure on

vegetation, competing with the ecosystem services provided by

native herbivores. Livestock grazing has been shown to disrupt

plant communities, especially when grazing intensity exceeds the

land’s ecological capacity (Gonzalez and Ghermandi, 2021; Shakeri

et al., 2021; Salmanpour et al., 2021; Pearson et al., 2022). In many

regions, traditional pastoral practices rely heavily on the grazing of

livestock in natural meadows, which are often located in areas rich

in native plant species. These grazing areas, particularly in the high-

altitude pastures on the northern slopes of the Alborz Mountains,

are shared by both domestic livestock and native wildlife (Soofi

et al., 2018; Hojjati et al., 2021; Savari, 2023; Zandebasiri et al.,

2023). Despite the legal framework that permits grazing outside

protected zones, few studies have comprehensively examined the

long-term impacts of domestic livestock grazing compared to the

effects of native artiodactyls, especially in relation to vegetation

dynamics and climate change. Understanding these interactions is

crucial for informing management strategies aimed at balancing the

needs of both livestock and wildlife while mitigating the potential

ecological consequences of climate warming.

The findings from this study aim to provide valuable insights

into the complex interplay between climate change, grazing

pressure, and vegetation dynamics in the Alborz Protected Area.

In Zanoos, livestock grazing is carefully managed to prevent entry

into the strictly protected Golestanak core zone, where grazing is

prohibited under ranger enforcement. This research highlights the

importance of such measures in minimizing the impact of grazing

on vegetation cover and native herbivore populations. By

addressing the effects of climate change alongside varying land-

use practices, this study contributes to the growing body of

knowledge on ecosystem functioning in diverse landscapes.

Ultimately, the outcomes will inform strategies for managing both

domestic and wild herbivore populations in the face of climate

change and may provide valuable guidance for conservation efforts

in similar ecosystems worldwide.
2 Materials and methods

2.1 Study area

The Central Alborz Protected Area (CAPA) in Mazandaran

Province, Iran, is a vital biodiversity hotspot. Located at the junction

of the eastern and western Alborz Mountains and the Hyrcanian

forests, a UNESCO World Heritage site in this area, plays a crucial

role in preserving biodiversity (Noroozi et al., 2019, 2020).

Spanning 2,950 km², CAPA includes diverse landscapes ranging

from the Alborz Mountains’ northern slopes, reaching elevations

above 4,000 meters, down to the Caspian Sea’s coastal plains at −16

meters below sea level (Figure 1). Vegetation varies from dense

Hyrcanian forests at lower altitudes to sparse high-altitude flora
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unique to the Alborz region (Darvishsefat, 2008). The CAPA critical

habitat for threatened species such as the Caspian red deer (Cervus

elaphus maral), Persian leopard (Panthera pardus tulliana), brown

bear (Ursus arctos), and roe deer (Capreolus capreolus), alongside

other native large mammals like the gray wolf (Canis lupus), wild

goat (Capra aegagrus), and wild boar (Sus scrofa) (Nezami and

Farhadinia, 2011; Karami et al., 2016; Salmanpour et al., 2022;

Nezami et al., 2024). Managed by 13 ranger stations, including three

inactive, three seasonal, three semi-active, and four fully operational

sites, CAPA faces conservation challenges due to human-wildlife

interactions. Conflicts from carnivore predation on livestock,

poaching, grazing, beekeeping, and habitat modification continue

to pose significant threats to the area’s biodiversity (Soofi et al.,

2018; Salmanpour et al., 2021 and 2023; Shakoori and Salmanpour,

2024; Salmanpour et al., 2024).

Within CAPA, the 70.5 km² Zānoos zone (h= 1900–3700 m)

permits controlled livestock grazing, while the 46.2 km² Golestanak

core zone (h= 2100–3900 m) enforces a complete prohibition on

grazing and unauthorized human activities since 1994. Before these

restrictions, Golestanak experienced widespread grazing and

frequent human disturbances, which significantly strained its

ecosystem. The implementation of these protections has been

critical in curbing ecological damage, allowing for the habitat’s

gradual recovery and regeneration over the past few decades

(Unpublished data).
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2.2 Data collection

2.2.1 Normalized Difference Vegetation
Index (NDVI)

Data from Landsat satellites and the Google Earth Engine

platform were utilized to analyze the trends in the Normalized

Difference Vegetation Index (NDVI) for the study area. The

datasets from Landsat 5, Landsat 7, and Landsat 8 were loaded

for the study area and filtered based on the specified region of

interest (ROI) and dates. Then, using the mask Clouds function,

cloudy pixels were masked using the QA_PIXEL band. The cloud

cover percentage for each image was calculated using the calculate

Cloud Cover function, and images with cloud cover less than or

equal to 50% were filtered out. To calculate NDVI, the

calculateNDVI57 and calculateNDVI8 functions were used, and

the NDVI datasets from Landsat 5, 7, and 8 were merged. The

median NDVI for each August (May–August) from 1994 to 2024

was calculated, and a time series chart was created to display the

NDVI trend for August (May–August). Due to its high accuracy

and ability to process large volumes of data, this method is widely

used in environmental and agricultural studies and can help better

understand environmental changes and improve natural

resource management.

2.2.2 Native species population size
For data collection on native artiodactyl populations, we relied on

official census data for two key species: The Caspian red deer and the wild

goat, both of which are native to the CAPA. These population figures were
FIGURE 1

Study area.
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obtained from annual surveys conducted by wildlife management

authorities (Department of Environment), which employed systematic

monitoring techniques to ensure accuracy and consistency.

2.2.3 Domestic livestock population size
The census data for livestock, including both heavy (cattle) and

light (sheep) livestock, were gathered from field censuses conducted

at Zānoos farms.

2.2.4 Weather data
Meteorological data were collected daily from the Siah Bisheh

synoptic meteorological station, located at an altitude of 2200 meters,

approximately 12 km southwest of the study area. This station was

selected as it is the closest meteorological site to the Golestanak core

zone, sharing a similar elevation and climatic conditions. The climatic

parameters analyzed included mean daily temperature (tm, °C),

relative humidity (um, %), mean daily precipitation (rrr24, mm),

and maximum snowfall (essmax, mm). These data were crucial for

evaluating the influence of climate variables on vegetation cover and

grazing pressure in the Alborz Protected Zones.
2.3 Statistical analysis

2.3.1 ANOVA
An ANOVA test was performed to analyze changes in the

Normalized Difference Vegetation Index (NDVI) across different

environmental conditions (May et al., 2020; Hossain and Li, 2021).

This statistical test was used to assess whether significant differences

existed in NDVI values across varying levels of grazing pressure,

climate conditions, and other relevant factors within the study area.

The results from the ANOVA test provided a comprehensive

understanding of how these variables influenced vegetation cover

in the CAPA, offering insights into the potential impacts of climate

warming on ecosystem dynamics.
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2.3.2 Pearson correlation coefficient
A paired Pearson correlation test was employed to measure the

relationship between NDVI values and weather parameters across

different months of the year. This statistical approach was used to

assess the strength and direction of the linear relationship between

vegetation cover (as represented by NDVI) and climatic variables

such as temperature, humidity, precipitation, and snowfall (Yan

et al., 2022). By analyzing these correlations, the test helped to

determine how seasonal weather variations influenced vegetation

dynamics in the Alborz Protected Zones, offering insights into the

ecological responses to climate change.

2.3.3 Regression
Regression analysis was employed to measure the trends in

NDVI changes over the past years, as well as to assess the influence

of weather parameters on NDVI. This method allowed us to

quantify the relationship between vegetation cover (NDVI) and

key climatic factors such as temperature, precipitation, humidity,

and snowfall. By examining the trends of these weather parameters

over time, we were able to evaluate their impact on vegetation

dynamics and identify how fluctuations in climate variables have

influenced NDVI trends in the study area.

3 Results

3.1 Temporal trends in vegetation cover
across protected zones

The analysis of NDVI across designated time intervals reveals a

statistically significant fluctuation in vegetation cover in both the

Golestanak and Zānoos protected zones, reflecting a marked

enhancement in vegetation density over the study period

(Figure 2). For Golestanak, ANOVA results indicate a highly

significant temporal effect on NDVI (F = 9.3, df = 30, p < 0.001),

with time accounting for 65% of the observed variance (R² = 65%).
FIGURE 2

The ANOVA test results show the fluctuations of Golestanak vegetation index compared to Zānoos.
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Mean NDVI values in this zone show a progressive increase from

approximately 0.15 during 1994–1999 to 0.18 in the 2020–2024

interval, with error bars denoting the within-period variation. This

trend underscores a steady improvement in vegetation cover over

time, suggesting a potential relationship with long-term ecological

or climatic changes.

In Zānoos, NDVI exhibited a similar positive trajectory, with

ANOVA results demonstrating a significant temporal effect (F =

6.9, df = 30, p < 0.001), and an R² of 58%, indicating moderate

explanatory power. Initial NDVI values were recorded at

approximately 0.18 in 1994–1999, gradually rising to around 0.23

in the most recent interval (2020–2024). Despite some within-group

variability, as illustrated by the error bars, the overall upward trend

is consistent and suggests an increase in vegetation cover.

The stronger R² value in Golestanak (65%) compared to Zānoos

(58%) implies a more pronounced effect of temporal changes on

vegetation dynamics in Golestanak. This discrepancy may be

attributable to differences in ecological responses, habitat

characteristics, or specific management interventions in the

two zones.
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3.2 Temporal and spatial changes in
vegetation cover in Golestanak and Zānoos

The analysis of NDVI across Golestanak core zone and Zānoos

reveals significant temporal and spatial shifts in vegetation cover

from 1994 to 2024, suggesting a positive response to conservation

efforts and possible climate influences.

In Golestanak, there is a clear upward trend in vegetation density

over the study period (Figure 3). In 1994, low NDVI values (mostly

below 0.16) indicate sparse vegetation cover. By 2004, areas with higher

NDVI values (0.20–0.33) begin to appear, particularly in the northern

and central parts of the zone. This trend continues through 2014, with

substantial increases in vegetation density observed in several regions.

By 2024, a more extensive distribution of high NDVI values is evident,

indicating a consistent expansion of vegetative cover over the past three

decades. Statistical analysis supports these observations, as the ANOVA

results for Golestanak show a significant temporal effect on NDVI (F =

9.3, df = 30, p < 0.001), with time explaining a considerable proportion

of the variance (R² = 65%).

Zānoos exhibits a similar but less pronounced pattern. The 1994

NDVI map shows low vegetation density, with values mostly below

0.14. Over time, vegetation cover gradually increases, with NDVI

values above 0.20 emerging by 2004 and expanding further in 2014.

In 2024, there is a modest increase in NDVI values, though the
FIGURE 3

Comparison of vegetation trends in every 10 years.
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extent of high-density vegetation remains smaller than in

Golestanak. ANOVA results confirm a significant temporal effect

on NDVI in Zānoos (F = 6.9, df = 30, p < 0.001), with time

explaining 58% of the observed variation (R² = 58%). These patterns

suggest that both zones are benefiting from protective measures,

with Golestanak showing a more pronounced increase in vegetation

cover, possibly due to differences in habitat management, grazing

pressure, or native mammal activity.

This graph illustrates the year-over-year percentage changes in

NDVI for Golestanak and Zānoos, highlighting shifts in vegetation

density and health in response to annual environmental conditions

(Figure 4). Given the similar climate in both regions, the observed

fluctuations are likely a response to other than prevailing climate

patterns, including changes in precipitation, extreme temperatures,

and seasonal droughts.

Despite the shared climate, Golestanak and Zānoos show

distinct responses in their NDVI trends. Golestanak generally

demonstrates more robust and positive NDVI changes, indicating

greater vegetation resilience and faster recovery in favorable years.

This trend suggests that Golestanak vegetation may have structural

or compositional characteristics that allow it to better withstand and

recover from climatic stressors, possibly due to variations in species

composition, soil quality, or conservation practices.
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Conversely, Zānoos experiences more frequent and severe

negative NDVI changes, particularly during years with

challenging weather conditions, suggesting that its vegetation may

be more vulnerable to stress factors like drought or temperature

variability. The higher variability in Zānoos’ vegetation response

might be indicative of a less resilient ecosystem, where vegetation is

more sensitive to common climatic fluctuations, leading to larger

declines in vegetation health during adverse conditions.

The error bars indicate variability within each year’s NDVI

change, with wider margins observed in years with extreme

fluctuations. This variability highlights possible habitat differences

within each zone, though the overall trend suggests that Golestanak

vegetation benefits from inherent or managed resilience factors that

allow it to respond more positively to similar environmental

conditions. In summary, although Golestanak and Zānoos

experience comparable climate conditions, Golestanak vegetation

consistently shows stronger resilience and recovery.

The NDVI analysis reveals interesting contrasts between

Golestanak and Zānoos. Although Zānoos currently exhibits a

higher NDVI, with values consistently above 0.19 and reaching

over 0.23 in recent years, the trend in Golestanak shows a more

rapid increase in NDVI over time. In Golestanak, the NDVI values

have risen from approximately 0.15 to nearly 0.18 by 2023,

demonstrating a statistically significant upward trend (p = 0.001,
FIGURE 4

Percentage of NDVI fluctuations each year compared to last year in the study area.
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F = 9, df = 30, R² = 39.15%) compared to Zānoos (p = 0.003, F = 7.3,

df = 30, R² = 34.31%).

To quantify this trend difference, I extrapolated the regression

equations provided for each site. If the current growth rates

continue, Golestanak NDVI is projected to intersect with that of

Zānoos probably around the year 2045. This projection underscores

the robust vegetation recovery occurring in Golestanak, despite the

pressures of grazing, and suggests that, in the long term, Golestanak

may reach or even exceed Zānoos in NDVI values if the observed

trends persist (Figure 5).

The pairwise Pearson correlation analysis reveals significant

relationships between climate variables (temperature and rainfall)

and NDVI in both Golestanak and Zānoos. In Golestanak, a

significant positive correlation is observed between May

temperature (tm – May) and NDVI (r = 0.424, p = 0.039), and a

stronger correlation with May rainfall (rrr24 –May) and NDVI (r =

0.461, p = 0.023). This suggests that both temperature and rainfall

during May have a noticeable influence on vegetation growth

in Golestanak.

In Zānoos, however, while the correlation between May

temperature and NDVI is positive, it does not reach statistical

significance (r = 0.345, p = 0.099), indicating that May temperatures

may have a more limited impact on vegetation compared to

Golestanak. Conversely, May rainfall shows a significant positive

correlation with NDVI (r = 0.485, p = 0.016), suggesting that

precipitation may be a key driver of vegetation growth in Zānoos

during this period.

Further, June temperature (tm – Jun) shows a significant

positive correlation with NDVI in both regions: Golestanak (r =

0.483, p = 0.017) and Zānoos (r = 0.408, p = 0.048). This indicates

that rising temperatures in June are likely to enhance vegetation

growth across both sites, supporting the notion that warmer late-

spring conditions favor increased NDVI levels.

In the previous section, climate parameters affecting NDVI were

identified, but June temperature is the only variable that has shown
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significant changes over the past years. In Golestanak, where

livestock grazing is prohibited and only large native mammals are

present, NDVI exhibits a significant positive correlation with June

temperature (p = 0.017, F = 6.7, R² = 23.4). The regression model

indicates that a 1°C increase in June temperature results in a 12.8%–

13.2% increase in NDVI, highlighting a strong positive response in

vegetation growth. In contrast, Zānoos, which is heavily impacted

by domestic animal grazing, shows a positive relationship between

June temperature and NDVI (p = 0.048, F = 4.4, R² = 16.6), but with

a more moderate increase of 6.5%–7% in NDVI for the same 1°C

temperature rise. Although both regions show a positive correlation

between temperature and vegetation growth, the intensity of the

response is notably stronger in Golestanak, suggesting that factors

such as grazing pressure may influence the magnitude of vegetation

response across the regions (Figure 6).

The Golestanak region’s census data indicate that native

artiodactyla (red deer and wild goats) exert variable grazing

impacts based on their population densities and estimated grazing

pressures. Red deer exhibit a mean density of approximately 324

individuals, with a standard deviation spanning from 300 to 348,

while the wild goat population maintains a mean density of around

700 individuals, fluctuating between 600 and 800. These densities

suggest a moderate grazing impact from wild ungulates, potentially

beneficial for vegetation management. This grazing pressure may

help enhance biodiversity and control dominant plant species,

offering an adaptive advantage under warming climate conditions.

In contrast, livestock census data from the nearby Zānoos

region reveal considerably higher grazing pressures exerted by

domesticated animals. Sheep populations average around 6,000

individuals (with a standard deviation of 5,500 to 6,500), while

cows show a mean density of approximately 550 individuals,

ranging from 500 to 600. These elevated densities of domesticated

grazers are likely placing significant pressure on local vegetation,

potentially leading to overgrazing and a reduction in plant diversity

within this protected area.
FIGURE 5

Regression results of NDVI increase in recent years.
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The spatial analysis of habitat availability in the Golestanak and

Zānoos protected zones reveals significant contrasts in habitat

distribution per individual for native and domesticated Artiodactyla

species, reflecting their natural versus human-influenced

distributions. In Golestanak, where native species like red deer and

wild goats are present, each individual occupies approximately

42,000–40,000 square meters of habitat (Figure 7). This naturally

expansive distribution allows for sustainable grazing, which promotes

vegetation recovery and fosters ecosystem stability. Conversely, in

Zānoos, where domesticated livestock (primarily sheep and cows) are

concentrated, each animal is allocated only about 10,000–12,000

square meters of habitat, within grid cells of 104.8 × 104.8 meters.

This artificial, dense distribution resulting from livestock

management practices significantly intensifies grazing pressure per

unit area, increasing the likelihood of overgrazing and subsequent

vegetation degradation.
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4 Discussion

This study sheds valuable light on the complex interplay

between climate warming and land-use practices, notably

livestock grazing, in shaping vegetation dynamics in the Alborz

Protected Area over the past 30 years (1994–2024). The significant

upward NDVI trend observed in both study sites, Zānoos and

Golestanak, underscores the role of increasing temperatures

especially the pronounced June warming and seasonal

precipitation in enhancing vegetation productivity in high-altitude

ecosystems. However, the slower NDVI growth rate in Zānoos

compared to Golestanak highlights the dampening effect of

intensive livestock grazing (1–1.2 hectares per head) versus the

lighter grazing pressure exerted by native artiodactyls in Golestanak

(4.2–4 hectares per individual). This research is crucial,

demonstrating that while climate change positively influences

vegetation cover, high densities of domestic livestock may offset

these gains, which has important implications for conservation and

land management. The study provides an essential foundation for

understanding how warming and grazing pressures interact,
FIGURE 7

Amount of potential habitat for native artiodactyla in Golestanak compared to domesticated livestock in Zānoos.
FIGURE 6

NDVI increase based on temperature increase.
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offering insights that could guide policy adjustments aimed at

balancing biodiversity conservation with sustainable grazing

practices under shifting climate regimes.

The results of this study provide compelling evidence of a

significant upward trend in NDVI over the past three decades, with

annual increases of 0.7–0.75% in Zānoos and 0.92–0.98% in

Golestanak. These findings align with previous studies, including

Piao et al. (2006), Pang et al. (2017), Xu et al. (2024), and Tuoku et al.

(2024), which identify climate change as a primary driver of

increasing NDVI. Furthermore, studies by Eskandari Dameneh

et al. (2021) and Ghorbanian et al. (2022) confirm that the NDVI

increases observed in Iran are closely linked to climate variability.

Our results specifically highlight May and June temperature and

precipitation as the most significant climate parameters influencing

NDVI, consistent with findings from Kiapasha et al. (2017a, b),

Eskandari Dameneh et al. (2021), Ghorbanian et al. (2022), and

Zhang et al. (2024). While other studies have indicated that the

relative importance of climatic factors can vary by region, with drier

habitats showing stronger influences of rainfall on NDVI, our work

reinforces the complexity of these interactions. This study

underscores the importance of considering both long-term climate

trends and short-term climatic fluctuations in understanding

vegetation dynamics, particularly in climate-sensitive regions such

as Iran, where ongoing climate change is likely to have profound

impacts on ecosystem productivity and resilience.

Our results provide compelling evidence of the differential

impacts of grazing by domestic livestock (cattle and sheep)

compared to native artiodactyls (Caspian red deer and wild goats)

on vegetation dynamics. Despite relatively similar ecological

conditions in Zānoos and Golestanak, the response of NDVI to

temperature increases exhibited a divergent pattern between the

two areas. While Zānoos consistently displayed 0.3 higher NDVI

values than Golestanak, the rate of NDVI increase in Golestanak

over recent years was 30–32% greater than in Zānoos. This disparity

is likely attributed to the higher grazing pressure in Zānoos, where

domestic livestock densities are significantly higher (about 4 times

denser than Golestanak). The negative effects of livestock grazing on

vegetation cover have been well-documented in the literature, with

studies by Ndungu et al. (2019), Balata et al. (2022), Li et al. (2022),

and Velamazán et al. (2023) highlighting the degradation of plant

communities under domestic grazing. These findings emphasize the

urgent need for regulating grazing intensity, particularly in areas

experiencing both grazing pressure and climate change, to protect

ecosystem productivity. Our study underscores the critical

importance of sustainable land-use practices to mitigate the

combined effects of overgrazing and climate change on vegetation

health and ecosystem resilience. Furthermore, our findings align

with the results of Skidmore and Ferwerda (2008), Searle et al.

(2015), Garroutte et al. (2016), Navarro et al. (2020), and Zhang

et al. (2024), which demonstrate the positive influence of protected

areas where livestock grazing is prohibited, and only native

herbivores are present. This highlights that the distribution of

herbivores, particularly native species, is strongly associated with
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resource availability and reinforces the importance of conservation

strategies aimed at promoting native herbivore populations to

enhance vegetation regeneration and maintain ecosystem stability.

This study provides compelling evidence for the critical role of

effective grazing management in safeguarding Iran’s high-altitude

ecosystems, which are increasingly important as climate refuges for

vulnerable species (Martin et al., 2018; Peters et al., 2019; Wen et al.,

2022; Sayahnia et al., 2024). With rising temperatures, these

elevated habitats offer essential seasonal refuge for native large

mammals allowing them to escape thermal stress in lower-altitude

zones. Research by Millon et al. (2019), Kelt et al. (2019), and

Cantor et al. (2021) similarly emphasizes the value of high-altitude

habitats for supporting biodiversity under shifting climates, while

studies by Teitelbaum and Mueller (2019), Shaw (2020), and

Shizuka and Johnson (2020) illustrate how species mobility serves

as an adaptive response to dynamic and fragmented environments.

Nevertheless, the encroachment of domestic livestock into these

habitats presents a significant challenge, leading to vegetation

degradation and reduced habitat availability for native herbivores

(Soofi et al., 2018), which are then forced into limited protected

areas like Golestanak. This concentration intensifies interspecies

competition and risks overgrazing, potentially destabilizing the

ecosystem’s delicate balance. In response, adaptive land management

strategies that restrict livestock access to critical habitats are essential.

Practical measures could include the acquisition of high-pressure

grazing lands in areas such as Zānoos and the establishment of

ranger stations to reinforce habitat protection. These actions would

not only reduce livestock encroachment but also secure habitat

corridors essential for the seasonal migrations of native species. Such

targeted interventions are crucial for mitigating the compounded

impacts of climate change and grazing pressure, ensuring the

resilience and long-term sustainability of Iran’s unique biodiversity

and high-altitude ecosystems.
5 Conclusion

This study provides crucial insights into the complex

interactions between climate warming and grazing pressures in

shaping vegetation dynamics within Iran’s Alborz Protected Area

over the past three decades. Our findings demonstrate a significant

increase in vegetation cover, driven primarily by temperature

increases and seasonal rainfall, with particularly strong responses

observed in high-altitude ecosystems. However, the positive effects

of climate change on vegetation productivity are tempered by the

higher grazing pressures exerted by domestic livestock, as seen in

the Zānoos region. In contrast, the more sustainable grazing

practices of native herbivores in Golestanak contribute to a

stronger and more resilient vegetation response, highlighting the

benefits of maintaining native herbivore populations in promoting

ecosystem stability. These results underscore the urgent need for

sustainable land-use and grazing management strategies,

particularly in climate-sensitive regions, to protect ecosystem
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health and biodiversity. Effective management, including the

regulation of grazing intensity and the protection of critical

habitats, is essential for mitigating the adverse impacts of climate

change and overgrazing. This research provides a foundation for

policy adjustments that balance biodiversity conservation with

sustainable land-use practices, ensuring the long-term resilience

of Iran’s unique high-altitude ecosystems amidst the challenges

posed by climate change.
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Estrada-Villegas, S., Stevenson, P. R., López, O., DeWalt, S. J., Comita, L. S., and
Dent, D. H. (2023). Animal seed dispersal recovery during passive restoration in a
forested landscape. Philos. Trans. R. Soc. B 378, 20210076. doi: 10.1098/rstb.2021.0076
Filazzola, A., Brown, C., Dettlaff, M. A., Batbaatar, A., Grenke, J., Bao, T., et al.
(2020). The effects of livestock grazing on biodiversity are multi-trophic: a meta-
analysis. Ecol. Lett. 23, 1298–1309. doi: 10.1111/ele.13527

Garroutte, E. L., Hansen, A. J., and Lawrence, R. L. (2016). Using NDVI and EVI
to map spatiotemporal variation in the biomass and quality of forage for migratory
elk in the Greater Yellowstone Ecosystem. Remote Sens. 8, 404. doi: 10.3390/
rs8050404

Gelmi-Candusso, T. A., and Hämäläinen, A. M. (2019). Seeds and the city: the
interdependence of zoochory and ecosystem dynamics in urban environments. Front.
Ecol. Evol. 7, 41. doi: 10.3389/fevo.2019.00041

Ghasemi, A., Hemami, M. R., Karimi, S., Iravani, M., and Senn, J. (2024). Potential
seed dispersal by persian wild ass in south central Iran. Rangeland Ecol. Manage. 92,
73–79. doi: 10.1016/j.rama.2023.09.007

Ghorbanian, A., Mohammadzadeh, A., and Jamali, S. (2022). Linear and non-linear
vegetation trend analysis throughout Iran using two decades of MODIS NDVI imagery.
Remote Sens. 14, 3683. doi: 10.3390/rs14153683

Gonzalez, S. L., and Ghermandi, L. (2021). Overgrazing causes a reduction in the
vegetation cover and seed bank of Patagonian grasslands. Plant Soil 464, 75–87.
doi: 10.1007/s11104-021-04931-y

Hojjati, S. M., Darzi, A., Asadi, H., and Tafazoli, M. (2021). Changes in soil properties
and plant biodiversity after 12 years of rehabilitating livestock farms in the Hyrcanian
Forests. Agroforestry Syst. 95, 1493–1503. doi: 10.1007/s10457-021-00658-y

Hossain, M. L., and Li, J. (2021). NDVI-based vegetation dynamics and its resistance
and resilience to different intensities of climatic events. Global Ecol. Conserv. 30,
e01768. doi: 10.1016/j.gecco.2021.e01768

Jones, C. S., Duncan, D. H., Rumpff, L., Robinson, D., and Vesk, P. A. (2022).
Permanent removal of livestock grazing in riparian systems benefits native vegetation.
Global Ecol. Conserv. 33, e01959. doi: 10.1016/j.gecco.2021.e01959

Karami, M., Ghadirian, T., and Faizolahi, K. (2016). The atlas of mammals of Iran.
Jahad daneshgahi, kharazmi Branch.
frontiersin.org

https://doi.org/10.1163/22244662-bja10087
https://doi.org/10.3390/rs14102322
https://doi.org/10.3390/su16104279
https://doi.org/10.1111/1365-2656.13336
https://doi.org/10.1186/s12870-022-03899-w
https://doi.org/10.1002/ldr.v32.17
https://doi.org/10.3389/fevo.2022.864864
https://doi.org/10.3389/fevo.2022.864864
https://doi.org/10.1038/s41598-021-99636-8
https://doi.org/10.1038/s41598-021-99636-8
https://doi.org/10.1098/rstb.2021.0076
https://doi.org/10.1111/ele.13527
https://doi.org/10.3390/rs8050404
https://doi.org/10.3390/rs8050404
https://doi.org/10.3389/fevo.2019.00041
https://doi.org/10.1016/j.rama.2023.09.007
https://doi.org/10.3390/rs14153683
https://doi.org/10.1007/s11104-021-04931-y
https://doi.org/10.1007/s10457-021-00658-y
https://doi.org/10.1016/j.gecco.2021.e01768
https://doi.org/10.1016/j.gecco.2021.e01959
https://doi.org/10.3389/fcosc.2025.1534034
https://www.frontiersin.org/journals/conservation-science
https://www.frontiersin.org


Salmanpour et al. 10.3389/fcosc.2025.1534034
Karimi, S., Hemami, M. R., Esfahani, M. T., Akhani, H., and Baltzinger, C. (2018).
Complementary endozoochorous seed dispersal by large mammals in the Golestan
National Park, Iran. Seed Sci. Res. 28, 294–302. doi: 10.1017/S0960258518000351

Kelt, D. A., Heske, E. J., Lambin, X., Oli, M. K., Orrock, J. L., Ozgul, A., et al. (2019).
Advances in population ecology and species interactions in mammals. J. Mammalogy
100, 965–1007. doi: 10.1093/jmammal/gyz017

Kiapasha, K., Darvishsefat, A. A., Julien, Y., Sobrino, J. A., Zargham, N., Attarod, P.,
et al. (2017b). Trends in phenological parameters and relationship between land surface
phenology and climate data in the Hyrcanian Forests of Iran. IEEE J. Selected Topics
Appl. Earth Observations Remote Sens. 10, 4961–4970. doi: 10.1109/JSTARS.4609443

Kiapasha, K., Darvishsefat, A., Zargham, N., Attarod, P., Nadi, M., and Schaepman,
M. (2017a). Greening trend in the Hyrcanian forests using NOAA NADVI time series
during 1981-2012. For. Wood Products 70, 09–420. doi: 10.1109/JSTARS.2017.2736938

Kral-O’Brien, K. C., Roberton, B., Duquette, C. A., Hovick, T. J., and Harmon, J. P.
(2023). A mechanistic framework for studying indirect effects of large vertebrate
herbivores on pollinators. Arthropod-Plant Interact. 17, 263–274. doi: 10.1007/
s11829-023-09964-x
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Navarro, C. J., Izquierdo, A. E., Aráoz, E., Foguet, J., and Grau, H. R. (2020).
Rewilding of large herbivore communities in high elevation Puna: geographic
segregation and no evidence of positive effects on peatland productivity. Regional
Environ. Change 20, 1–11. doi: 10.1007/s10113-020-01704-8

Ndungu, L., Oware, M., Omondi, S., Wahome, A., Mugo, R., and Adams, E. (2019).
Application of MODIS NDVI for monitoring Kenyan rangelands through a web based
decision support tool. Front. Environ. Sci. 7, 475659. doi: 10.3389/fenvs.2019.00187

Nezami, B., and Farhadinia, M. S. (2011). Litter sizes of brown bears in the central
alborz protected area, Iran. Bio One 22 (2), 167–171. doi: 10.2192/URSUS-D-10-
00026.1

Nezami, B., Rahmani, M., Faghihi, H., and Shams-Esfandabad, B. (2024). Habitat
selection and identification of potential breeding habitats of red deer cervus elaphus
maral in mazandaran province. Environ. Interdiscip. Dev. 8, 108–121. doi: 10.22034/
envj.2024.450806.1362

Nield, A. P., Nathan, R., Enright, N. J., Ladd, P. G., and Perry, G. L. (2020). The
spatial complexity of seed movement: animal-generated seed dispersal patterns in
fragmented landscapes revealed by animal movement models. J. Ecol. 108, 687–701.
doi: 10.1111/1365-2745.13287

Noroozi, J., Naqinezhad, A., Talebi, A., Doostmohammadi, M., Plutzar, C., Rumpf, S.
B., et al. (2019). Hotspots of vascular plant endemism in a global biodiversity hotspot in
Southwest Asia suffer from significant conservation gaps. Biol. Conserv. 237, 299–307.
doi: 10.1016/j.biocon.2019.07.005

Noroozi, J., Talebi, A., and Doostmohammadi, M. (2020). The alborz mountain
range. Plant Biogeography Vegetation High Mountains Cent. South-West Asia, 117–149.
doi: 10.1007/978-3-030-45212-4

Öllerer, K., Varga, A., Kirby, K., Demeter, L., Biró, M., Bölöni, J., et al. (2019). Beyond
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