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Uncertainty, complexity, and dynamic changes present challenges for

conservation and natural resource management. Evidence-based approaches

grounded in reliable information and rigorous analysis can enhance the

navigation of the uncertainties and trade-offs inherent in conservation

problems. This study highlights the importance of collaborative efforts and

evidence-based decision-making, specifically implementing the Resilience-

Experimentalist school of adaptive management (RE-ARM), which emphasizes

stakeholder involvement, shared understanding, and experimentation. Our goal

was to develop an adaptive management framework to reduce the uncertainty

around the use of prescribed fire to manage the habitat for eastern black rails

(Laterallus jamaicensis jamaicensis) and mottled ducks (Anas fulvigula) in

saltmarshes of the Gulf of Mexico. Supported by discussions at a series of

workshops, we used a value of information analysis to select a fire

management hypothesis to test, developed an influence diagram to represent

the system under fire management, used the influence diagram to develop a

Bayesian decision network (BDN), and conducted a power analysis to guide

management experiments and monitoring. Value of information analysis

identified fire return interval as the critical uncertainty. Our BDN provided

valuable insight into how managers believe prescribed fire influences

vegetation characteristics and how vegetation influences both eastern black

rail occupancy and mottled duck abundance. The results of the power analysis

indicated that a standard occupancy modeling framework was more useful to

compare 2- and 5-year fire return intervals for black rails than two alternative

designs (removal and conditional). Our BDN can be used to predict the

probability of achieving the desirable vegetative response to increase the

occupancy probability of black rails and abundance of mottled ducks, and

monitoring data can be used to update the BDN (learn) and improve best

management practices for prescribed burns (adapt). Linking the value of
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information, BDNs, and power analysis enhances our understanding of the

system, improves management decision-making, and builds trust among

scientists, interested parties, and decision-makers. This approach lays the

groundwork for knowledge co-production and adaptive management.
KEYWORDS

adaptive management, Bayesian decision network, co-production, marsh birds, power
analysis, structured decision making, value of information
1 Introduction

Conservation and natural resource management decisions are

characterized by uncertainty, complexity, and dynamic change. A

multitude of stressors, such as habitat loss and fragmentation,

climate change, and disease, pose significant threats to wildlife. These

threats are often interconnected, and their impacts can compound in

unpredictable ways (NASEM, 2022), further exacerbating the

challenges faced by wildlife populations (Polasky et al., 2011; Game

et al., 2014). Evidence-based conservation approaches enable us to

navigate the uncertainties, trade-offs, and conflicting interests inherent

in these problems, ensuring that management efforts are grounded in

reliable information and rigorous analysis (Nichols, 2012; Salafsky

et al., 2019; Fuller et al., 2020).

Effectively tackling conservation and natural resource

management issues is benefitted by collaborative efforts (Beier

et al., 2017; Cundill and Fabricius, 2009; Dubois et al., 2020).

Adaptive resource management (ARM; Lancia et al., 1996) is a

collaborative, iterative approach to decision-making and resource

management that engages scientists, interested parties, and

decision-makers and aims to address complex and uncertain

problems. There are two primary schools of adaptive

management: Resilience-Experimentalist (RE-ARM) and

Decision-Theoretic (DT-ARM; McFadden et al., 2011). The DT-

ARM framework is grounded in decision-theory and focuses on

defining the management problem, objectives, and alternatives with

no explicit requirement for experimentation to test management

actions (McFadden et al., 2011; Johnson et al., 2013). An important

difference between DT-ARM and RE-ARM is that DT-ARM often

frames management as a Markov decision process with a single

decision-maker and uses an optimization algorithm (e.g., stochastic

dynamic programming) to provide a sequence of optimal decisions

(Williams, 2009), whereas RE-ARM emphasizes a general learning

process that embraces uncertainty and uses the principles of

experimental design as part of “learning-by-doing” (Walters and

Holling, 1990; Walters, 1997). Within the RE-ARM framework,

emphasis is placed on early involvement by interested parties,

experimentation to test management hypotheses, and evaluation

of management outcomes to create a shared understanding of

system dynamics among interested parties. The collaborative
02
learning process of the RE-ARM framework leads to improved

communication and trust among participants and experiments offer

distinct advantages in establishing causality and providing strong

evidence for making informed decisions (Gerber et al., 2020;

Ockendon et al., 2021; Caro et al., 2023).

In the context of RE-ARM and DT-ARM, value of information

(VOI) can be an important tool to identify which uncertainty, if

resolved, will result in greatest management benefits (Walters, 1986;

Yokota and Thompson, 2004; Runge et al., 2011; Williams et al.,

2011). VOI analyses compare the expected outcomes of different

management actions under uncertainty with expected outcomes

after resolving uncertainty. By considering the potential effects of

different actions and the uncertainties associated with each,

managers can evaluate the sensitivity of management outcomes to

different hypotheses (Williams and Johnson, 2015; Bolam et al.,

2019). This comparison helps prioritize which management actions

to test experimentally within the RE-ARM framework.

Bayesian decision networks (BDNs) provide a framework for

representing and reasoning about uncertainty and for explicitly

representing decision alternatives and their utilities (Marcot et al.,

2006; Chen and Pollino, 2012). BDNs are constructed based on a

conceptual model (i.e., influence diagram) that represents causal,

logical, or other relationships among variables and their

dependencies. BDNs can be easily created in participatory

settings, particularly with experts contributing their knowledge,

insights, and diverse perspectives, thereby improving the

development process and parameterization of the network (Drew

and Collazo, 2012; Hassall et al., 2019; Marcot, 2019). As new data

are collected, the BDN can be repeatedly updated, refined, and

calibrated to improve its accuracy and relevance to decision-making

(Nyberg et al., 2006). Finally, BDNs can incorporate multiple types

of uncertainty relevant for adaptive management: environmental

variation, structural uncertainty, partial management control, and

partial observability (Williams, 1997; Lyons et al., 2008).

Power analysis assesses the potential for learning by estimating the

statistical power of a monitoring design (Anderson, 1998; Steidl and

Thomas, 2001; Di Stephano, 2003). Insufficient sample size can result

in low power, increasing the risk of type II errors (false negatives) where

true effects are not detected. Power analysis can identify the minimum

sample size required to achieve a desired level of statistical power
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(i.e., to detect a meaningful effect) and is amenable to nearly any

analytical framework including BDNs, allowing decision-makers to

allocate necessary resources. Power analysis provides a quantitative

measure of the ability to detect effects in adaptive management

experiments—by considering statistical power, decision-makers can

communicate the level of confidence in the reliability of monitoring

outcomes and the effectiveness of strategies aimed at reducing

structural uncertainty. Because experimentation is a fundamental

aspect of the RE-ARM framework, conducting power analyses

becomes an important step during experimental design to ensure an

adequate amount of data is collected to facilitate learning and reduce

critical uncertainties.

Here we present a case study of the setup phase for a RE-ARM

framework to actively learn about and improve fire management

strategies for eastern black rails (BLRA; Laterallus jamaicensis

jamaicensis) and mottled ducks (MODU; Anas fulvigula)

(hereafter, focal species) in U.S. Gulf of Mexico salt marshes.

ARM frameworks include two distinct phases: a setup phase in

which key components are developed and an iterative phase in

which the components are linked together in a sequential learning

and decision process (Williams et al., 2007). Our focus was on

understanding and managing a dynamic ecosystem that involves

interacting factors, nonlinear dynamics, and multiple decision-

makers. Through experimentation, we can continuously improve

our understanding of the system, refine our decision-making

processes, and strengthen the ability to manage effectively. By

coproducing the framework with experts, decision-makers, and

other interested parties, we can harness their insights, generate

shared ownership over the management strategies, and improve

conservation for our focal species in the Gulf of Mexico.

Throughout our case study, we show how coproduction tools

from decision analysis, modeling, and monitoring can create a

consortium for developing and improving evidence-based decision-

advisory tools (Nichols et al., 2019).
2 Methods

2.1 Study area and focal species

The history of fire in salt marshes of the Gulf of Mexico has

been shaped by both natural and anthropogenic causes (Nyman

and Chabreck, 1995). Historically, fire was predominantly a

natural occurrence, ignited by lightning strikes. These fires

helped control the growth of woody vegetation, promote

nutrient cycling, and create a mosaic of vegetation patches with

varying stages of succession. Native Americans also had a long

history of utilizing fire as a land management tool. However,

during the 20th century, widespread fire suppression policies were

implemented across the United States, including the Gulf of

Mexico, leading to changes in ecosystem dynamics and altered

natural fire regimes. Whereas there is increasing recognition of the

importance of managing fire in salt marshes for conservation

purposes, the effects of prescribed fire on focal species of concern,

such as eastern black rails and mottled ducks, through changes to
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vegetation structure and composition, are unknown (Mitchell

et al., 2006).

Eastern black rails are small, secretive birds that inhabit coastal

wetlands, including salt marshes, in the Gulf of Mexico (Conway,

2011; Watts, 2016). They prefer dense, tall grasses, typically

occupying areas with high marsh vegetation, especially where it

transitions to low marsh or wet meadows, which provides cover and

foraging opportunities (Roach and Barrett, 2015). Mottled ducks

inhabit a variety of coastal wetland habitats in the Gulf of Mexico,

including salt marshes, prairies, freshwater marshes, and estuaries.

They prefer shallow marshes with dense emergent vegetation, such

as cordgrass, sedges, and bulrushes, which provides important

nesting and foraging areas (Bonczek and Ringelman, 2021;

Haukos et al., 2010). Eastern black rails are federally threatened

(USFWS, 2020), and mottled ducks are a regionally important game

species (Krainyk and Ballard, 2016), with both species co-occurring

in saltmarshes throughout the Gulf of Mexico. The response of

eastern black rails and mottled ducks to prescribed fire in terms of

habitat suitability is not fully understood.
2.2 Value of information to
prioritize uncertainty

Because co-produced science and adaptive management are

collaborative- and partnership-driven, we first established a

planning committee composed of decision analysts and research

scientists to develop a framework that integrates diverse

perspectives and expert knowledge into the decision-making

process. The planning committee identified a larger multi-

disciplinary team of interested parties and experts with a

diversity of experiences and knowledge (prescribed fire, focal

species, high marsh management, endangered species regulation,

conservation, etc.) who were either decision-makers or who have

an influential role within a decision-making organization. We

invited these experts to an initial adaptive management virtual

workshop (hosted in September 2020) where we framed the

decision context and created influence diagrams to illustrate the

relationships among management actions and ecological

variables within the high marsh (Figure 1). Using influence

diagrams allowed for communication of key uncertainties and

development of multiple working hypotheses that specified a

threat to the focal species, description of the demographic

mechanism by which the focal species were affected, and

identification of a management action that may reduce or

eliminate the threat. We calculated the constructed value of

information (CVOI; Runge et al., 2023), which prioritizes

sources of uncertainty in management actions, such as regarding

the use of prescribed fire to benefit the focal species (i.e., increase

BLRA occupancy or MODU abundance). Grounded in the algebra

of the expected value of perfect information (EVPI), CVOI uses

ratio scales to decompose EVPI into a contribution representing

the relevance of the uncertainty to the decision and a contribution

representing the magnitude of uncertainty (Runge et al., 2023).

CVOI scores elicited from experts were used to identify the
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hypothesis which, if tested, would best maximize management

benefits (see Stantial et al., 2023 and Table 1).
2.3 Model development: Bayesian
decision network

We followed the recommendations from Marcot et al. (2006) to

convert the influence diagrams from the initial workshop into a

BDN. The conversion process involves three steps: the alpha-level

model, initially created from influence diagrams and expert

judgment; the beta-level model, revised after peer review and

calibrated with case data; and the gamma-level model, finalized

by updating and validating with new data for final application

(Marcot et al., 2006). We developed the BLRA alpha model in a

second virtual model-building workshop (hosted in 2021), where

our multidisciplinary team refined the BLRA influence diagrams,

removed linguistic uncertainty among node definitions, converted

the influence diagram to a BDN, and contributed values for the

conditional probability tables (CPT; a table that represents the

hypothesized influence of each parent node on the outcomes of

child nodes; Stantial and Lyons, 2024) in the network via a formal

elicitation for expert judgment (Hemming et al., 2018). Following

the workshop, we averaged the individual experts’ responses

(Clemen and Winkler, 2007) and entered the CPT values into
Frontiers in Conservation Science 04
the alpha-level BDN in Netica® (Norsys Software Corp.,

www.norsys.com). Simple averaging has been shown to work well

in many cases, and in this case, the experts’ opinions were closely

aligned, making simple averaging an appropriate and effective

method for aggregating the responses (Clemen and Winkler,

2007). In a subsequent meeting, we reviewed the alpha-level

BLRA model with participants, each of the relationships were

discussed, and the alpha-level BLRA model was finalized. We

procured two independent reviews from BLRA experts who

reviewed the model structure and CPT values and confirmed the

model’s construction, which finalized the beta-level BLRA model.

To create the gamma-level model, we conducted a one-way

sensitivity analysis by varying one input node at a time while

keeping the other input nodes constant (Conroy and Peterson,

2013). This allowed us to observe and measure the effect on the

probability distribution for BLRA occupancy, evaluate the behavior

of the BLRA BDN, and verify that the model’s predictions were

reasonable and informed.

We followed the same process to develop the MODU BDN,

again, using the guidelines from Marcot et al. (2006). We then

combined the gamma-level BLRA and MODU models into a single

BLRA + MODU BDN because they shared most of the same

environmental forcing variables and so that we might most

efficiently evaluate tradeoffs among various fire return intervals

for the two species (Figure 1).
FIGURE 1

The progression from the original conceptual model (A), developed during the initial adaptive management workshop, to a trimmed conceptual
model (B), where node states are defined for each component, and finally to a Bayesian decision network (BDN; C) parameterized with expert-
elicited conditional probabilities tables. The initial conceptual model (A) was conceived as an influence diagram during brainstorming sessions in the
early stages of the project. Green rectangles represent management actions, yellow rounded rectangles represent ecological variables, red ovals
represent chance events, and blue hexagons represent fundamental objectives. Arrows represent the direction of cause and effect. The conceptual
model was refined and streamlined (B) through an interactive and consultative process between subject matter experts and decision analysts.
Specific states were assigned to each node for clarity and precision. The streamlined conceptual model (B) was transformed into a BDN (C),
incorporating expert knowledge through elicited conditional probabilities to quantify the relationships and uncertainties within the model. This
progression highlights the evolution of the model from its conceptual inception to a fully specified BDN, enabling informed decision-making based
on expert input and probabilistic reasoning.
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Once the gamma-level BLRA BDN was created, we hosted an

interactive scenario modeling workshop (hosted in 2022) where our

multidisciplinary team, other researchers, and other managers

received firsthand experience running BDN scenarios of their

choice in Netica with the gamma-level BLRA BDN (i.e., influence

runs of Marcot, 2012). Scenario modeling involves using the BLRA

BDN to simulate various management scenarios and predict their

outcomes, allowing participants to explore and evaluate different

strategies. Before the workshop, all participants received a copy of

the model and downloaded the software to their computer so that

they could conduct influence runs, which involve using the model

to analyze the effects of different variables on the outcomes. We also

reviewed the MODU + BLRA BDN, explored its functionalities,

discussed model outputs in terms of causal and diagnostic

reasoning, and discussed future steps for utilizing this model in

adaptive management.

Finally, because reducing uncertainty and learning from

experimental management are hallmarks of RE-ARM, we also

conducted a learning simulation study to demonstrate methods

for learning with a BDN. We simulated 1,000 observations of data

from each node in the gamma-level BLRA model using the bnlearn

package (Scutari, 2010) in R (R Core Team, 2023) under the

assumption that the 2-year fire return interval would result in

highest BLRA occupancy; we focused on fire return interval because

it was prioritized as the critical uncertainty for managers in our

value of information analysis (Stantial et al., 2023). We chose the 2-

year fire return interval for demonstration purposes only; we do not

draw inference about BLRA occupancy from this analysis. Rather,

we consider this simulation to be one possible outcome for this

study and use the analysis only to demonstrate model updating and

Bayesian learning via RE-ARM. With the simulated data, we

updated the gamma-level BLRA model in Netica using the

expectation maximization algorithm (Do and Batzoglou, 2008).

The simulated data were arranged in a spreadsheet with

columns corresponding to each node in the Bayes Net and each

row representing a simulated outcome (Netica refers to such a

spreadsheet as “case data”). Updating the model was accomplished

using Netica’s facilities for parameter learning from case data,

which calculates a new conditional probability table at each node,

given the model structure and the new data. To evaluate differences

in the initial and updated model, we compared (1) Netica belief bars

for the time since fire node, (2) the mean and SD (assuming

Gaussian errors) of expected value for time since fire, and (3) the

prior and posterior distributions for fire return interval, all

conditional on BLRA being present.
TABLE 1 Hypotheses generated during workshop breakout group
discussions about reducing uncertainty around prescribed fire decisions
for eastern black rails, and mottled ducks in high marsh habitats along
the Gulf of Mexico, USA.

Hypothesis
name

Null
hypothesis (H0)

Alternative
hypothesis (HA)

1.
Microtopography

There is no difference in
pyrodiversity at sites
with low and high
microtopography
indices.

Pyrodiversity is greater at sites
with high microtopography
indices because low-elevation
patches will remain moist and
burn less severely, whereas
higher-elevation patches will be
more severely burnt.

2. Interspersion There are no differences
in focal species
occupancy between units
that are uniformly
burned and units that
contain a mosaic of
burned and
unburned areas.

Focal species occupancy is
greater at units with a mosaic
of burned and unburned areas
because unburned areas provide
refugia during fire and leave
habitat on the landscape while
burned areas recover.

3.
Mixed
seasonality

There are no differences
in vegetative response to
burns conducted during
both the dormant and
growing seasons when
compared to burns
conducted during only
the dormant or
growing season.

Vegetative response is better
when both growing and
dormant season burns are used
because burns during the
growing season control woody
vegetation, whereas burns
during the dormant season
provide the appropriate
herbaceous vegetation structure.

4. Predation There are no differences
in nest success and
survival at infrequently
and frequently
burned marshes.

As a result of reduced
vegetative cover, marshes that
are managed with frequent
prescribed fire provide less
cover for predators.

5. Fall vs. winter All focal species will
have the same response
to prescribed fire.

Focal species will have a
different response to fire
depending on the season the
burn is conducted due to
differences in life history traits.

6.
Matched
seasonality

There are no differences
in vegetative response to
burns conducted during
the growing season
when compared to the
dormant season.

Fires during the growing season
(at historical frequency)
produce a better vegetative
response than dormant seasons
because burns during the
growing season control
woody vegetation.

7.
Mixed
management

There are no differences
in vegetative response
and microtopography to
light grazing used with
prescribed fire when
compared to prescribed
fire only.

The appropriate vegetative
structure and microtopography
for focal species is achieved
through a combination of light
grazing and prescribed fire.

8.
Return interval

There are no differences
in vegetative response to
fire frequency across
the region.

Vegetative response varies with
fire frequency across the region
due to differences in
regional precipitation.

9. Mosaic burn There are no differences
in focal species
occupancy between units
that are uniformly
burned and units that

Occupancy is greater in units
that contain a burned–
unburned mosaic (greater
pyrodiversity) because
unburned areas provide refugia

(Continued)
TABLE 1 Continued

Hypothesis
name

Null
hypothesis (H0)

Alternative
hypothesis (HA)

contain a mosaic of
burned and
unburned areas.

during fire and leave habitat on
the landscape while burned
areas recover.
Hypotheses are stated in terms of the null and alternative versions. Source: Adapted from
Table 1 in Stantial et al. (2023). © Stantial et al. Originally published under a CC-BY-NC-ND
4.0 license.
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2.4 Power analysis for
management experiments

We conducted power analyses to guide our sampling design and

determine the number of sites and surveys at each site needed to

ensure an acceptable level of variance by which to then confidently

test the effects of various fire return intervals on MODU abundance

and BLRA occupancy. Knowing that BLRA and MODU surveys

would be completed simultaneously under the same study design,

we focused our power analyses on BLRA, which is a rare and cryptic

species and occupancy estimates are often inaccurate for rare and

cryptic species (Tolliver et al., 2019; Guillera-Arroita et al., 2014,

2010). We simulated BLRA occupancy data assuming an average

occupancy probability of 0.30 and detection probability of 0.10,

which may be conservative. Mean occupancy probability for the

Gulf coast region ranges from 0.09 to 0.75, and detection probability

ranges from 0.11 to 0.28 (McGowan et al., 2020a; Butler et al., 2023).

Using the framework from Specht et al. (2017), we evaluated

various sampling designs (standard, conditional, and removal)

and effect sizes (small, medium, or large; Cohen, 1988) to

determine the power to detect a difference between the null (no

difference between 2- and 5-year fire return intervals) and fire

treatment (difference between 2- and 5-year fire return intervals)

models. The standard design involves multiple visits to all sites, the

removal design ceases visits after initial detection, and the

conditional design focuses follow-up efforts only on sites where

the species was detected initially, each optimizing resource use

based on species detectability and rarity (Specht et al., 2017).

According to Cohen (1988), small, medium, and large effect sizes

correspond to standardized differences (d) of 0.2, 0.5, and 0.8,

respectively, representing small detectable, moderate visible, and

substantial noticeable differences between groups. These

standardized differences, or effect sizes, measure the magnitude

of difference between groups in a standardized way, allowing

comparisons across different studies and variables (Cohen, 1988).

Using the results of the power analysis, we finalized the sampling

design through consensus among a small team of experts,

who evaluated the implications of different study designs and

power thresholds on our study’s objectives and resource

constraints. The study design will be used to guide the iterative

phase of adaptive management.
3 Results

Using their influence diagrams, the participants generated nine

management hypotheses at the initial workshop (Table 1; see also

Table 1 from Stantial et al., 2023). The hypothesis with the greatest

value of information for decision-making based on the results of the

CVOI analysis was the Fire Return Interval hypothesis (Table 1, #8).

This hypothesis was chosen for experimentation within a RE-ARM

framework, aiming to expedite the learning process regarding the

effects of fire frequency on the focal species.

During the second workshop, we finalized the BLRA conceptual

model, converted the BLRA conceptual model into a BDN, and

parameterized the BLRA BDN through expert elicitation to create
Frontiers in Conservation Science 06
the alpha-level BLRA BDNmodel (Figure 1). The alpha-level BLRA

BDN comprised a burn decision node, six ecological variable nodes,

one species occupancy node (Table 2), and the causal relationships

among these components (as shown in Figure 1). The fully

parameterized, alpha-level BLRA BDN was the average of the

individual expert-elicited conditional probabilities (n = 20). The

average probability of BLRA occupancy being present across all

ecological states and management decisions from the expert-elicited

conditional probabilities was 29.7%.

Through demonstrations and discussions during our interactive

scenario modeling workshop, the attendees gained a thorough

understanding of BDNs, the importance of various habitat

variables on BLRA occupancy and MODU abundance, and the

predictive capabilities of these networks in assessing the ecological

impacts of varying fire frequencies on BLRA and MODU habitat.

The participants also gained a thorough understanding of the

practical application of BDNs in adaptive management.

During the final workshop, we focused on finalizing the MODU

conceptual model, converted the MODU conceptual model into a

BDN, and parameterized the MODU BDN through expert

elicitation. The final MODU BDN was composed of a burn

decision node, seven ecological variable nodes (six from the

BLRA BDN and one specific to MODU), one species abundance

node, and the causal relationships among these components

(Table 2). The fully parameterized MODU BDN was the average

(n = 19) of expert-elicited conditional probabilities. The mean

probability of high MODU abundance was 25%, while low

abundance had a mean probability of 40%, and none had a mean

probability of 35%.

The results of our one-way sensitivity analysis with the gamma-

level BLRA +MODU BDN suggested that the node most influential

to BLRA occupancy was the herbaceous vegetation node whereas

the annual precipitation node was the least influential (Figure 2A).

The node most influential to MODU abundance was the proximity

to brood rearing habitat whereas the annual precipitation node was

the least influential (1.7%; Figure 2B). The learning simulation

study explored a scenario in which BLRA are found most often in

management units with a 2-year fire return interval. In the initial

model parameterized with expert judgment, the belief bars for the

time since fire node are nearly equal and reflect managers’

uncertainty about the effect of fire return interval (Figure 3A).

The mean time since fire in this model was 4.8 growing seasons (SD

= 2.4). In the updated model, the belief bars are unequal and reflect

evidence, as expected, that BLRA are found more often in the 2-year

return interval (Figure 3B). The mean time since fire in the updated

model was 2.8 growing seasons (SD = 1.3). The posterior

distribution for time since fire (updated model) shifted as

expected and showed smaller variance compared to the prior

distribution (initial model; Figure 3C).

The results of the power analysis for BLRA occupancy revealed

no differences between the standard, conditional, and removal

sampling designs (Figure 4). We found that if the effect size is

small, no matter the sampling design or number of surveys, we will

have low power to detect a difference between the fire treatments.

Our results suggest that if the effect size is medium or high,

surveying 375 points (S) eight times (k) under the standard
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sampling design, we will have a high power (>75%) to detect a

difference between the null and fire treatment models.
4 Discussion

Our value of information (VOI) analysis identified that

reducing uncertainty about the effect of fire return interval will

provide the greatest management benefit to BLRAs and MODUs

in high marshes of the Gulf of Mexico. Addressing the remaining

uncertainty could help managers better understand ecological

processes, balance the trade-offs between species, allocate

resources more efficiently, and prioritize areas for burning—for

example, burning too frequently may be counterproductive because

vegetation might not have time to recover, leading to increased

rates of soil erosion; however, not burning frequently enough

might reduce habitat quality by leading to woody vegetation

encroachment that provides little structural cover for the focal

species. Regular, well-timed prescribed fires can sustain the

diverse vegetation relying on these fire-adapted ecosystems,

especially in the high marsh (Allain and Grace, 2001; Lynch,

1941; Nyman and Chabreck, 1995). Relative to the other

hypotheses, the Fire Return Interval hypothesis was considered

the most pertinent because it addressed a fundamental aspect of

habitat management with high potential for improving ecological

understanding and practical management outcomes for the focal

species in Gulf of Mexico high marshes.

BDNs offer multiple advantages as a modeling framework for

adaptive management. In our case study, BDNs allowed us to

intricately map and analyze the complex interactions between fire

management (fire return intervals), habitat variables, and BLRA

occupancy and MODU abundance. Their graphical nature, with

boxes and arrows showing influence, is intuitive, improving

communication during co-production because participants with a

wide variety of knowledge, insights, and perspectives can more

clearly define, visualize, and discuss variables and their

dependencies (Carriger and Newman, 2012; Robinson and Fuller,

2017). In this case, the participants were able to gain a thorough

understanding of the complex relationships between management

actions and ecological components of Gulf of Mexico high marshes

through a hands-on learning demonstration of the BDN. It is also

possible to parameterize a BDN with formal elicitation of expert

judgment when data are lacking (Drew and Collazo, 2012; Marcot,
TABLE 2 Bayesian decision network (BDN) nodes, node states, and
definitions for the adaptive management BDN used to evaluate the
effects of varying intervals of prescribed fire on eastern black rails and
mottled ducks in the Gulf of Mexico.

Node States Definition

Eastern
black rail
(BLRA)
occupancy

Present The probability of the presence/absence of a
black rail at a management unit

Absent

Mottled
duck
(MODU)
abundance

None (0 pairs) Number of indicated pairs at a survey
point. Indicated pairs may be one or two
individuals exhibiting breeding behaviors
within a survey point. Indicated pairs are
defined as single individuals observed in
either drop flight or emerging from
vegetation, which are behaviors suggestive
of breeding OR two individuals observed
together in either drop flight or emerging
from vegetation.

Low (one to
two pairs)

High (3+ pairs)

Proximity to
brood
rearing
habitat

Close (0–800 m) Euclidean distance to the nearest MODU
brood rearing habitat (as measured with
remotely sensed data from the point
count location)

Moderate (801–
1,600 m)

Far (>1,601 m)

Herbaceous
vegetation

Low (0%–33%) Proportion of the management unit (as
measured by quadrat and averaged across
plots) covered by both green and brown
herbaceous vegetation (the remainder of the
quadrat would be a combination of bare
ground and woody vegetation)

Medium
(34%–66%)

High
(67%–100%)

Visual
obstruction

Low (0–30 cm) Height of complete visual obstruction of
herbaceous vegetation (as measured using a
Robel pole, from the bottom of the pole,
the first bin that is not 100% covered by
herbaceous vegetation)

Medium (31–
60 cm)

High (60+ cm)

Spartina
spp.

Low (0%–33%) Proportion of the herbaceous vegetation
cover that is the combination of Spartina
patens, S. bakeri, and S. spartinaeMedium

(34%–66%)

High
(67%–100%)

Woody
vegetation

Low (0%–33%) Proportion of the management unit (as
visually estimated at the plot level) that is
covered by woody vegetation (the
remainder of the plot would be a
combination of herbaceous vegetation and
bare ground)

Medium
(34%–66%)

High
(67%–100%)

Time
since fire

Two
growing seasons

Number of growing seasons since fire was
applied to the management unit

Five
growing seasons

8+
growing seasons

Annual
precipitation

Dry (-2
standard
deviations)

Average annual precipitation as measured
at the regional level by local
weather stations

Average (mean)

(Continued)
TABLE 2 Continued

Node States Definition

Wet (+2
standard
deviations)

Burn
decision

Yes Whether or not the management unit was
burned during the previous dormant season

No
The data for the conditional probability tables of each node were derived from expert
elicitation (Stantial and Lyons, 2024).
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2012; Hassall et al., 2019); the expert elicitation of conditional

probability tables for the Gulf of Mexico BDN allowed a diverse set

of experts to contribute their expertise, facilitating shared

ownership of the modeling effort. As new data are collected, the

BDN structure and probability parameters can be iteratively

updated, refined, and calibrated to improve its accuracy and

relevance to decision-making (Nyberg et al., 2006). Finally,

resilience thinking places high value on understanding

consequences of uncertainty for system behavior and

management outcomes (Chapin et al., 2009; Polasky et al., 2011).

Our BDN incorporates multiple types of uncertainty important for

adaptive management (Williams, 2009; Lyons et al., 2008). First, the

probabilistic relationships between the burn decision node and

vegetation (child) nodes can help managers reduce uncertainty

from partial management control; a burn decision does not

always result in the same vegetation conditions, and as the CPTs

for the vegetation nodes evolve over time based on field data,

managers could gain insight about management control. Second,

uncertainty related to environmental variation, while not reducible,

is incorporated in the BDN with the precipitation node. Third,
Frontiers in Conservation Science 08
structural (model) uncertainty, including parametric uncertainty,

can be understood and reduced over time via learning from case

data and structural learning algorithms, e.g. those available in the R

package bnlearn (Scutari, 2010).

Power analysis is a foundational component to any adaptive

management program because it determines the sample size needed

to detect statistically significant differences between models, guiding

efficient resource allocation and ensuring that monitoring efforts

yield reliable data (Williams et al., 2007). Our finding that there is

no difference between standard, conditional, and removal sampling

designs helps streamline the monitoring process by indicating that

the typical, standard sampling design may be as effective as other

designs. This is particularly advantageous because, at all of our

survey locations, we will also be surveying for mottled ducks. Given

the challenges of detecting BLRA, if one of the sampling designs had

shown a substantial advantage in power to detect differences, we

might have considered adapting our approach to accommodate that

design. However, since none of the designs offer a significant

advantage, it is more efficient and practical to use the standard

sampling design for both species, allowing us to survey for mottled
FIGURE 2

One-way sensitivity analysis depicting the sensitivity of the eastern black rail (BLRA) occupancy (A) and mottled duck (MODU) abundance (B) nodes
to changes in their respective parent nodes within the Bayesian decision network (BDN). This analysis illustrates the extent to which variations in the
parent nodes influence the outcomes of BLRA occupancy and MODU abundance, providing insights into the relative sensitivity of these key nodes in
the BDN. Vertical lines in both panels indicate average model probability for BLRA presence (0.297) and high MODU abundance (0.253). The
horizontal bars represent the maximum and minimum values when manipulating the parent node (y-axis) of the BDN.
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ducks and black rails at the same sites using the same sampling

design. The identification of a threshold effect size for detecting

meaningful differences underscores the necessity of designing

studies with sufficient power. If the effect size is low, a much

larger sample size will be necessary to reliably discern between

the effects of 2- and 5-year fire return intervals. Therefore, power

analysis has been critical to ensuring that the design of our

experiment is robust enough to identify differences between fire

return intervals that are meaningful for management decisions.

We parameterized the BDN for BLRAs and MODUs using

expert elicitation, gathering conditional probability estimates from

a panel of experts. The resulting parameterized BDN represented

the mean expert-elicited conditional probabilities. Notably, the

probability of BLRA being present, as derived from the expert

data, was 30%. This finding closely aligns with published literature

for Gulf of Mexico BLRA, where the average occupancy is reported

to be around 30% (Tolliver et al., 2019). Such agreement between

the expert-elicited data and the literature values is encouraging,

indicating that the panel of experts provided reasonable and

informed estimates for the conditional probability tables for each

of the nodes in our BDN. This agreement not only validates the

value of expert elicitation in parameterizing BDNs but also

underscores the value of integrating expert judgment with

empirical data to enhance the accuracy and reliability of modeling

efforts (O’Hagan et al., 2006; Martin et al., 2012).

Implementation of adaptive management, whether RE-ARM or

DT-ARM, includes two phases: a setup phase to identify key

components and an iterative phase in which the components are
Frontiers in Conservation Science 09
linked together in a sequential learning and decision process

(Williams et al., 2007). Our RE-ARM setup phase created the

framework for collecting and analyzing data to reduce multiple

types of uncertainty about the effect of prescribed fire in high marsh

ecosystems. As our RE-ARM setup phase concludes, the iterative

phase will allow for refining and adapting management strategies

based on new knowledge, monitoring data, and interested parties’

input. Data collected during the iterative phase can be readily

incorporated into the BDN (Nyberg et al., 2006), enabling us to

improve the model outputs, gain insight into system dynamics, and

evaluate the effects of different fire return intervals on the focal

species (i.e., learn). In other words, the iterative phase involves

updating the model based on the collected data, laying the

foundation for evidence-based decision-making in the future. As

new knowledge about system dynamics accrues over time, it may be

helpful to revisit the objectives, actions, and BDN as part of a

“double-loop learning” process (Williams and Brown, 2018;

McGowan et al., 2020b). Through double-loop learning,

continuous improvements can be made, contributing to the

conservation of the focal species and restoration of ecological

balance within Gulf of Mexico high marshes.

Collaborative model co-production with participants was critical

to improving the overall understanding of our data collection and

helped to identify additional state variables of interest in our model.

Participatory modeling thus resulted in robust monitoring protocols,

ensuring that our data collection methodologies aligned with the

hypotheses they are meant to inform. Moreover, the model-building

process identified additional monitoring endpoints for “umbrella
FIGURE 3

Learning (reducing uncertainty) about fire management with a Bayesian decision network (BDN) for eastern black rails. (A) The initial BDN
parameterized with expert judgment shows high uncertainty about the effect of time since fire when eastern black rails are present (nearly equal
belief bars for two, five, and 8+ growing seasons in time since fire node). (B) In the updated model after learning from simulated monitoring data,
the belief bars reflect accumulating evidence that BLRAs prefer a fire return interval of two growing seasons (demonstration purposes only). (C) Prior
(initial model) and posterior (updated) distributions for time since fire conditional on rails being present. The reduction in uncertainty (learning) is
evident in the shift of the distribution and smaller standard deviation.
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learning,” where auxiliary data collected during the iterative phase

could also be extended to test other hypotheses. This collaborative

strategy, driven by the co-creation of models and monitoring

(Nichols, 2012; Nichols et al., 2019), has allowed valuable insights

for our conservation and resource management initiatives for the

focal species in this study.

Protecting species and restoring ecosystems necessitates

informed decision-making based on reliable scientific knowledge.

This study underscores the value of evidence-based decision-

making in addressing the biodiversity crisis and highlights the

importance of tools such as VOI analysis, BDNs, and power

analysis in a RE-ARM framework to produce reliable and

actionable science for adaptive management.
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FIGURE 4

Power analysis for three different sampling designs for monitoring eastern black rail occupancy. The panels (gray bars at the top) represent total
effort (number of surveys across all sites). Power to detect the fire treatment effect (y-axis) was estimated across different standardized effect sizes
(x-axis) categorized as small (0.2), medium (0.5), and large (0.8) according to Cohen (1988). The shapes indicate the number of site visits (k) required.
The top row represents the optimal number of surveys from Specht et al. (2017) (i.e., the number of survey repetitions at each site that will maximize
the accuracy and precision of occupancy and detection probability estimates, based on the expected occupancy and detection probabilities), and
the bottom row represents half the optimal number of site visits (half optimal = k/2). Additionally, sampling designs are represented by
different colors.
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