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Remote sensing and machine
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wildlife population surveys
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Abram B. Fleishman 8 , Matthew J. Butler 7,
Steven E. Sesnie 7, Grant M. Harris 7 on behalf of the
Remote Sensing/Machine Learning Community of Practice for
Wildlife Survey
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University of New Mexico, Albuquerque, NM, United States, 3Division of Migratory Bird Management,
United States Fish and Wildlife Service, Orono, ME, United States, 4Environmental Studies Program,
Bureau of Ocean Energy Management, Sterling, VA, United States, 5Department of Wildlife Ecology
and Conservation, University of Florida, Gainesville, FL, United States, 6Audubon Texas, National
Audubon Society, Austin, TX, United States, 7Division of Biological Sciences, United States Fish and
Wildlife Service, Albuquerque, NM, United States, 8Conservation Metrics, Inc., Santa Cruz, CA, United States
Technological and methodological advances in remote sensing and machine

learning have created new opportunities for advancing wildlife surveys. We

assembled a Community of Practice (CoP) to capitalize on these

developments to explore improvements to the efficiency and effectiveness of

aerial wildlife monitoring from a management perspective. The core objective of

the CoP is to organize the development and testing of remote sensing and

machine learning methods to improve aerial wildlife population surveys that

support management decisions. Beginning in 2020, the CoP collaboratively

identified the natural resource management decisions that are informed by

wildlife survey data with a focus on waterbirds and marine wildlife. We

surveyed our membership to establish 1) what management decisions they

were using wildlife count data to inform; 2) how these count data were

collected prior to the advent of remote sensing/machine learning methods; 3)

the impetus for transitioning to a remote sensing/machine learning

methodological framework; and 4) the challenges practitioners face in

transitioning to this framework. This paper documents these findings and

identifies research priorities for moving toward operational remote sensing-

based wildlife surveys in service of wildlife management.
KEYWORDS

wildlife inventory, wildlife monitoring, machine learning, deep learning, remote sensing,
aerial imaging, artificial intelligence
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1 Introduction

Biologists and natural resource managers use aerial surveys to

estimate abundance and trends of many wildlife species, providing

essential data for informing management decisions (e.g. Norton-

Griffiths, 1975; Caughley, 1977; Lyons et al., 2008). Historically,

low-altitude aerial surveys conducted by human observers have

been a resource-efficient method to collect data over extensive areas,

ranging from hundreds to thousands of hectares (e.g. Fiori et al.,

2017; Conroy et al., 2018; White and Veit, 2020). These surveys

have been instrumental in studying taxa such as waterbirds (e.g.

Smith, 1995), marine mammals (e.g. Fiori et al., 2017), and large

ungulates (e.g. Caughley, 1977; Conroy et al., 2018). However, aerial

surveys can suffer from significant limitations including observation

biases and count variability (e.g. Boyd, 2000; Frederick et al., 2003;

Conroy et al., 2018), difficulties with error enumeration (Davis et al.,

2022), and safety risk to participants (Sasse, 2003).

Technological advancements in remote sensing approaches

may alleviate some of these limitations. Automated object

detection techniques applied to aerial imagery, such as deep

learning using convolutional neural networks (CNNs), show

promise for enhancing the frequency, efficiency, accuracy, and

safety of aerial wildlife counts. Because aerial imaging missions

typically produce data volumes that are time- and cost-prohibitive

to manually process, automated methods are rapidly being

incorporated into a variety of ecological and natural resource

management workflows (Tuia et al., 2022).

To encourage collaboration on the development of remote

sensing and machine learning approaches in wildlife monitoring

and reduce redundant efforts, practitioners at federal and state

natural resource management agencies and applications-based

researchers at academic institutions in the United States working

on these issues in parallel began to meet virtually in 2020 during the

COVID-19 pandemic. Over time, the group formed the Remote

Sensing/Machine Learning Community of Practice for Wildlife

Survey (CoP). This paper documents the findings of the CoP

regarding the management applications requiring wildlife count

data, the methods traditionally used to collect these data, the

challenges with traditional methods leading to the impetus to

transition to a remote sensing/machine learning (RS/ML) survey

framework, and identifies research priorities to ease the transition

into implementing an affordable, operational, and statistically valid

RS/ML workflow.
2 Background

Initially, the CoP was convened by the US Fish and Wildlife

Service’s Division of Migratory Bird Management, the Bureau of

Ocean Energy Management’s Environmental Studies Program, the

US Geological Surveys’ Upper Midwest Ecological Science Center,

and the Missouri Department of Conservation. In 2020, invitations

were broadly distributed through agency and academic email lists to

solicit participation by practitioners and researchers across the

United States.
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The CoP fosters information exchange and collaboration on

shared challenges; guides technology development in alignment

with agency requirements, resources, and obstacles; identifies

research priorities; and advances community-wide progress

through initiatives like data standardization and accessibility,

recommendations on tools and workflows, and development of

publicly available annotated image datasets for a variety of species.

In a series of semi-structured workshops from 2021–2023, the CoP

solicited insights from members regarding: 1) the management

decisions practitioners were informing with wildlife count data; 2)

the traditional methodologies employed for data collection; 3)

motivations of members for transitioning to an RS/ML approach;

and 4) perceived obstacles to implementing such an approach.

Leadership synthesized these responses, identified common themes,

and presented results to the broader group for further refinement

and clarification. These results are presented in this paper.
2.1 Management applications

Wildlifemonitoring surveys provide spatially explicit count data for

informed decision-making based on population assessments, habitat

characterization, and identification of long-term trends, providing

valuable data for various regulatory and non-regulatory applications in

the United States. The management decisions requiring wildlife count

data identified by theCoP are summarized inTable 1 and can be divided

into two broad types: 1) decisions focused on removal of wildlife

(harvest), and 2) decisions focused on population change, for aiding

species recovery and assessing the effects of resourcemanipulation (e.g.,

relationships between abundance, habitat management, anthropogenic

modifications and climate change).

Management decisions involving the harvest of wildlife typically

focus on ensuring the long-term sustainability of the affected

wildlife populations. For harvest, decision-making occurs in the

context of hunting quotas, establishment of hunting seasons and

locations that hunting occurs (Table 1) (Proffitt et al., 2020). Other

related management goals include commercial or subsistence

harvest, incidental take, and permitted take for scientific

collecting or other activities. In some cases, management activities

target population reduction or redistribution (e.g., permitted take

related to crop depredation or invasive species control).

The second class of decisions centers on species recovery and

manipulating wildlife habitat or resources. Population count data

and derived estimates are useful for understanding wildlife-habitat

relationships to recover species, and prioritize, plan, or evaluate the

effectiveness of habitat conservation or direct management actions

(e.g., potential risk of long-term disturbance to communities of

marine wildlife due to offshore energy installations; growing crops

to support migratory waterfowl populations). Furthermore, these

data inform strategic planning of activities to mitigate the potential

impacts on wildlife and to evaluate post-construction effects. Spatial

patterns and temporal trends of wildlife populations derived from

survey data provide critical layers of information during project

development, permitting processes, and support collaborative

mitigation strategies between government, non-governmental

organizations, and developers.
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2.2 Traditional data collection methods

While the CoP identified several methods for collecting wildlife

count data (Table 1), aerial survey was the most common technique

in which remote sensing and machine learning might be applied.

Aerial observer surveys have monitored the abundance, density and

distribution of wildlife since the 1930s, when the first exploratory

aerial surveys were conducted of wintering waterfowl (USFWS,

2004). Aerial observer surveys are typically favored over surveys

conducted from the ground or water surface when large areas are

covered over short timeframes, or in remote or rugged terrain where

ground access is difficult or dangerous (Samuel et al., 1987;

McRoberts et al., 2011; Conroy et al., 2018). The characteristics of

the wildlife species and populations sampled, background terrain,

land cover, distance to survey location, and operational costs dictate

the applicability and choice of aircraft and flight altitude. Species

difficult to observe may warrant crewed low-level flights (Sasse,

2003). For example, long-standing survey protocols for large

ungulates (Conroy et al., 2014, 2018), Galliformes (Butler et al.,

2007; McRoberts et al., 2011), cranes (Butler et al., 2019), waterfowl

(Prenzlow and Lovvorn, 1996) and seabirds (Camphuysen et al.,

2004) require flight altitudes of approximately 30–80 m above

ground level.
3 Transition to a remote sensing/
machine learning workflow

Practitioners in the CoP seek to understand the advantages and

disadvantages of transitioning from traditional aerial observer

surveys of wildlife to a remote sensing-based (aerial imaging)

workflow, paired with automated image processing using machine

learning methods. This conceptual approach is visualized in Figure 1

in the form of a remote sensing communication model (Lippitt et al.,

2014) and will be referred to as the RS/ML workflow from here.
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The RS/ML workflow is flexible for incorporating data from a

variety of airborne sensor systems; while the typical paradigm

incorporates very high spatial resolution (<1 inch/2.5 cm per pixel)

and natural-color imagery (i.e., RGB), some CoP members use thermal

imagery in certain contexts (e.g., Luz-Ricca et al., 2023). Traditional

pixel-based automated image processing methods (e.g., spectral

thresholding) are typically effective only in scenarios with high visual

contrast between the animal of interest and its background, such as

snow geese on dark water (Laliberte and Ripple, 2003). Otherwise, the

heterogeneity of pixel values within singular objects (individual

animals, in this instance) tends to lead to unreliable classification

results. Machine learning methods in computer vision, particularly

deep learning using CNNs, can more flexibly incorporate complex

image information by transitioning the unit of analysis from the pixel

to the objects formed by groups of pixels, and sampling pixel

neighborhoods that provide contextual patterns often used for visual

interpretation by humans (e.g., size, shape, pattern). Machine learning

models must be “trained” using hundreds to thousands of human-

annotated examples of each class or object of interest.
3.1 Impetus for transitioning to an RS/
ML workflow

The CoP membership identified the following general themes in

their interest in transitioning to an RS/ML workflow:

3.1.1 Efficiency
Participants intend that after an initial investment for development

and validation of machine learning models for image processing,

efficiency gains in field operations and data workflows will manifest.

Imaging with UAS and higher-altitude occupied aircraft should reduce

flight times, human labor in the field, and carbon emissions while

increasing safety to participants. After development and validation of a

machine learning model for image processing, time to review errors
TABLE 1 Management decisions informed through data obtained by monitoring wildlife populations across local- to continental-scales.

Data Type Collection Strategy Management Decisions

Abundance/Density and Trends • Aerial surveys and shipboard surveys using double observer; distance
sampling; mark-recapture distance sampling; sightability models; complete
area coverage surveys (minimum count); aerial photography; and
flush counts.

• Ground-based surveys

• Harvest quotas
• Allocation of permitted take
• Depredation permits
• Species recovery objectives
• Invasive species management
• Habitat suitability
• Land acquisition/sale

Phenology • Repeated surveys across a targeted season
• Intra-annual changes in abundance/density

• Harvest season dates
• Water management (timed releases)
• Habitat manipulation (food availability)

Reproduction/Recruitment • Targeted surveys of nests, nesting colonies, young of the year, etc. • Harvest quotas
• Species recovery objectives
• Water management

Distribution/Occurrence • Presence-absence surveys across large spatial extents • Management zones
• Site selection for restoration
• Land acquisition/sale
• Site selection for anthropogenic development
• Species recovery objectives
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should drop to a fraction of the time investment required to manually

count and identify animals in imagery (Chabot et al., 2018).

3.1.2 Data quality
Aerial imaging should lead to better data quality via lower count

variance compared to observer surveys (Hodgson et al., 2018), as

well as new opportunities to assess bias/error compared with

traditional methods (Augustine et al., 2023). Additionally, it was

anticipated that the preservation of the survey frame via the image

data would enable future revisions to counts/identifications if error

is suspected and/or as methods continue to improve.

3.1.3 New opportunities
Preserving the survey frame and environmental context captured

in aerial images informs new types of research involving the relative

spatial arrangements of animals (e.g., Henriksen et al., 2015). Novel

research can also explore the environmental conditions observed

during an image collection, such as vegetation structure and

composition, wetland conditions, and other habitat features. Re-

analysis for non-target animal species could also be possible.
3.2 Barriers and bridges to implementation

The CoP membership identified the following general obstacles

that they or their organization had experienced or were

experiencing while attempting to implement an RS/ML workflow

for wildlife monitoring:
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3.2.1 Financial
The infrastructure required to support an RS/ML workflow

necessitates large upfront costs in the acquisition of hardware (e.g.,

sensor systems, data storage, computing power) and specialized

personnel for data collection, management, and development of

machine learning models, which require technical skill sets

generally not possessed by natural resource managers. Sustained

partnerships between technically trained individuals and natural

resource managers are needed to advance systematic data

collection, processing, and reporting efforts when transitioning to

an RS/ML workflow. In addition, greater investment on a

community level in open-source model development and data

sharing to reduce redundant efforts can improve model

performance and reduce financial burdens on individual teams.

3.2.2 Technical
State-of-the-art machine learning methods incorporate

substantial technical requirements that can be exacerbated by the

specialized needs of wildlife monitoring programs. For instance, a

common barrier identified by CoP membership was the acquisition

of a sufficient quantity of annotated imagery for training machine

learning models. Little pre-existing, publicly available data of this

type exists for aerial wildlife monitoring; thus, new data must be

collected by practitioners for each species and area of interest.

Imagery collection must be based on the goals and measurable

objectives of the survey and timed carefully (e.g., phenology of

migratory species). Image annotation can be particularly time-

consuming for aerial images, which can potentially contain
FIGURE 1

Remote sensing/machine learning workflow for aerial wildlife monitoring conceptual diagram, in the form of a remote sensing communication
model. Italics indicate areas that have been identified as research priorities by the CoP, requiring further development. Regular font reflects the
current workflow as practiced by a plurality of CoP membership.
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dozens to hundreds of individuals in a given image. Securing a

sufficient variety of examples of a given species to annotate may also

require sorting through dozens to hundreds of “empty” images with

no animals. Additionally, practitioners expressed that it was often

difficult to collect imagery of quality sufficient for trained observers

to differentiate similar-looking species, or to achieve the

practitioners’ desired taxonomic resolution.

Some difficulties with the annotation process can be mitigated

by interventions such as crowdsourcing and reducing observer

effort by tiling images to reduce search area and the number of

animals per image tile (Converse et al.)1. Data sharing and

community alignment of priorities to avoid duplication would

help reduce the necessity for individual groups to collect vast

volumes of imagery and annotations.

Some CoP members expressed uncertainty about how to validate

the RS/ML approach, including articulating errors stemming from

the aerial imaging process (e.g., double counting of individual animals

in overlapped aerial images) as well as the machine learning

classification of imagery; how these errors compare with those

from traditional observer surveys; and how to conduct quality

assurance and quality control on data products produced through

an RS/ML workflow. Furthermore, the typical lack of “true” counts

against which to compare the results of either manual or machine

interpretation of imagery complicates the validation process, though

this difficulty is shared with traditional aerial surveys.

The poor generalizability of machine learning models was

another common obstacle to the implementation of an RS/ML

workflow. Machine learning models tend to perform poorly when

exposed to data differing from the training data in some aspect– for

instance, a new habitat, sensor, time of day, species assemblage, etc

(Beery et al., 2018). Integration of more data into machine learning

models by fusing similar datasets from a variety of sources may help

mitigate this problem, while having the benefit of lowering data

collection and annotation requirements for individual practitioners

(Weinstein et al., 2022).

CoP membership indicated difficulties with data curation and

archive management required by the volumes of imagery

data produced via an RS/ML approach. This problem is partly

due to resource limitations (see above), as well as a lack of

referenceable standards.
4 Discussion

Practitioners identified limitations of traditional wildlife

population survey methods, particularly aerial observer surveys,

leading to interest in transitioning to an RS/ML workflow. We

acknowledge that the RS/ML workflow does not solve all of the

limitations of aerial observer surveys, including susceptibility to

availability bias (if an animal cannot be seen/photographed, it

cannot be counted), and the typical lack of independently verified
1Converse, R. L., Lippitt, C. D., Sesnie, S. E., Harris, G. M., Butler, M. J., and

Stewart, D. R. Observer variability in manual-visual interpretation of UAS

imagery of wildlife, with insights for deep learning applications. (In review)
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counts against which survey data may be validated. Despite this, the

RS/ML workflow shows promise in advancing participant safety,

reducing costs, improving data quality, and offering new research

avenues. Methodological and logistical challenges, as outlined

above, currently hinder widespread adoption of this framework.

To address current challenges, the CoP has identified an agenda

including new research avenues and establishing a set of best

practices supporting the workflow.
4.1 Research agenda

In the collaborative workshop process, the CoP identified the

following research priorities:

4.1.1 Characterizing bias from aerial imaging
To provide a fair point of comparison with existing observer-

based methods, research will be required to characterize the types of

bias stemming from an aerial imaging approach as well as strategies

for correcting these biases. Aerial imaging is conducted at higher

altitudes and sometimes with different sensor platforms, producing

varying levels of noise or flying in different patterns from observer-

based surveys, which may impact detection and availability biases of

wildlife species. An emerging research area examines the ability of

human observers to detect and identify different species of animals

from aerial imagery, whether there are characteristics of the image/

sensor system, habitat, or species of interest that impact this ability,

and what data collection parameters can be established to maximize

observers’ ability to correctly count and identify animals (e.g.,

Converse et al)1. Developing methods for coping with errors and

artifacts from an aerial imaging approach, such as double counts of

animals present in multiple frames of imagery, will also be necessary.

4.1.2 Improving the machine learning pipeline
Research and development that improves the machine learning

pipeline at all points– from image annotation to model selection

and accuracy assessment– will be critical to rendering an RS/ML

workflow more feasible for practitioners to implement. Better

understanding of the factors that impact the efficiency of human

effort in the annotation process may produce important insights

into structuring field data collections and allow for producing better

models from fewer training samples. Improving the accuracy of

machine learning models to reduce reliance on human review in

terms of annotating inputs and in correcting errors will also be

critical. This will necessitate foundational computer vision research

into avenues such as active learning techniques (e.g., Norouzzadeh

et al., 2021), data augmentations (e.g., Chen et al., 2022), new model

architectures, and more consistent image processing procedures

(e.g., Kellenberger et al., 2021). Increasing confidence in machine

learning outputs through improved statistical rigor will be

necessary, as current methods do not adequately characterize

multiple sources of error and bias including the downstream

propagation of uncertainty in image labels. In tandem, this will

also require developing a better understanding of the count

precision required for different wildlife management applications.
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4.1.3 From detections to counts
Developing approaches for transforming the outputs of machine

learning detections of wildlife into population data will be critical. An

important starting point will be developing strategies for survey

design to ensure the correct count data is collected, including

parameters for imagery acquisition. Integrating RS/ML outputs into

existing population management frameworks will require

characterizing the similarities and differences between population

inference from RS/ML approaches and traditional surveys.
4.2 Best practices

In addition to setting a research agenda, CoP membership agreed

on the need for establishing a set of best practices to guide practitioners.

These standards will include information needs aimed at technical

improvements, including annotation tools, data and metadata formats,

and structures/locations for data storage. Establishing best practices for

standard data formatting will aid projects in releasing their data

publicly and thereby enhance progress towards improving machine

learning models for wildlife detectionmore generally. Membership also

agreed on the need for referenceable standards for data collection and

validation, including specifications for sensor systems to capture the

desired taxonomic resolution, structuring field data collections for

training and validation data, and developing a set of quality

assurance and control practices.
5 Conclusion

Technological and methodological advancements offer new

opportunities in aerial wildlife monitoring. Aerial observer surveys

have traditionally been deployed to collect wildlife survey data to

inform decisions on wildlife removal and alterations to habitat. While

some limitations are shared with traditional methods, the RS/ML

workflow shows promise to improve participant safety, provide more

rigorous data, and allow for new research opportunities given the

preservation of additional spatial distribution data and

environmental context. Significant logistical and technical obstacles

remain, hindering the widespread implementation of an RS/ML

workflow for wildlife monitoring. In setting a research agenda and

establishing a set of best practices, we hope tomove toward a vision of

coordinating efforts among practitioners in North America in

developing a continental-scale machine learning model for

acquiring and processing aerial wildlife survey imagery, while

establishing an emulative workflow for other practitioners worldwide.
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