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Acoustic estimation of the
manatee population and
classification of call categories
using artificial intelligence
Sebastian Schneider1*, Lorenzo von Fersen2

and Paul Wilhelm Dierkes1

1Bioscience Education and Zoo Biology, Goethe University Frankfurt, Frankfurt am Main, Germany,
2Behavioral Ecology and Conservation Lab, Nuremberg Zoo, Nuremberg, Germany
The population sizes of manatees in many regions remain largely unknown,

primarily due to the challenging nature of conducting visual counts in turbid and

inaccessible aquatic environments. Passive acoustic monitoring has shown

promise for monitoring manatees in the wild. In this study, we present an

innovative approach that leverages a convolutional neural network (CNN) for

the detection, isolation and classification of manatee vocalizations from long-

term audio recordings. To improve the effectiveness of manatee call detection

and classification, the CNN works in two phases. First, a long-term audio

recording is divided into smaller windows of 0.5 seconds and a binary decision

is made as to whether or not it contains a manatee call. Subsequently, these

vocalizations are classified into distinct vocal classes (4 categories), allowing for

the separation and analysis of signature calls (squeaks). Signature calls are further

subjected to clustering techniques to distinguish the recorded individuals and

estimate the population size. The CNN was trained and validated using audio

recordings from three different zoological facilities with varying numbers of

manatees. Three different clustering methods (community detection with two

different classifiers and HDBSCAN) were tested for their suitability. The results

demonstrate the ability of the CNN to accurately detect manatee vocalizations

and effectively classify the different call categories. In addition, our study

demonstrates the feasibility of reliable population size estimation using

HDBSCAN as clustering method. The integration of CNN and clustering

methods offers a promising way to assess manatee populations in visually

challenging and inaccessible regions using autonomous acoustic recording

devices. In addition, the ability to differentiate between call categories will

allow for ongoing monitoring of important information such as stress, arousal,

and calf presence, which will aid in the conservation and management of

manatees in critical habitats.
KEYWORDS
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1 Introduction

In recent years, there has been a remarkable increase in interest

and scientific research in the field of animal bioacoustics, largely

driven by the proliferation of innovative technologies that allow

more accurate and comprehensive data collection in the study of

animal vocalizations. This advancement, coupled with the

availability of high-quality recording equipment at low cost, has

greatly increased the accessibility of bioacoustic research, fostering

inclusivity across scientific communities and enabling a more

comprehensive understanding of animal communication (Erbe

and Thomas, 2022). In addition, the study of animal bioacoustics

is becoming increasingly important in species conservation projects,

as the analysis of animal vocalizations can be used for animal

population estimation (Marques et al., 2013). Animals in human

care, particularly in zoological facilities, provide an invaluable

opportunity to systematically study and understand various

aspects of their behavior, communication modalities and

physiological characteristics (Rose and Riley, 2021). The

controlled conditions within zoological facilities facilitate the

careful study of individual behavior and the identification and

analysis of vocalizations, allowing a detailed examination of

communication patterns.

Manatees possess a wide array of sounds crucial for

communication and social interactions. As initially noted by

Bengtson and Fitzgerald (1985), manatees demonstrate increased

vocalization during social engagements, particularly in interactions

between parents and offspring. These vocalizations, as highlighted

by Hartman (1979), serve the purpose of maintaining close acoustic

contact between mother and calf, proving particularly vital during

brief separations experienced by mother-calf pairs. Various studies

have revealed that the song repertoires of all subspecies appear to be

very similar (Nowacek et al., 2003). Although the studies provide

different classification schemes ranging from two to six call types,

the descriptions of the overall structures of the repertoires were very

similar (Brady et al., 2020).

Brady et al. (2020) identified five distinct call types within the

Florida manatee (Trichechus manatus latirostris) vocal repertoire:

the tonal squeak, the hill-shaped high squeak, the noisy squeal, the

two-toned chirp, and the combinatory squeak-squeal. Intriguingly,

specific vocalizations among manatees exhibit cross-species and

subspecies occurrence. As per Reyes-Arias et al. (2023), within the

geographic diversity in manatee vocal repertoires, specific calls are

consistent across populations, subspecies, and diverse geographic

locations. The study compared the vocalizations of wild West

Indian manatees from Florida (Trichechus manatus latirostris)

and Antillean manatees (Trichechus manatus manatus) from

Belize and Panama. Squeaks, high squeaks and squeals were

observed in all examined populations. Their findings shed light

on the existence of shared vocalizations between these groups and

show a remarkable consistency in acoustic communication despite

differences in habitats, genetic backgrounds, and geographical

dispersion. In another study, Brady et al. (2023) studied the

vocalization patterns of manatees in two different habitats off

St. George’s Caye in Belize. Using recordings collected over

19 days, they analyzed 3,262 calls to examine differences in call
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rates, types and environmental influences between sites. While

call rates did not differ significantly between sites, the number of

calls decreased on consecutive days. Sound calls decreased after

sunset, which correlates with the increasing presence of boats. These

results suggest differentiated patterns of activity influenced by

environmental factors. There is also evidence that the sex and age

of the individual affects the vocalizations of Antillean manatees

(Sousa-Lima et al., 2008). Typically, female vocalizations have a

longer duration, a higher fundamental frequency, and a lower peak

frequency. In contrast, calf vocalizations tend to have higher values

for these attributes than adult vocalizations. These results shed light

on the different vocal characteristics influenced by sex, age and

individuality and highlight the potential of acoustic features to

distinguish and categorize manatee vocalizations. Overall, all these

studies show variations in the vocal repertoire of manatees, but also

many similarities.

Individual or group vocalizations are playing an increasingly

important role in acoustic monitoring, in addition to their

communicative function. Factheu et al. (2023) used and

compared three methods for monitoring African manatees: visual

point scan, 360° sonar scan and passive acoustic monitoring (PAM).

The results showed that passive acoustic had the highest detection

rate, followed by 360° sonar and then visual point scan. Which

habitats manatees visit and when and where they stay can be

answered using this PAM method. PAM methods are now also

used to count animals in abundance estimation studies. Especially

for aquatic mammals such as vaquitas (Rojas-Bracho and Jaramillo-

Legoretta, 2009; Gerrodette et al., 2011) or harbour porpoises

(Jacobson et al., 2017), the total population can be validly

estimated based on the registered echolocation clicks.

Another way to count animals by their vocalizations would be for

each individual to emit a so-called signature call. For several species, it

has been shown that clustering algorithms can discriminate these

signature calls based on acoustic features and thus reliably estimate

the number of individuals (Adi et al., 2010; Kershenbaum et al., 2013;

Linhart et al., 2022; Schneider et al., 2022). There are two studies that

provide convincing evidence that the calls of Amazonian and

Antillean manatees are individually different (Sousa-Lima et al.,

2002, 2008). A further study by Dietrich et al. (2022) supports this

assumption. Although the number of animals (3) was small, two

animals showed a high stability of their chirp calls over a period of

one year. This confirms the results of the studies by Sousa et al. and

fulfils the requirements for a possible count of the animals. Acoustic

features were extracted to distinguish the individuals. The duration of

the calls as well as the fundamental frequency and the harmonics

proved to be effective (Sousa-Lima et al., 2002, 2008; Dietrich et al.,

2022). A method based on bioacoustics would be possible, especially

in areas where the water conditions do not permit any other counting

options. There are already publications showing that clustering

algorithms have the potential to correctly estimate the number of

individuals in a manatee group (Castro et al., 2016; Merchan et al.,

2019). To think in this direction, it would make sense to develop an

automatic recognition and classification of the calls relevant for

individual recognition.

Studies have already shown that manatee calls can be reliably

detected using deep learning methods (Merchan et al., 2020;
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Rycyk et al., 2022). So far, call detection using artificial intelligence

(AI) can provide information about the frequency and temporal

occurrence of vocalizations in general. However, because current AI

solutions can only distinguish the sounds of a manatee from

background noise, they cannot infer the frequency of specific calls

or the behaviors and conditions associated with those calls. To make

better use of the recognized vocalizations, it makes sense to classify

them according to the different call types. For example, the

increased occurrence of certain vocalizations can provide

important information about the presence of calves (Hartman,

1979; Brady et al., 2022). When estimating population size in an

area using clustering methods, it is necessary to use only one

particular call, as otherwise the different calls of the vocal

repertoire would also be clustered. This is where the deep

learning method presented here comes in, allowing the

classification of the different manatee call types. This makes it

possible to separate specific signature calls of manatees and use

them to determine population size using clustering algorithms.

However, clustering of manatee calls to determine population size

has only been tested on single groups with a certain number of

individuals or with vocalizations preselected by humans with

optimal conditions (high signal quality and reliable assignment to

the individual) which favors a data set with well distinguishable

clusters and do not represent the total number of individuals in an

area (Castro et al., 2016; Merchan et al., 2019). In nature, it is of

crucial importance that less ideal vocalizations must often be used

to accurately estimate the population size. In addition, the setting of

certain parameters of the clustering algorithms and also the

extracted acoustic features influence the clustering result

(Wadewitz et al., 2015; Schneider et al., 2022). It is therefore

necessary to have a method that is robust and works reliably for

different group sizes and under different conditions without the

need to adjust parameters and acoustic characteristics.

The aim of this study is to present a method that can reliably

process and analyze a large amount of data under different

conditions. The goal is to detect manatee vocalizations in long-

term recordings, classify them according to 4 known categories of

manatee calls, and then estimate the population size using the

signature calls via a robust clustering method. For this purpose,

different conditions and several cluster methods were tested. The
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automated analysis has the advantage that larger amounts of data

can be analyzed, increasing the chance of detecting all individuals in

an area. In addition, recordings can be analyzed over time to

monitor changes in population size, animal activity, and

potentially the appearance of offspring.
2 Methods

2.1 Data collection

Audio data from manatees (Trichechus manatus manatus) were

collected in 3 different zoos, Nuremberg Zoo (June and July 2023),

Wroclaw Zoo (August 2023) and Duisburg Zoo (March 2023). In

Nuremberg, a new manatee joined the group in July (previously 3

individuals, then 4), which made it possible to evaluate under the

same conditions but with different group sizes. In Wroclaw there

were 5 individuals at the time of recording and in Duisburg 2. A

SoundTrap ST300 HF – Compact Recorder (Ocean Instruments,

Auckland, New Zealand) was used for audio recordings. Recordings

from Nuremberg Zoo and Burgers’ Zoo Arnhem made between

2019 and 2022 with the HTI 96 MIN hydrophone (High Tech Inc.,

MS, USA) were used to train the initial CNN models. The

recordings were made at different sampling rates between 44.1

and 288 kHz. Therefore, all recordings were down sampled to 44.1

kHz. The recordings were divided into training, validation, and test

data sets. For training and validation, 30.5 hours of audio material

were evaluated, generating datasets with a total of 1270

vocalizations. The distribution of training and validation data sets

is shown in Table 1. To test the CNN, another 15 hours of audio

material with a total of 768 recognized vocalizations were evaluated

by human and by the CNN. To determine the activity phases of the

manatees, 4 x 24h audio recordings were analyzed, in which a total

of 5108 vocalizations were found by the CNN.
2.2 CNN

A deep learning method for automatic detection and

classification of manatee calls was developed using the
TABLE 1 Number of vocalizations used and amount of data generated by augmentation and windowing for training and validation of CNN models.

1. Training Transfer learning

Vocalizations Training Validation Vocalizations Training Validation

B
in
ar
y Manatee 438 1323 441 842 2754 918

Noise 1433 478 4480 1493

C
al
l t
yp

e 
cl
as

se
s Squeak 118 297 99 358 1116 372

High squeak 110 327 109 119 1428 476

Squeal 137 322 107 162 1008 336

Mixed 109 268 89 157 1127 376

Noise 344 115 1852 617
Different vocalizations were used for initial training and transfer learning. The binary CNN model and the CNN model that distinguishes between call types are listed separately.
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convolutional neural network architecture EfficientNetB3 (Tan and

Le, 2019), which has been proven to achieve state-of-the-art

accuracy in vision classification tasks, while being smaller and

faster than comparable models (Hahn-Klimroth et al., 2021).

Tensorflow was used as a framework. Python version 3.10.9 was

used as the programming language. The EfficientNet architecture

was modified only slightly by adding a dropout layer with a dropout

rate of 0.3, applying batch normalization, and using the rectified

linear function as the activation function. To improve the model, we

included a learning rate reduction on plateau, which reduces the

learning rate by a factor of 0.7 when a metric has stopped

improving. The Adam algorithm was used as the optimizer with

an initial learning rate of 0.001. As input for both training and

prediction, 0.5 second audio clips are used. When evaluating long-

term audio recordings, the recording is divided into 0.5 second

segments that overlap by 75%. Thus, every 0.125 seconds, a 0.5

second segment is classified. The training of the CNN networks was

done with 40 epochs and a batch size of 16 samples. For training,

randomly selected audio clips are augmented to increase the

robustness of the model and to compensate for unbalanced

classes (Stowell, 2022). For this purpose, vocalizations from

classes with less data are augmented several times in order to

balance the amount of data. Audio waveform augmentations are

used to stretch or compress the signal on the time axis without

changing pitch, add noise, increase or decrease gain, or mute a

randomly selected portion of the signal. In the spectrogram

fractions of frequencies are masked. Whether and which

augmentations are used is randomly selected. It is also possible to

apply multiple augmentations to a clip or none.

2.2.1 Data preparation
There is no consensus in the literature as to which spectrogram

representation is best suited for training a deep learning model, with

a linear or mel-scaled representation often being preferred (Stowell,

2022). This is why some studies take advantage of multiple

spectrogram representations of the same audio signal by

“stacking” a series of spectrograms into a multichannel input

signal (Thomas et al., 2020; Stowell, 2022; Xie et al., 2022). To

take advantage of this multichannel input signal, the audio signals

are transformed into four different time-frequency representations.

For this purpose, a linearly scaled and a Mel-scaled spectrogram are

created and normalized using per-channel energy normalization

(PCEN) and decibel scaling (dB-scaling). This results in 4 different

time-frequency representations, which show the characteristics of

the vocalizations in different ways (Figure 1).

Linear Spectrogram: The linear spectrogram is created using the

Short-Time Fourier Transform (STFT). The STFT calculates

Discrete Fourier Transforms (DFTs) over short, overlapping

windows to represent a signal in the time-frequency domain. The

window size is set to 512 samples with an overlap of 307 samples

(60%). This results in a time resolution of 4.65 ms at a sampling rate

of 44.1 kHz and 256 frequency bins of 86Hz each.

Mel Spectrogram: The Mel spectrogram is generated with the

same time resolution and the same number of frequency bins as the

linear spectrogram. However, the frequency bins are Mel-scaled.
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This means that the frequency bins are divided according to the Mel

scale. The Mel frequency scale is a nonlinear scale. Unlike the linear

frequency scale, where each equal frequency interval represents an

equal pitch step, the Mel scale is designed to better reflect human

perception. The Mel scale is designed to provide a more detailed

representation of lower frequencies and a less detailed

representation of higher frequencies, reflecting the non-linear

sensitivity of human hearing.

PCEN: Per Channel Energy Normalization (PCEN) is a method

of spectral normalization often used in audio and speech processing

(Stowell, 2022). The idea behind PCEN is to adjust the energy

distribution in different frequency bands to better represent the

relevant information in the signal. This normalization technique is

particularly useful for reducing background noise and emphasizing

important acoustic features (Wang et al., 2017).

dB scaled: By using a decibel-scaled display, contrast is

increased at lower energy levels and decreased at higher energy

levels. The decibel values are then divided by the maximum decibel

value in the spectrogram. This normalization makes it possible to

display all spectrograms on a comparable scale.

In this way, both the linear and Mel spectrograms are normalized

in two different ways. The linear and Mel spectrograms of an audio

segment with the same normalization (PCEN or dB-scaled) are

concatenated on the time axis and merged into one image. This so-

called multi-frame encoding has proven to be advantageous when

referring to multiple images and has been used to classify marine

mammal species (Ji et al., 2013; Karpathy et al., 2014; Hahn-Klimroth

et al., 2021). The resulting two spectrogram representations are linked

on a third dimensional axis to create a multichannel input (Figure 1).

This multichannel input (which is processed like the color channels

in an RGB image) is used for training and prediction of the deep

learning process. The use of multichannel spectrograms as input has

been shown to be effective in classifying marine mammal species

(Thomas et al., 2020).

2.2.2 Classification
We used previously trained CNN models trained on manatee

calls from two zoos (Nuremberg and Arnhem) and extended the

models using transfer learning and vocalizations from additional

zoos (Nuremberg, Duisburg and Wroclaw) to improve the models.

The deep learning models were trained to classify the audio

segments in two steps. Since the amount of training data per class

and the number of classes affect the accuracy (Shahinfar et al.,

2020), the first step should only distinguish between two classes to

increase the chance of recognizing as many manatee calls as possible

in a recording and to reduce false-negative noise predictions, where

noise is incorrectly predicted to be a vocalization. Accordingly, the

first model is binary and distinguishes only between manatee calls

and everything that is not a manatee call. For the binary model, a

training set of 438 vocalizations was primarily used and retrained

using transfer learning with a new data set of 842 vocalizations. The

second model classifies manatee calls into 5 classes: 4 call categories

and another noise category (Figure 2). The 4 call categories are

divided into squeak, high squeak, squeal, and mixed. Squeaks are

linear, harmonic calls, high squeaks are similar to squeaks but are
frontiersin.org
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slightly frequency modulated and have a hill-shaped contour.

Squeaks have limited overtones and less harmonic components.

The mixed category includes calls that combine harmonic and less

harmonic vocal units in a single call, have a sudden jump in

fundamental frequency, or have a highly modulated frequency

sequence (Brady et al., 2020) (Figure 2). For this neural network,

474 vocalizations were used for the first training run and 796 for

transfer learning. Accordingly, the classification of a long-term

recording is done in two steps. In the first step, manatee calls are
Frontiers in Conservation Science 05
detected and isolated. In the second step, the isolated calls are

classified into the corresponding call categories (Figure 1).
2.3 Post processing

Since only one call type can be used for clustering and

population size estimation (to avoid clusters of different call

types), only vocalizations that were assigned to the “squeak” class
FIGURE 1

Schematic sequence of the automatic processing. A 0.5 second audio segment from a long-term recording is first prepared for CNN evaluation and
converted into an image with two overlapping layers (similar to RGB color layers). This image is evaluated by the first deep learning model (CNN 1)
and classified as either manatee vocalization or noise. If a vocalization is detected, a second deep learning model (CNN 2) re-evaluates the audio
segment and assigns it to one of the 4 classes of the vocal repertoire (or discards the segment if it is classified as noise in this step). Only the
vocalizations assigned to the first category (Squeak) are prepared for clustering in the post-processing stage. The number of clusters determined by
the clustering algorithm corresponds to the number of different squeaks and thus to the number of individuals.
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were post-processed. This call type is particularly suitable as it is the

most common and has been shown to distinguish individuals

(Sousa-Lima et al., 2002; Brady et al., 2022). The audio segments

isolated by the CNN have a range of background noise due to the

windowing before and after the actual onset and offset of the

vocalization. Such large areas of noise would cause difficulties in

the automatic extraction of vocal features and lead to inaccurate

results. Therefore, the onset and offset of the vocalization are

determined in a post-processing step and the audio segment is

cropped. This is done using Matlab R2023a (The MathWorks Inc.,

MA, USA). The harmonic ratio is calculated to determine the onset

and offset. The harmonic ratio measures the amount of energy of

the tonal signal component in relation to the amount of energy of

the total signal, for each defined time window (Kim et al., 2010). A

sudden rise in the harmonic ratio indicates the onset of a harmonic

vocalization, and a steep drop indicates the offset (Figure 3). To

calculate onset and offset, the gradient between adjacent harmonic

ratio values is determined. The maximum is selected for onset and

the minimum (negative maximum) for offset. Once the onset and

offset have been defined, the vocalization is truncated at these points

in time. The next step is to determine the signal-to-noise ratio

(SNR) for the selected area in order to discard vocalizations with

low signal strength. The SNR is calculated by computing the ratio of

the signals summed squared magnitude to that of the noise. A

sample vocalization with an above-average SNR is used as a

reference to determine the threshold. Vocalizations not reaching

at least 40% of the reference SNR are discarded. The selected and

cropped vocalizations are saved and can be used for feature

extraction. The SNR and the total noise power of the non-
Frontiers in Conservation Science 06
harmonic components of the signal (noise power) are calculated

using the “snr” function in the Signal Processing Toolbox.
2.4 Feature extraction

Previous studies have shown that features of manatee calls such

as fundamental frequency, harmonics and duration are well suited to

distinguish individuals (Sousa-Lima et al., 2002, 2008; Dietrich et al.,

2022). It was also shown that Mel-Frequency Cepstral Coefficients

(MFCCs) provide consistently reliable results in machine learning

(Wierucka et al., 2024). Since the automatic cutting of vocalizations

does not allow a reliable estimation of the duration of a vocalization,

features were extracted that determine the fundamental frequency,

the harmonic frequency bands, and the MFCCs. A list of the

extracted features is shown in Table 2. The features were extracted

using Matlab R2023a (The MathWorks Inc., MA, USA) and the

software CASE (Schneider et al., 2022). For extraction, some of

the methods used in the software CASE were improved. The

fundamental frequency (F0) was determined using 6 different

methods. The methods for estimating the fundamental frequency

are: Normalized Correlation Function (Atal, 1972), Pitch Estimation

Filter (Gonzalez and Brookes, 2014), Cepstrum Pitch Determination

(Noll, 1967), Log-Harmonic Summation (Hermes, 1988), Residual

Harmonics Summation (Drugman and Alwan, 2019), and a Deep

Learning Neural Network Estimation (Kim et al., 2018). Each of these

methods determines one value for F0 per time window. The median

is then determined for each time window and used as the actual F0

value. The subsequent harmonic frequency bands are determined by
FIGURE 2

Example vocalizations for the 4 classes shown as spectrograms.
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calculating the maximum peak within a defined frequency range in

the spectrogram. The boundaries of the frequency range are set by:

 Xi = F0 * (i + 1) − (
F0
4
)

Yi = F0 * (i + 1) + (
F0
4
)

Where X is the lower limit and Y is the upper limit of the frequency

range and i corresponds to the number of the frequency band being

searched for (1, 2 or 3). Thus, the frequency with the maximum energy

is determined in a range that is half as wide as the value of the

fundamental frequency and whose center corresponds to a multiple of

the fundamental frequency. Other methods for determining harmonic

frequency bands, such as linear predictive coding, are often developed

for the human voice, whose fundamental frequency is much lower than

that of the manatee, or require information about the vocal tract. The

method used here has provided very reliable results and is robust even

with noisy signals (Figure 4). The calculation of the Mel-Frequency

Cepstral Coefficients is not modified and used as originally

implemented in the software CASE.

Depending on the clustering method used, the features were either

windowed in the time domain and compiled as a multidimensional

matrix or extracted once for the entire vocalization as a one-

dimensional vector. For the windowed variant, the vocalizations were

divided into 5 time windows with an overlap of 50% and the

corresponding features were extracted for each window.
FIGURE 3

Sequence for clipping a vocalization from an audio segment isolated by the CNN and classified as a squeak. The onset and offset of the vocalization
are detected by the sudden rise and fall of the harmonic ratio. This allows the vocalization to be cut out at the appropriate times.
TABLE 2 List of extracted features.

Acoustic
Feature

Definition of
Features

(one-dimensional)

Definition of
Features
(multi-

dimensional)

F0
Median

fundamental frequency
Fundamental frequency for

each time window

Delta F0

Median value of the
difference between adjacent

values for F0 per
time window

Values of the difference
between adjacent values

for F0

FB1
Median frequency of the 1st

frequency band

Frequencies of the 1st
frequency band for each

time window

FB2
Median frequency of the
2nd frequency band

Frequencies of the 2nd
frequency band for each

time window

FB3
Median frequency of the

3rd frequency band

Frequencies of the 3rd
frequency band for each

time window

MFCC 1
1st Mel Frequency
Cepstral Coefficient

1st Mel Frequency
Cepstral Coefficient

MFCC 2
2nd Mel Frequency
Cepstral Coefficient

2nd Mel Frequency
Cepstral Coefficient

MFCC 3
3rd Mel Frequency
Cepstral Coefficient

3rd Mel Frequency
Cepstral Coefficient
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2.5 Clustering algorithms

Three different clustering methods were used to estimate the

number of individuals based on their squeak calls. Again, the

software CASE was used. Community Detection (CD), an

agglomerative hierarchical clustering method (Peel et al., 2017), was

used in combination with either the k-Nearest Neighbor (kNN)

(Friedman et al., 1977) or the Dynamic Time Warping (DTW)

(Sakoe and Chiba, 1978; Paliwal et al., 1982) classifier to create a

similarity matrix as input for CD. As Third clustering method

HDBSCAN, a divisive hierarchical clustering method, was used

(Campello et al., 2013, 2015). For HDBSCAN, the features were

provided as one-dimensional vectors, while the other two methods

used windowed features in the form of matrices. For HDBSCAN, both

the number of nearest neighbor data points used to compute the core

distance and the minimum number of data points required to form a

cluster were set to 4. Since a dimensionality reduction can lead to better

results for HDBSCAN, a reduction to 4 dimensions was tested using t-

SNE (McInnes et al., 2017; Sainburg et al., 2020; Schneider et al., 2022).

It was decided to keep the t-SNE dimensionality reduction as it gave

better results. For more information on the algorithms, see (Schneider

et al., 2022). The noise power determined by the “snr” function was

used as a parameter in the subsequent evaluation of the cluster results

to quantify the amount of background noise. For example, the amount

of background noise generated by pumps can be estimated and may

explain poor clustering results caused by feature extraction errors.
3 Results

3.1 CNN verification

To test the reliability of the CNN, 770 vocalizations from three

different zoos were evaluated manually and compared with the

results of the CNN prediction. The results are shown in Table 3.

Overall, the CNN finds over 10% more vocalizations than a trained

human and correctly assigns 92.44% of the vocalizations found to
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the appropriate class of the vocal repertoire. The confusion matrices

in Figure 5 show a reliable prediction of the different call types both

for the validation of the CNN model and for the evaluation of the

long-term recordings (test set). As a result, a well-trained deep

learning model can reliably detect and classify manatee calls in

long-term recordings.
3.2 Activity phases

It is particularly important to selectively record data in the field,

as resources such as storage media and batteries are limited.

Knowing when the animals are most vocally active is therefore

very valuable for bioacoustic studies and can significantly increase

the amount of usable data. For the manatees studied in this study,

the CNN identified two main activity phases (Figure 6). An activity

phase is initiated when a defined threshold is exceeded and ends
TABLE 3 Results of the evaluation of long-term recordings.

Nuremberg Wroclaw Duisburg Total

Total 413 153 202 768

Human 340 109 172 621

% 82,32 71,24 85,15 80,86

CNN binary 397 139 164 700

% 96,13 90,85 81,19 91,15

CNN call
type

classification
376 129 145 650

% 94,71 92,81 88,41 92,86
fr
The vocalizations identified in the recordings from the three zoos are presented in both
absolute numbers and as the proportion of correctly classified vocalizations in the total
number of vocalizations in percent. These identifications were made by both a trained human
observer (Human) and the two interconnected convolutional neural networks (CNN binary
and CNN call type classification). The number of correctly assigned call types as a percentage
refers to the number of vocalizations previously found by the binary CNN model.
BA

FIGURE 4

Feature extraction of a vocalization with low noise power (A) and a vocalization with high noise power (B). The black dots mark the frequency value
determined for F0 (lowest frequency band) and the subsequent harmonic frequency bands.
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when the value remains below the threshold for at least two time

intervals. A time interval corresponds to one hour. All detected

vocalizations were summed for this hour. To make the values

comparable between zoos, they were normalized to 1 and the

median of these values (0.3) was used as the threshold value. The

identified activity phases are between 3 and 7 a.m. and between 4

p.m. and midnight (Figure 6). Between 8 a.m. and 3 p.m. there is a

long phase of low vocal activity.
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3.3 Determine population sizes using
clustering methods

To validate that the clustering algorithms were determining the

correct number of individuals, audio recordings from 3 different

zoos were used. Recordings from Nuremberg Zoo were used from

two different time periods, once before and once after a new

individual was added to the group. In this way, the evaluation of
FIGURE 5

Confusion matrix of the validation data during transfer learning (validation set) and the evaluation of the long-term recordings (test set). The
accuracy is given as a micro F1-score, since the classes are not optimally balanced, especially in the long-term recordings.
FIGURE 6

Vocal activity of all recorded manatees over 24 hours. The black line corresponds to the median number of vocalizations detected within an hour.
The number of vocalizations per hour was normalized to 1, so that the recording period with the most vocalizations is equal to 1 and the proportion
of all others is determined. The area between the first and third quartile is shown in dark grey. The dashed line indicates periods of activity.
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4 different group sizes could be tested, as well as the ability of the

clustering algorithms to recognize the calls of a new individual.

Additionally, the calls were merged in two different constellations to

simulate larger groups. Table 4 shows the results of the clustering

procedures and the actual group sizes. In addition, the percentage

deviation (D%) from the actual number of individuals is shown, as

well as the median noise power for each zoo. Especially for

clustering with CD, the accuracy decreases strongly with

increasing noise power. HDBSCAN is much more robust and

determines the correct number of clusters for each zoo. When

combining the Nuremberg and Wroclaw vocalizations into one

dataset, HDBSCAN correctly counts the number of individuals,

which CD does not. When the vocalizations from Nuremberg and

Wroclaw are combined into one data set, HDBSCAN determines

the number of individuals with a small deviation of 11.11 percent,

while the CD methods show a considerably larger deviation. Using

all vocalizations from all zoos, the number of individuals cannot be

accurately determined by any of the methods.
4 Discussion

4.1 Benefits and advantages of the method

The unsupervised clustering method in combination with deep

learning used in this paper is independent of human decisions and

therefore not susceptible to human bias or errors of concentration

(Stowell, 2022; Guerrero et al., 2023). Some of the errors that led to

poorer results in the human evaluation of the long-term recordings

(Table 3) are probably due to lack of concentration. The

vocalizations in the long-term recordings must first be isolated

from the recording and then stored by the user. Additional

information (e.g. time stamps) must be transferred to a

spreadsheet. Each of these steps are subject to errors that do not

occur in automated systems. Furthermore, by including low SNR

vocalizations and augmentation, the model trained here is robust

and also finds vocalizations that are weak and maybe missed by
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humans. Weak vocalizations with low SNR are not suitable for

clustering, but are important when estimating animal activity or

when the frequency of certain calls is relevant, such as in mother-

calf interactions. Therefore, a large amount of data is required both

for the frequency of certain calls and for clustering the population

size, which cannot be handled by human evaluation for long-term

recordings of several months or years. In our study, HDBSCAN has

clearly proven to be the most performant clustering algorithm. By

discarding data that are difficult to assign, the method has a clear

advantage, especially for automatically selected vocalizations.

Although clustering with CD works very well for preselected

vocalizations with high SNR and easy to extract features

(Schneider et al., 2022), it is at a disadvantage when clustering

total sets with an unknown number of individuals. Especially with

large amounts of data, discarding insufficient data is an advantage

and can lead to better results. After post-processing, the error rate is

reduced because only vocalizations with sufficient SNR are used for

clustering. This, along with HDBSCAN’s exclusion of outliers,

means that a larger amount of data is advantageous, but the

results are more reliable.
4.2 Challenges in field research

In the wild, disturbing noises such as motorboats or

environmental factors (wind, rain, snapping shrimp) can reduce

the SNR and negatively affect the analysis of the audio recordings

(Yan et al., 2005). Therefore, it is advisable to choose recording

times with minimal noise and within a vocal activity phase of the

manatees. The activity phases determined here correspond well

with those already described for African manatees (Trichechus

senegalensis) (Rycyk et al., 2022). Rycyk et al. (2022) hypothesized

that nocturnal activity may be related to reduced disturbance from

human activity during the night. The fact that this pattern of activity

is also found in three different zoos may suggest that vocal activity is

generally more nocturnal. However, human disturbance in zoos

also occurs primarily during the day.
TABLE 4 Estimated number of individuals by the different clustering methods.

kNN
+
CD

DTW
+
CD

HDBSCAN True D% kNN+CD D% DTW+CD D% HDBSCAN Noise power

Nuremberg1 3 3 3 3 0 0 0 0,95

Nuremberg2 4 4 4 4 0 0 0 1,03

Wroclaw 4 3 5 5 20 40 0 20,24

Duisburg 4 4 2 2 100 100 0 72,28

D+W 3 4 7 7 57,14 42,86 0

N+W 3 4 8 9 66,67 55,56 11,11

All 4 4 6 11 63,64 63,64 45,45
Columns 1–3 show the number of clusters determined by each clustering method. The “True” column shows the actual number of individuals for the corresponding scenario. The scenarios
correspond to the group sizes in the zoos. Note that an additional individual was added later in Nuremberg (Nuremberg 1 and 2). In addition, the data from Nuremberg and Wroclaw were
combined (N+W), the Data from Duisburg and Wroclaw were combined (D+W) and the data from all zoos (Nuremberg, Wroclaw and Duisburg) were combined (All). The percentage
deviations (D%) of the corresponding cluster methods from the actual number of individuals are shown in columns 5–7. Column 8 shows the average noise power in the recordings of the
corresponding zoos and can be used as an indication of the noise level. The larger the number, the stronger the noise.
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For passive acoustic monitoring in the field, the accuracy of the

results also depends on how often and whether all individuals vocalize

close enough to the recording device to capture a reliable signal of the

call. Although the deep learning model trained here reliably detects

even weak vocalizations with low SNR, such calls can rarely be used to

cluster the population size. Consequently, a longer recording time

increases the chance of recognizing useful calls. Accordingly, the quality

of the results increases as the amount of data increases. However, large

numbers of recordings can only be analyzed using automated

procedures. The method presented here provides reliable results and

is also able to classify the different calls of manatees. This allows not

only to monitor activity, but also to provide information about possible

offspring, specific behaviors, or arousal states. In their study, Brady et al.

(2022) associated certain calls with increased stress or arousal. By

distinguishing such calls and recording their frequency, the CNN can

infer some welfare aspects of the group and monitor affiliative and

agonistic behavior within the group.
4.3 Limitations

When developing the CNN, an attempt was made to take into

account as many potential challenges as possible and to find an

adequate solution for them. Despite augmentation, the results show

that signals with very high noise power can affect the accuracy of the

CNN (Table 4). In the audio data recorded here, this is primarily

noise from the pumps in the basin, which partially mask frequencies

of the manatee calls. Accordingly, less accurate results can be

expected from recordings with high background noise.

Discarding outliers has the advantage of improving the clustering

result, but requires a sufficient amount of data. The fact that the number

of individuals could not be sufficiently determined when adding the data

from Duisburg to the other datasets (Table 4, column “All”) is probably

due to the lower number of usable data compared to the other

individuals. For comparison, in Nuremberg 13.33% of the

vocalizations were discarded as outliers, while in Duisburg 93.1% were

discarded. Furthermore, discarding outliers is not common in other

clustering algorithms, making it impractical to compare the results of

different clustering methods to increase the reliability of the results. One

approach would be to use other outlier detection methods upstream of

the classifiers (kNN or DTW), which may improve the results. Nowak-

Brzezińska and Gaibei (2022) also show that clustering results can be

improved by discarding outliers using LOF (Local Outlier Factor) and

COF (Connectivity-based Outlier Factor) algorithms. This would allow

multiple clustering methods to be applied to the same data sets to

confirm or question the reliability of the results. Furthermore, the cluster

results should be checked manually to be on the safe side by taking

random samples from the clusters and adjusting the results if necessary.

This manual check is particularly advisable if the data quality is poor.

In the results obtained here, the accuracy of the population size

estimate decreases as the number of individuals increases (Table 4).

As mentioned above, this may be due to an excessive proportion of

outliers and the associated strong imbalance of data points per

cluster. However, as the number of individuals increases, the

probability that the calls of two individuals are very similar and

difficult to distinguish by the clustering algorithm also increases.
Frontiers in Conservation Science 11
However, this can only partially explain the poorer clustering

results when using all vocalizations from all zoos, as HDBSCAN

deviates much less from the actual number of individuals for two

zoos taken together (Table 4, D+W and N+W).
4.4 Conclusion

The results of this study demonstrate that the developed deep

learning method effectively detects and accurately categorizes

manatee vocalizations in extended recordings. The use of this

automated classification, along with subsequent post-processing

techniques that select signature calls based on their signal-to-noise

ratio (SNR), offers potential avenues for estimating population size. In

particular, the use of clustering methods such as HDBSCAN has

shown promise in this regard, providing robust estimates of

individual numbers across different test scenarios. Its effectiveness

lies in its ability to eliminate outliers, a key advantage over alternative

clustering algorithms. Automated analysis enables the evaluation of

large datasets collected over long periods of time, increasing the

likelihood of detecting all individuals within an area and reliably

determining population sizes.

However, it’s important to recognize the limitations,

particularly the variety of sound environments encountered in

the wild. Variations in ambient noise levels and acoustic

conditions can pose challenges to accurate population estimates.

In the future, it is imperative to explore the application of this

methodology to analyze sound recordings of animals in their

natural habitats, such as lagoons, where population sizes are

known. By assessing the extent to which HDBSCAN can

provide reliable results in these real-world settings, researchers

can further refine and validate this approach. In addition, future

efforts should focus on using recordings of different call categories

to not only monitor animal activity, but also track the presence of

offspring and identify instances of arousal states and stress events.

This comprehensive understanding will be instrumental in

advancing welfare assessment and conservation efforts for

manatees and other wildlife species.
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Nowak-Brzezińska, A., and Gaibei, I. (2022). How the outliers influence the quality of
clustering? Entropy (Basel) 24, 917. doi: 10.3390/e24070917

Paliwal, K. K., Agarwal, A., and Sinha, S. S. (1982). A modification over Sakoe and
Chiba’s dynamic time warping algorithm for isolated word recognition. Signal Process.
4, 329–333. doi: 10.1016/0165-1684(82)90009-3

Peel, L., Larremore, D. B., and Clauset, A. (2017). The ground truth about metadata and
community detection in networks. Sci. Adv. 3, e1602548. doi: 10.1126/sciadv.1602548

Reyes-Arias, J. D., Brady, B., Ramos, E. A., Henaut, Y., Castelblanco-Martıńez, D. N.,
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