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Central African rainforests are predicted to be disproportionately affected by

future climate change. How species will cope with these changes is unclear, but

rapid environmental changes will likely impose strong selection pressures. Here

we examined environmental drivers of genomic variation in the central African

puddle frog (Phrynobatrachus auritus) to identify areas of elevated

environmentally-associated turnover. We also compared current and future

climate models to pinpoint areas of high genomic vulnerability where allele

frequencies will have to shift the most in order to keep pace with future climate

change. Neither physical landscape barriers nor the effects of past Pleistocene

refugia influenced genomic differentiation. Alternatively, geographic distance

and seasonal aspects of precipitation are the most important drivers of SNP allele

frequency variation. Patterns of genomic differentiation coincided with key

ecological gradients across the forest-savanna ecotone, montane areas, and a

coastal to interior rainfall gradient. Areas of greatest vulnerability were found in

the lower Sanaga basin, the southeastern region of Cameroon, and southwest

Gabon. In contrast with past conservation efforts that have focused on hotspots

of species richness or endemism, our findings highlight the importance of

maintaining environmentally heterogeneous landscapes to preserve genomic

variation and ongoing evolutionary processes in the face of climate change.
KEYWORDS

Central Africa, amphibians, RAD-seq, environmental gradients, genomic vulnerability,
climate change
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1 Introduction

The tropical forests of the Congo Basin and Gulf of Guinea

represent one of the most biologically diverse regions in the world.

This region ranks third in plant, mammal, bird, and amphibian

species richness after the Amazon and New Guinea (Mittermeier

et al., 2003). With respect to amphibians, the Cameroon highlands

are recognized as one of the world’s most important biodiversity

hotspots (Herrmann et al., 2005; Stuart et al., 2008; Gvoždıḱ et al.,

2020). Several hypotheses have been advanced to explain the high

biodiversity in this region. The more arid conditions during the

Pleistocene resulted in fragmented forest habitat, and previous

phylogeographic studies have shown that past Pleistocene refugia

shaped population structure in several central African rainforest

species, providing support for the role of Pleistocene forest refugia

as potential engines of diversification (Quérouil et al., 2003; Plana,

2004; Anthony et al., 2007; Born et al., 2011; Nicolas et al., 2011;

Murienne et al., 2013). Alternatively, the riverine barrier hypothesis

has argued that rivers could have led to the isolation and

diversification of tropical forest species (Colyn et al., 1991).

Support for this hypothesis has been found in primates (Telfer

et al., 2003; Anthony et al., 2007; Mitchell et al., 2015), birds (Aleixo,

2004) and rodents (Nicolas et al., 2011). Compared to these other

taxa, far less attention has been paid to assessments of the impact of

physical landscape barriers or past Pleistocene refugia on gene flow,

or the effects of environmental variation (i.e. precipitation,

temperature, and seasonality) on patterns of amphibian

diversification in this region.

Environmental variation can act as a strong agent of

diversifying selection, particularly in areas of high environmental

heterogeneity (Endler, 1973), such as that observed across ecotones

(Smith et al., 1997; Freedman et al., 2010; Termignoni-Garcıá et al.,

2017) or across different levels of elevation (Thomassen et al., 2011).

In central Africa, environmental variation has been shown to

explain patterns of genetic differentiation in olive sunbirds (Smith

et al., 2011), little greenbuls (Smith et al., 1997; Zhen et al., 2017),

skinks (Freedman et al., 2010), chimpanzees (Mitchell et al., 2015),

forest antelope (Ntie et al., 2017), soft-furred mice (Morgan et al.,

2020), and reed frogs (Bell et al., 2017). These heterogeneous

environments may capture ecological and evolutionary processes

that are fundamental to maintaining and generating biological

diversity (Moritz et al., 2000).

One major challenge is being able to effectively partition the

effects of isolation by environment (IBE) from other potential

drivers of population differentiation, namely: isolation by distance

(IBD), isolation by resistance due to physical landscape barriers

(IBB), and historical isolation due to past Pleistocene refugia (IBP).

Advances in landscape genomics can be used to simultaneously

assess the relative importance of competing ecological and historical

drivers on genomic differentiation (Manthey and Moyle, 2015;

Termignoni-Garcıá et al., 2017). Specifically, Fitzpatrick and

Keller (2015) have shown that Generalized Dissimilarity

Modelling (GDM (Ferrier et al., 2007)) and Gradient Forests (GF

(Ellis et al., 2012)) can be powerful tools for analyzing gene–

environment associations at the landscape level. Under a model

of IBE, genetic differentiation increases with environmental
Frontiers in Conservation Science 02
differences between sites, independent of geographic distance

(Shafer and Wolf, 2013; Wang and Bradburd, 2014). In contrast,

under a model of IBD, genetic differentiation is predicted to

increase as a function of geographic distance whereas genetic

differentiation under IBB is driven by landscape barriers to

animal or plant dispersal (Balkenhol et al., 2017; Cushman and

Schwartz, 2006). Resistance distances due to barriers between

populations can be based on landscape features that may inhibit

gene flow, including physical barriers such as rivers (Mitchell et al.,

2015) or changes in elevation (IBB). Lastly, resistance matrices can

also be used to model the effects of past refugia (Ntie et al., 2017)

(IBP), by hindcasting areas of suitable habitat during the last glacial

maximum (LGM) (Nogués-Bravo, 2009). In many of these cases,

circuit theory is used to incorporate IBE, IBB, and IBP into models

of population connectivity and identify which variables are the most

important predictors of gene flow (McRae and Beier, 2007).

Central Africa faces a variety of threats from human activities

and is especially vulnerable to climate change (Oates et al., 2004;

Laporte et al., 2007; Abernethy et al., 2013; James et al., 2013).

Temperatures are expected to rise along with potential shifts in

rainfall patterns, including more intense dry seasons that could

result in forest retreat (James et al., 2013). Species in this region, if

they are to survive, would therefore be forced to respond to climate

change either through dispersal, evolutionary adaptation or

phenotypic plasticity (Holt, 1990; Davis et al., 2005). Given the

threat that climate change poses to many species, there is now an

increasing need to identify current and historical drivers of

evolutionary diversification and recognize key areas for future

conservation where species capacity to adapt is greatest (Anthony

et al . , 2015). Mapping landscape-level predictions of

environmentally-associated genomic variation under both current

and projected future environments can shed light on both the ability

of populations to persist in their current state as well as their future

capacity to respond to change through evolutionary adaptation

(Gunderson, 2000; Thrush et al., 2009; Sgrò et al., 2011). In this

regard, the term “genomic vulnerability” (Bay et al., 2018; Ruegg

et al., 2018) has been used as a measure of the degree of “mismatch”,

or “offset” , between current and future projections of

environmentally-associated genomic variation and can be used as

a proxy for population vulnerability to environmental change

(Ruegg et al., 2018). Genomic vulnerability estimates how much

allele frequencies would have to change to keep track with the

environmental changes predicted to occur at a certain location.

Thus, the locations with the greatest vulnerability are those that are

predicted to have to undergo the greatest changes in allele

frequencies to keep pace with environmental change.

In the present study, we used a combination of statistical methods

to determine the potential drivers of genomic diversification in the

widespread African puddle frog, Phrynobatrachus auritus across its

range in the west Central African countries of Cameroon, Equatorial

Guinea, and Gabon. We used geospatial modeling to map patterns of

genomic turnover (i.e. the change in allele frequencies with

geographic distance) and predict areas of elevated genomic

vulnerability. P. auritus serves as an ideal model for examining the

effects of environmental heterogeneity because it occurs in a variety of

forest types (Zimkus and Schick, 2010) and occupies a wide range of
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environmental conditions. Findings from these methods were then

used to address the following: 1) Does IBE influence genomic

differentiation more than IBB or IBP? 2) Are areas of greatest

environmentally-associated genomic turnover associated with

strong environmental gradients across the landscape? 3) Where is

genomic vulnerability predicted to be highest across the study area in

response to future climate change?
2 Materials and methods

2.1 Field sampling

Frogs were sampled between the months of March and July in

2013, 2014, and 2015. We collected a total of 191 P. auritus from

four sites in Cameroon (CampoMa’an (CM), N = 29; Ebo forest (EF),

N = 24; Ndikiniméki (ND), N = 13; and Takamanda (TM), N = 15),

and five sites in Gabon (Gamba Complex (GC), N = 24; Kessala (KS),

N = 21; Lopé (LP), N = 18; Monts de Cristal (MC), N = 22; and

Minkébé (MK), N = 25) (Figure 1A). These sites encompassed a range

of forest types, namely: lowland rainforest (CM, MK), sub-montane

rainforest (EF, TM), forest-savanna ecotone (KS, MC), coastal

rainforest (GC), and mixed lowland-agricultural forest (ND). After

frogs were euthanized with MS222 solution, muscle and kidney tissue

was placed in 95% ethanol prior to DNA extraction. Male frogs were
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differentiated from female frogs by the presence of a developed vocal

sac, indicated by a dark throat and vocal folds. Frogs that could not be

sexed by these secondary sexual characteristics were dissected and

sexed by either the type of reproductive organ or by the presence of

eggs. All animal handling procedures were carried out according to an

approved University of New Orleans Institutional Animal Care and

Use Committee protocol 12-008. Specimens were deposited at the

Museum of Comparative Zoology, Harvard University.
2.2 Environmental datasets

We used five environmental variables to predict the influence of

environmental variation on genomic differentiation given their

relevance to amphibian ecology and biology as well as their

relevance in previous studies (Ficetola and Maiorano, 2016;

Morgan et al., 2020). The five bioclimatic variables were: annual

temperature, temperature seasonality, annual precipitation,

precipitation seasonality, and precipitation of the coldest quarter

from the WorldClim database (Fick and Hijmans, 2017)

(www.worldclim.org). Precipitation of the coldest quarter was

selected because it represents a unique characteristic of

precipitation for this region. It effectively reflects the seasonal

inversion that occurs approximately across the equator such that

the dry season in central Cameroon coincides with the rainy season
B

C

A

FIGURE 1

Field sampling and inferred population structure of P. auritus. (A) Map of nine sampling locations: Takamanda (TM), Ndikiniméki (ND), Ebo Forest (EF),
Campo Ma’an (CM), Monts de Cristal (MC), Minkébé (MK), Lopé (LP), Kessala (KS), and Gamba Complex (GC). Each point is a sampling site and the
colors correspond to the assigned population. The green shading corresponds to forest cover. (B) PCA of 1631 SNPs. Each point presents a sample,
and samples are colored by site with similar color shades corresponding to their assigned populations. (C) FastStructure results of 1631 SNPs. Site
abbreviations are labeled within each population.
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in northern Gabon and vice versa (Heuertz et al., 2014; Morgan

et al., 2020). We then tested for potential correlations between

environmental variables to ensure no two variables had a Pearson’s

correlation coefficient > 0.8. All climate variables had a resolution of

30 arc-seconds (approximately 1 km2). Although estimates of

vegetation cover may also be important determinants of genomic

differentiation, the lack of climate projection maps prevents the use

of these variables for modeling under future conditions and were

therefore not included in the current study. Future projections of

bioclimatic variables were taken from aggregated global climate

models (Clee, 2017) for two representative concentration pathways

(RCPs) 2.6 and 8.5, projected for year 2080 based on the

Intergovernmental Panel on Climate Change (IPCC) 5th

assessment report. Together, these two RCPs span the greatest

range in predicted radiative forcing under climate change and

represent “best” and “worst” case scenarios regarding global mean

temperature increases.
2.3 RAD-seq data

We extracted genomic DNA from either kidney or muscle tissue

using Qiagen DNEasy Blood and Tissue kit (Qiagen, CA), following

the manufacturer’s protocol. A total of 164 individuals had genomic

DNA of sufficient quantity (> 50 ng) and quality needed for

restriction site-associated sequencing (RAD-seq) as determined

through gel electrophoresis (Davey et al., 2011). RAD-seq library

preparation followed the BestRad protocol for Illumina sequencing

as described in Ali et al. (2016). Briefly, genomic DNA (100 ng) was

digested with 4.8 units of SbfI-HF restriction enzyme (New England

Biolabs NEB, R3632L) at 37°C for 1 h in a 12 µl reaction volume.

Samples were heated to 65°C for 20 min and 4 µl of the indexed

BestRad SbfI P1 RAD adapter (10 nM) was added to each sample.

Ligation of inline barcoded P1 adaptors to digested genomic DNA

was performed overnight at 20°C with 640 units of T4 DNA ligase

(NEB, M0202M), then 65°C for 20 min. Following ligation, 10 µl of

each sample in each 48 well plate was pooled into a single tube and

cleaned using 1x Agencourt AMPure XP beads (A63881; Beckman

Coulter). Pooled DNA for each plate was then resuspended in 100

µl low TE and sheared to an average fragment size of 500 base pairs

using a Bioruptor NGS sonicator (Diagenode). Sheared DNA was

then concentrated to 55.5 µl using Ampure XP beads and used as

the template in the NEBNext Ultra DNA Library Prep Kit for

Illumina (NEB E7370L; v.1.2). The standard NEBNext protocol for

library preparation was followed except that we used custom P2

adaptors which were created by annealing a NEBNext Multiplex

Oligo for Illumina (NEB, E7335L) to the oligonucleotide

GATCGGAAGAGCACACGTCTGAACTCC AGTCACIIIIII

ATCAGAACA*A (where * represents a phosphorothioate DNA

base). In addition, instead of the USER® enzyme step, we used a

universal P1 RAD primer (AATGATACGGCGACCACC

GAGATCTAC ACTCTTTCCCTACACGAC*G) and a universal

P2 RAD primer (CAAGCAGAAGACGGCATACG*A) during final

amplification. The final RAD library was cleaned using AMPure XP

beads and sequenced at the UC Berkeley QB3 Vincent J Coates

Genome Sequencing Laboratory (GSL) on an Illumina HiSeq2500:
Frontiers in Conservation Science 04
Rapid Run Mode (Illumina, San Diego, CA, USA) using paired-end

100-bp sequence reads.
2.4 Bioinformatics analysis of RAD-
seq data

We used the bioinformatics software pipeline, STACKS v.1.44

(Catchen et al., 2011; Catchen et al., 2013) to process the restriction-

site-associated DNA markers (RAD-tags) and generate single

nucleotide polymorphism (SNP) datasets. First, we executed the

“process_radtags” program in STACKS to demultiplex and trim

sequence reads by the P1 barcodes and remove low quality reads

(Phred quality score less than 20). After removing PCR duplicates with

the “clone_filter” script, the processed reads were used to generate RAD

loci without a reference genome using “denovo_map.pl” (parameter

settings: m = 3 M = 5 n = 4). We empirically determined these

parameters to limit the impact of over-splitting loci (Ilut et al., 2014;

Harvey et al., 2015). This involved running the de novo assembly over a

wide range of values of M (1–8) with “ustacks”. From these runs, we

selected a value of M = 5 since we observed that the percentage of

homozygous and heterozygous loci reached a stable value and thus

minimized over-splitting of alleles for the final SNP calling.

Stacks calls SNPs (“sstacks”) within RAD loci using a

multinomial-based likelihood model that estimates the likelihood of

the two most frequently observed genotypes at each site and performs

a standard likelihood ratio test using a chi-square distribution

(Hohenlohe et al., 2010; Catchen et al., 2011). For SNP inference,

we used the default alpha significance level of 0.05. Paralogous loci

that stacked together were identified and removed by subsequent

quality control steps built into STACKS (max number of stacks per

loci (m) = 3 (Ilut et al., 2014; Harvey et al., 2015)). After the

preliminary assembly of catalog loci using “denovo_map.pl”, we

ran the STACKS correction mode (rxstacks-cstacks-sstacks) using

the bounded SNP model with a 0.05 upper bound for the error rate.

The “rxstacks” program made corrections to genotype and haplotype

calls based on population information, rebuilt the catalog loci and

filtered out loci with average log likelihood ratio of < 8.0.

We used three additional filtering steps to generate a set of high-

quality RAD loci for downstream population genetic analysis. First,

we retained only RAD loci that were present in 80% of all samples.

Second, we removed RAD loci that contained more than 40 SNPs,

as these likely represented sequencing errors or over-clustering of

paralogous loci. Lastly, we used the BLAT alignment algorithm

(Kent, 2002) to de novo align the RAD loci and remove those that

aligned to multiple positions. The final consensus set of RAD loci

comprised SNP data from a total of 139 individuals. Genotypes

were called, filtered, and bi-allelic SNPs were exported in VCF

format using the STACKS “populations” program. SNPs from

the last seven bp of the RAD loci were removed as this part of

the locus is likely to contain sequence errors at the 3’ end of the

reads. The SNP dataset was further filtered with VCFtools v.0.1.14

(Danecek et al., 2011) to remove SNPs below a minor allele

frequency (MAF) of 0.05 cutoff to reduce artifacts of sequence

and assembly error. Finally, the dataset was filtered to include only

one random SNP per RAD locus for use in all downstream analyses
frontiersin.org

https://doi.org/10.3389/fcosc.2024.1366248
https://www.frontiersin.org/journals/conservation-science
https://www.frontiersin.org


Miller et al. 10.3389/fcosc.2024.1366248
in order to avoid linkage disequilibrium between SNPs within

RAD loci.
2.5 Analyses of population
genomic structure

We performed a principal component analysis (PCA) using the

Bioconductor package SNPRelate (Zheng et al., 2012) (https://

www.bioconductor.org/) to summarize population genomic

structure. We used the program FastStructure (Raj et al., 2014) to

estimate the number of genetically distinct populations within the

sampled P. auritus range. We tested a range of K values (where K

denotes the number of inferred populations) from 1 to 10. The

script “chooseK.py” included in the FastStructure package was used

to determine the best estimate of K that maximizes the marginal

likelihood. We also calculated pairwise estimates of FST (Weir and

Cockerham, 1984) among sites and among K populations inferred

from FastStructure using VCFtools. To test for an IBD effect, a

Mantel test was used to assess the correlation between pairwise FST
values and geographic distance. Mantel tests were run with 999,999

permutations using the vegan package (Oksanen et al., 2022) in R

and are reported using both raw FST and transformed FST/(1-FST)

distances, as well as both raw Euclidian geographic distance and

log-transformed Euclidean distances (Slatkin, 1995; Rousset, 1997).
2.6 Quantifying the relative impact of IBE,
IBD, IBB, and IBP on genomic differentiation

We used GDM to compare the importance of IBE to isolation

by landscape barriers (IBB) or Pleistocene refugia (IBP) on patterns

of genomic differentiation. GDM is a matrix regression technique

that evaluates the relationship between site-site dissimilarities in

environmental or landscape ‘predictor’ variables and a biotic

‘response’ variable (e.g. pairwise genetic distances). A major

advantage of GDM over other modeling methodologies is that it

can fit non-linear relationships between environmental variables

and the biological response variable through the use of I-spline basis

functions (Ferrier et al., 2007). This approach includes straight-line

geographic distance as a predictor variable and can also incorporate

a range of environmental data layers, and matrices derived from

resistance surfaces as different predictors.

Pairwise dissimilarity in genomic composition between sites was

modeled using two measures: 1) pairwise FST values and 2) a pairwise

Bray-Curtis dissimilarity index based on the presence or absence of a

SNP at each locus referred to as the Bray-Curtis allele frequency

difference or AFD (Sherwin, 2022). IBE was represented by the set of

five environmental variables described previously. In addition to

these environmental variables, a set of predictor variables were

generated to model the effect of IBB and IBP under the Last Glacial

Maximum approximately 21,000 years ago (i.e. IBP). IBB represents

physical barriers (elevation and rivers) to gene flow. Pairwise

resistance distances for IBB were generated by creating raster layers

of resistance surfaces based on landscape features, elevation and
Frontiers in Conservation Science 05
rivers, using the raster calculator available in QGIS v.2.18. We then

calculated pairwise resistance distances from these raster layers with

CIRCUITSCAPE 4.0 (McRae et al., 2013). Two IBB matrices were

generated, IBB1 and IBB2. For IBB1, resistance values increased with

increasing elevation and major rivers were treated as impenetrable.

For IBB2, resistance increased with increasing elevation and also with

Strahler order, which reflects size and strength of perennial river

systems. IBP represents the historical landscape based on modeled

available habitat. For IBP, we first projected habitat suitability for

P. auritus under climate conditions during the LGM using two global

climate models (CCSM and MIROC). We then created resistance

surfaces where resistance was considered to be inversely proportional

to habitat suitability, and finally, calculated pairwise resistance

distances from this raster layer with CIRCUITSCAPE. Further

details on how these predictor variables were generated and the

resultant distance matrices can be found in Appendix 1. I-spline

turnover functions describing the relationship between the biological

response variable (pairwise dissimilarity in genomic composition)

and each of the predictor matrices were visualized using rug plots and

their significance was tested using 1000 permutations.
2.7 Mapping genomic turnover and
predicting patterns of genomic
vulnerability under future climate change

We evaluated the importance of environmental variables as

predictors of environmentally-associated genomic turnover and

spatialized these patterns across the study region using GF

modeling within the gradientForest package (Ellis et al., 2012) in

R (Appendix 1). Response variables were individual SNP minor

allele frequencies within each population. Predictor variables were

represented by the same environmental variables that were included

in the GDM along with latitude and longitude. GF uses a machine-

learning algorithm to divide the biological data into different bins

(i.e. different values of allele frequencies), with partitions occurring

at several split values along each environmental variable. This

binning is performed for every SNP, weighting each SNP

individually according to its fit to the model (i.e. R2) before

aggregating across all SNPs. GF determines the “split importance”

by measuring the amount of biological variation explained by a

given split value (e.g. between 26 and 27°C), which is then

cumulatively summed along each gradient to construct turnover

functions (Fitzpatrick and Keller, 2015). The top three

environmental variables in modeling genomic turnover from a

total of 2000 regression trees were used to predict and map

environmentally-associated turnover across the study region using

a random grid of 100,000 sample points. To ensure that our GF

model was performing better than random, we shuffled the

environmental-predictor matrix to generate 200 randomized

datasets and compared the number of SNP loci with R2 positive

values to the mean R2 value across SNP loci using GF models

describing variation in the real versus randomized datasets.

Lastly, we predicted future environmentally-associated genomic

variation based on projecting GF models under climate change for
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the years 2050 and 2080 for RCPs 2.6 and 8.5, representing “best”

and “worst” cases, respectively. To map predicted changes of

genomic variation associated with environment, we calculated the

Euclidean distance between models based on current and future

climate conditions. Areas where environmentally-associated

genomic variation changes the least are considered to have low

genomic vulnerability whereas areas where they change the most

are considered to have high genomic vulnerability.
3 Results

3.1 SNP variation

RAD-sequencing of 139 P. auritus samples generated a total of

838,425,400 paired-end reads across both plates (308,255,191;

530,170,209) after filtering out low-quality samples and reads. The

number of raw sequencing reads per sample ranged from 133,185 to

16 million. The mean coverage depth ranged from 5x to 26x across

individual samples (mean = 8x, median = 7x, Appendix 2). From

these reads, we assembled 2,979 high-quality RAD loci and a total of

32,966 SNPs that were present in 80% or more samples. Using a

minor allele frequency cutoff of 5%, we retained 1631 RAD loci

encompassing 3,092 SNPs, and from which we selected one random

SNP per RAD locus.
3.2 Population genomic structure

The PCA identified significant population structure across the

sampled range of P. auritus. PC1 explained 25.89% of the variation

and separated the three northern sites (EF, ND, TM) from the

remaining six sites (CM, MC, MK, LP, KS, GC). PC2 explained

9.26% of variation and separated GC, the southernmost coastal site,

from all other sites (Figure 1B). FastStructure analyses also revealed

a pattern of population structure that is organized latitudinally into
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five distinct populations: 1) EF, ND, and TM, 2) CM, 3) MC and

MK, 4) KS and LP, and 5) GC (Figure 1C, Appendix 3).

Pairwise FST values between sites ranged from 0 to 0.438 (mean =

0.229; Appendix 4), indicating low to moderate levels of genomic

differentiation between sites. We found a significant correlation

between pairwise FST and geographic distances between the sites

(Mantel r = 0.6728; mantel simulated p-value = 0.001), suggesting a

strong pattern of IBD.
3.3 Quantifying the relative impact of IBE,
IBD, IBB, and IBP on
genomic differentiation

The GDM based on pairwise FST values and AFD explained 80%

and 81% of the variation in the data, respectively. Precipitation of

the coldest quarter was the only significant variable (p = 0.02) and

the most important variable in the model with FST values.

Geographic distance was the only significant variable in the

model based on AFD (p = 0.01), however precipitation of the

coldest quarter was the most important variable, followed by

geographic distance (Table 1). The I-spline plot for precipitation

of the coldest quarter shows that observed compositional turnover

in genomic differentiation increases with greater levels of

precipitation (Supplementary Figure S1). Importantly, neither of

the two resistance matrices (IBB1, IBB2) modeling the effects of

riverine barriers nor the two matrices modeling the distribution of

suitable habitat since the Pleistocene (IBP-CCSM, IBP-MIROC)

had any significant effect on the model (i.e. all matrices had a

coefficient = 0 except IBP-MIROC).
3.4 Landscape patterns of genomic
turnover and genomic vulnerability

We used a GF approach to determine associations between SNPs

and environmental variables and map environmentally-associated
TABLE 1 GDM results using genomic data and environmental variables across all models.

FST AFD

Variable Significance (p-values) Importance Significance (p-values)2 Importance2

Geographic distance 0.068 3.185 0.016 9.935

Temperature Seasonality 0.300 0.341 0.681 0.241

Annual Precipitation 0.217 0.114 0.509 0.083

Precipitation Seasonality 0.098 3.368 0.283 2.847

Precipitation of Coldest Quarter 0.024 18.118 0.157 10.671

IBB1 – – – –

IBB2 – – – –

IBP-MIROC – – 0.334 0.010

IBP-CCSM – – – –
P-values and relative importance of significant variables in modeling of both pairwise FST values and genetic dissimilarity based on AFD. The bolded values indicate significant results.
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genomic turnover across the total study area. A total of 458 SNPs

(28% of all SNPs) had R2 values > 0 (average = 0.28) (Figure 2A).

When testing model performance, the number of SNPs with R2

values > 0 for all of the randomized datasets fell below the number

observed for the real data (Supplementary Figure S2) and the mean

R2 value generated for the real dataset fell within the upper 95%

quartile of values generated for the randomized datasets

(Supplementary Figure S2), both indicating that the GF model

shows a stronger association between environmental and genomic

variation for our dataset relative to the set of randomized datasets.

Precipitation of the coldest quarter, latitude, and precipitation

seasonality were the most important environmental predictors of

genomic turnover (Figure 2B). Projected associations between allele

frequencies and these three predictor variables revealed areas of
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pronounced genomic turnover throughout the Cameroonian

highlands (green to orange), forest-savanna ecotone of south-

central Cameroon (orange to green), across the equator (green to

blue), and from the coast to the interior of Gabon (purple to

blue) (Figure 2C).

Predictions of environmentally-associated genomic turnover

under future climate change projections showed similar patterns of

genotype-environment associations across the landscape relative to

current predictions. When we subtracted the current prediction of

environmentally-associated genomic turnover from the future

predictions under each of the four climate change projections (RCP

2.6 & RCP 8.5 for the years 2050 and 2080), we found a number of

areas with high genomic vulnerability across the landscape

(Figure 2D; Supplementary Figure S3). Areas with high genomic
B

C D

A

FIGURE 2

GF results with maps of genomic variation and genomic vulnerability. (A) PC plot with labeled vectors indicating the direction and relative magnitude
of environmental variables with the greatest contribution to the predicted patterns of SNP allele frequency differentiation. Vectors for precipitation of
the coldest quarter and latitude are overlapping. Each point is a SNP and the color gradient corresponds to the map in panel C with circles indicating
sampling sites. (B) Environmental and geographic variables ranked by their importance in explaining SNP allele frequency variation. (C) Map of the GF
model of environmentally-associated SNPs for P. auritus. Larger color differences between any two areas in the landscape correspond to larger
genetic differences. Circles indicate sampling sites. (D) Genomic vulnerability under climate projection RCP 8.5 for the year 2080. Red indicates
greater changes in allele frequencies and higher genomic vulnerability, while blue indicates smaller changes in allele frequencies and less
genomic vulnerability.
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vulnerability (i.e. greater than 50% difference in environmentally-

associated allele frequencies) occur to the north and south of the

Cameroon highlands and throughout the southwest region of Gabon.
4 Discussion

We adopted a comprehensive statistical approach to disentangling

the effects of geographic distance, environmental variation, landscape

barriers, and Pleistocene refugia on patterns of genomic differentiation

in the African puddle frog P. auritus. Overall, we found

that environmental variation plays an important role in shaping

patterns of genomic differentiation. This is in addition to,

but independent of, geographic distance. In particular, seasonal

patterns of precipitation appear to be key in driving patterns of

diversification in this tropical region, in keeping with a recent meta-

analysis conducted of environmentally-mediated selection across

the tropics (Siepielski et al., 2017). Through future modeling

approaches, we also find that heterogeneous landscapes overlap with

patterns of high environmentally-associated genomic variation,

suggesting that they may play an important role in promoting and

maintaining biodiversity.

First, we addressed whether IBE will influence genomic

differentiation more than IBB or IBP with GDM. Both precipitation

of the coldest quarter (FST model) and geographic distance (AFD

model) are significant predictors of genomic differentiation.

Precipitation of the coldest quarter was also important as an

explanatory variable in the AFD model, but despite its importance

was not found to be significant. Contrary to many phylogeographic

studies that have been carried out previously in central Africa, we did

not find evidence for an effect of landscape barriers or Pleistocene

refugia on population genomic differentiation. These findings are in

stark contrast to many previous studies that have placed emphasis on

the role of Pleistocene refugia and/or rivers (Eriksson et al., 2004;

Anthony et al., 2007; Nicolas et al., 2011; Bohoussou et al., 2015) with

the exception of Bell et al. (Bell et al., 2017) where rivers were not

important in reed frog diversification.

Second, we investigated if areas of greatest environmentally-

associated genomic turnover are associated with strong

environmental gradients across the landscape with GF. Areas of

elevated genomic turnover in P. auritus appear to correspond to

known ecological gradients. Genomic turnover is predicted to be high

throughout the forest-savanna ecotone region south of the montane

region in Cameroon where rainforest habitat in the south gradually

transitions to savanna in the north. These findings are consistent with

patterns of high intraspecific genomic diversity across this ecotonal

region in the rainforest bird Andropadus virens (Zhen et al., 2017)

and soft-furredmouse Praomysmisonnei (Morgan et al., 2020). There

is also high genomic turnover in P. auritus across the Cameroon

highlands, reflecting both elevation and distance from the coast.

The Cameroon highlands are a known biodiversity hotspot, especially

for amphibian richness and endemism (Herrmann et al., 2005;

Pauwels and Rodel, 2007; Stuart et al. 2008; Zimkus and Gvoždıḱ,

2013) so that elevated genomic turnover in this region is to be

expected. Mountain ranges and elevational gradients are often
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recognized as important drivers of genetic heterogeneity and, as is

the case here, are important for the conservation of

evolutionary potential.

Considering all analyses, results show a strong role for both

distance and environment in shaping genomic differentiation in P.

auritus. The role of IBD was supported by findings from GDM,

Mantel tests, and the significance of latitude (but not longitude) in

predicting genomic turnover in GF analyses, whereas IBE was

supported by both GDM and GF. GDM and GF identified

precipitation of the coldest quarter as a key driver in genomic

differentiation, and GF also identified precipitation seasonality as a

top predictor variable. As further support for the role of environment

as an important factor, we see those areas of elevated genomic

turnover span regions of strong ecological transition, corresponding

primarily with patterns of seasonal variation in precipitation. This

suggests the role of environmental gradients and ecotones in shaping

adaptive environmentally-associated diversification.

Patterns of environmentally-associated genomic differentiation

reported here are consistent with previous investigations of gene-

environmental associations in this region. For example, precipitation

has been shown to be an important predictor of patterns of genetic

variation in central African lizards (Freedman et al., 2010),

chimpanzees (Mitchell et al., 2015), birds (Smith et al., 2011), and

forest antelope (Ntie et al., 2017). In the present study, precipitation

of the coldest quarter is highest in the Cameroon highlands and

decreases progressively throughout central Cameroon and Gabon

(Supplementary Figure S4), mirroring shifts in genomic turnover

observed in P. auritus. Conversely, precipitation seasonality is more

consistent across the study region with subtle increases in seasonality

moving from the Gabon-Cameroon border into northern Cameroon.

There are relatively sharper shifts in seasonality with increasing

elevation in the Cameroon highlands. Both precipitation patterns

demonstrate shifts in genomic differentiation throughout the

highlands, across the equator, and subtly from coastal to inland

Gabon. Gradients in rainfall not only shape the distribution of forest

cover but also present potentially strong selection pressures on the

phenology of P. auritus since the timing and duration of amphibian

reproductive events are very sensitive to rainfall levels (Corn, 2005;

Ficetola and Maiorano, 2016).

Precipitation of the coldest quarter is also indicative of seasonal

patterns in rainfall availability that are inverted across the Equator

separating Cameroon and Gabon. Rainforests on either side of the

equator have their own distinct seasonal patterns of rainfall

(Heuertz et al., 2014) such that the dry season in central

Cameroon coincides with the rainy season in northern Gabon

and vice versa. This seasonal inversion could be responsible for

the shift in genomic variation observed in P. auritus across the

equator. It has been hypothesized that these contrasting patterns of

seasonal rainfall could lead to reproductive isolation and speciation

across this region (Heuertz et al., 2014). A life history study of P.

auritus found that females lay eggs several times in the year with

breeding peaking during the rainy season (Tasse Taboue and

Fokam, 2016). Thus, if populations breed at different times either

side of the equator, this could result reproductive isolation and

account for some of the patterns in genetic differentiation we find
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here. Future work should look more closely at the seasonal

inversion hypothesis and how heterogeneous annual patterns of

rainfall influence genomic differentiation in other rainforest species.

Finally, we examined the range of genomic vulnerability across the

study region given predicted climate change. We identified multiple

areas of high genomic vulnerability where populations may be more

susceptible to climate change under future projections. In Cameroon,

there are patches of high genomic vulnerability alongside the

Cameroon highlands and within the Sanaga basin. Southwest Gabon

also encompasses a large area of elevated genomic vulnerability that

contains a matrix of forest and savanna ecosystems. Genomic

vulnerability may be an important metric to incorporate into

conservation prioritization as it may also indicate areas where

populations are already susceptible to present-day environmental

pressures. For example, Bay et al. (Bay et al., 2018) have recently

shown that yellow warbler (Setophaga petechia) populations with the

highest genomic vulnerability were also experiencing the largest

population declines. Therefore, areas of high genomic turnover and

vulnerability may be important targets for future conservation efforts

since the former serves as centers of high adaptive potential whereas the

latter signal susceptibility to environmental change.

Although we adopted a genome-wide approach in the present

study, our SNP dataset is only likely to capture a fraction of the total

number of loci in the genome that constitute targets for selection and/

or regions of the genome that may be linked loci under selection.

Further research should focus on linking genotypic variation to

phenotypic traits under selection to understand the evolutionary

significance of divergence more fully across ecological gradients as

well as examine the relative importance of genetic versus

environmental factors that may influence morphological variation.

This could involve assembling and annotating a reference genome

for this species, and sequencing and SNP genotyping candidate genes

that could be targets of selection.

Understanding the ecological and historical processes involved in

diversification is important not only for increasing our knowledge of

evolutionary mechanisms, but also for making evolutionarily

informed conservation decisions to protect biodiversity and

prioritize new areas for preservation in the light of rapid climate

change. By taking a robust statistical approach to disentangling

competing drivers of differentiation, we show that environmental

factors are largely responsible for patterns of genomic differentiation

and genomic turnover in our study species. In contrast, landscape

barriers (rivers and elevation) and historical barriers (Pleistocene

refugia) to gene flow have little influence on genomic differentiation.

These findings, therefore, highlight the importance of preserving

heterogeneous environments, such as environmental gradients, in

maintaining species potential to respond to future environmental

change and underline the importance of considering evolutionary

processes in the design of future protected areas.
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Ministère des Forêts et de la Faune, MINFOF (permit #153/AO/

MINFOF/PNCM, 008/A/MINFOF/R), and Ministère de la

Recherche Scientifique et de l’Innovation, MINRESI, as well as all

our valuable field guides for helping organize field collections and

processing samples for exportation. We also thank University of

California, Berkeley’s Vincent J. Coates Genomic Sequencing

Laboratory (GSL), for sequencing services.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
frontiersin.org

https://github.com/cmiller504/p_auritus
https://github.com/cmiller504/p_auritus
https://doi.org/10.3389/fcosc.2024.1366248
https://www.frontiersin.org/journals/conservation-science
https://www.frontiersin.org


Miller et al. 10.3389/fcosc.2024.1366248
The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fcosc.2024.1366248/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

GDM I-spline plots. Fitted functions of observed compositional turnover in

genomic differentiation for the five significant predictor variables. The

maximum height of each curve indicates the total amount of compositional
turnover associated with that variable, while holding all other variables
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constant. The slope of each function indicates the rate of compositional
turnover and how this rate varies along the gradient of the predictor variable.

Variables with all coefficients=0 are not shown because they have no

relationship with the modeled biological pattern.

SUPPLEMENTARY FIGURE 2

GF model performance testing results from comparing association between

environmental and genomic variation for our dataset relative to the set of
randomized datasets. (A) The number of SNPs with R2 values > 0 for all of the

randomized datasets fell below the number observed for the real data. (B) The
mean R2 value generated for the real dataset fell within the upper 95% quartile
of values generated for the randomized datasets.

SUPPLEMENTARY FIGURE 3

Map of genomic vulnerability across the landscape for each of the four

climate change projections (RCP 2.6 & RCP 8.5 for the years 2050 and
2080). Red indicates greater changes in allele frequencies and thus, higher

genomic vulnerability, while blue indicates smaller changes in allele
frequencies and less genomic vulnerability.

SUPPLEMENTARY FIGURE 4

Map of precipitation of the coldest quarter across the study region. Darker
shades of green correspond tomore precipitation, measured inmillimeters (one

millimeter of rainfall is the equivalent of one liter of water per square meter).

APPENDIX 2

Output from Stacks including raw sequencing reads and mean coverage
depth per sample.

APPENDIX 3

FastStructure results including marginal likelihood for all values of K.

APPENDIX 4

Pairwise FST values and Mantel test results.
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