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probabilities
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Aerial drone systems are now widely used to survey wildlife, but validation in the

detectability of individuals is rarely assessed. This knowledge gap is critical, given

the influence of local environments on wildlife detectability from the air. In this

study, we integrated Animal Biotelemetry technology with aerial drones to

evaluate the temporal and environmental factors influencing animal detection

probability and subsequent population estimates. Wild-caught feral pigs (Sus

scrofa) were fitted with GPS tracking collars and releasing them into a large

natural habitat enclosure in northern Australia. Utilizing a fixed-wing drone

equipped with a dual camera (thermal infrared and RGB), we conducted

multiple flights over the study area during both wet and dry seasons, from

sunrise to sunset. The study found that the probability that a pig was visible in

aerial imagery was highly variable depending on the timing of the aerial survey.

Detection probability was at its lowest during mid-afternoon (5 to 20%), while the

early evening yielded the highest detection probability (50 to 75%). We observed

seasonal differences, with detection probabilities exceeding 50% in the mornings

of the wet season, in contrast to less than 30% during the dry season. Temporal

trends in detection probability were similar in both thermal infrared and RGB

imagery. The GPS location data enabled us to assess how localized factors

(canopy cover, land cover, ambient temperature) altered animal detection

probability. This information facilitated the identification of survey times to

maximize feral pig detection and the development of a correction factor to

account for non-detected individuals at specific times and locations. The study

demonstrates the value of integrating Animal Biotelemetry technology and aerial

drones to account for variations in detection probability when undertaking

wildlife aerial surveys. Insights gained from this approach have implications for

enhancing the accuracy of population assessments and contributing to more

effective wildlife management and conservation.
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1 Introduction

Assessing population abundance, distribution, and change over

time is key to successful biodiversity conservation and management

(Jachmann, 2001). Traditionally, broad-scale aerial surveys of

wildlife have been undertaken by manned aircraft, with observers

logging the locations of the animals as they see them (Caughley

et al., 1976; Choquenot, 1995; Fewster and Pople, 2008). However,

aerial drone systems are increasingly employed for aerial wildlife

surveys because of significantly reduced operational costs and

improved observer safety (Jones et al., 2006; Christie et al., 2016;

Howell et al., 2021). Using pre-programmed flight modes allows

aerial drone surveys to be highly repeatable and consistent and

provides permanent digital records that can be stored and

reanalyzed later (Hodgson et al., 2013; Hodgson et al., 2018).

Aerial drone systems offer a versatile platform for wildlife data

acquisition, providing the capability to attach various sensors to

meet specific survey objectives (Christie et al., 2016). Depending on

the application, each sensor has advantages and limitations (Wich

and Koh, 2018). Visual imaging sensors, commonly used in wildlife

surveys, capture high-resolution Red-Green-Blue (RGB) imagery

that simulates human vision. However, these sensors have

limitations in low-light conditions and may struggle to detect

cryptic or camouflaged species in heterogeneous landscapes

(Chrétien et al., 2016; Burke et al., 2019). Thermal infrared

sensors convert infrared radiation into greyscale images, enabling

the discrimination of warm-bodied animals from their

surroundings (Havens and Sharp, 2015; Burke et al., 2019). While

thermal infrared sensors are advantageous for detecting animals in

low-contrast conditions (Beaver et al., 2020; McMahon et al., 2021;

Sudholz et al., 2021), their spatial resolutions are comparatively low

(640x512 pixels), making it challenging to differentiate species

(Witczuk et al., 2018). Therefore, combining thermal infrared

sensors with high-resolution visual imaging sensors offers a

complementary approach to enhancing wildlife detection in aerial

drone surveys (Chrétien et al., 2016; Brunton et al., 2020).

Despite significant technological advancement in drone-

mounted sensors, the probability of detecting an animal from the

air is still highly variable through space and time (Duffy et al., 2018).

Vegetation (Chrétien et al., 2016; McMahon et al., 2021), weather

conditions (Linchant et al., 2018; Sudholz et al., 2021), time of day

(Patterson et al., 2015; Brunton et al., 2020), ambient temperature

(Witczuk et al., 2018; Beaver et al., 2020), and drone flight

parameters (Duffy et al., 2018; Whitworth et al., 2022). This can

lead to both false negatives (not detecting the study species when it

is there) and false positives (detecting the study species when it is

not there), and ultimately incorrect abundance estimates (Brack

et al., 2018). However, precisely determining the probability of these

errors on a flight-by-flight basis is challenging, so has rarely

been assessed.

Animal biotelemetry technology offers a promising solution to

address the challenges posed by detectability and visibility biases in

aerial drone surveys. This non-invasive technique involves

attaching electronic devices to animals, allowing for the collection

of data on their behavior, movements, and physiological parameters

in their natural environments (Kays et al., 2015). The advent of
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satellite telemetry, combined with advances in receiver technology,

battery life, and miniaturization, has dramatically increased the

duration, frequency, and accuracy by which researchers and

resource managers can record accurate geolocation from free-

ranging animals (Tomkiewicz et al., 2010). As a result, tens of

thousands of animals are tagged with telemetry devices each year

(Campbell et al., 2015). The combined use of Global Positioning

System (GPS) telemetry and camera data is increasingly recognized

for its ability to enhance spatiotemporal inferences in wildlife

monitoring and population trend assessment (Carter et al., 2022;

Margenau et al., 2022; Stokes et al., 2023). GPS tracking devices

provide precise location data about animal movements that

complement the visual documentation obtained from camera

data. By integrating data from both sources, researchers can

achieve a more comprehensive understanding of animal

populations, further minimizing uncertainty in abundance and

density estimation.

In this study, we propose a collaborative approach integrating

GPS telemetry to locate and identify multiple individuals within a

survey area during aerial drone surveys. The likelihood of detecting

the study species during each aerial sampling event is then

calculated based on detection probabilities. We aimed to identify

the temporal and environmental factors influencing wildlife

detection probability using individual location data from GPS

tracking collars. Our study focuses on feral pigs (Sus scrofa), an

introduced ungulate species widely distributed throughout northern

Australia’s tropical savanna region (Froese et al., 2017; Hone, 2020).

Feral pigs adversely affect native ecosystems (Taylor et al., 2011) and

biodiversity (Fordham et al., 2006), in addition to posing biosecurity

risks to agricultural industries by their ability to transmit exotic

diseases (Cowled et al., 2012; Horwood et al., 2018). The cryptic

nature of feral pigs makes it challenging to monitor their

populations and assess the impacts of conservation management

strategies. As such, this study assessed an innovative approach to

feral pig population monitoring that may also be applied to other

species with similar characteristics.
2 Method

2.1 Study area

The study was conducted at the Charles Darwin University

Katherine Rural Campus (KRC) in Katherine, Northern Territory,

Australia (14°22’ 28” S, 132° 9’ 18” E; Figure 1). A monsoonal

climate dominates the Katherine region, with two distinct seasons:

the wet season (November-April) and the dry season (May-

October). The wet season is a time of unstable atmospheric

conditions due to high humidity (~70%) and above-average

temperatures (28°C - 31°C). The region receives an average

annual rainfall of 950 millimeters (mm), most of which falls

during the wet season (station: 014932; Australian Bureau of

Meteorology (2022)). In contrast, the dry season occurs with the

onset of the prevailing south-easterly trade winds, characterized by

dry conditions resulting in the absence of rain and relatively cooler

temperatures averaging 22°C to 28°C.
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The drone surveys were conducted over a 20-acre enclosure

containing semi-agricultural tropical savanna woodland habitats

representative of the surrounding region. The habitat structure

comprised a matrix of grazing pasture, native annual and

perennial grassland, and eucalyptus-dominated mixed woodland

with an ephemeral stream. Site elevations were relatively flat,

ranging from 176 to 182 meters above sea level, with a maximum

surface elevation of 204 meters, including vegetation. The enclosure

was constructed with a customized pig-proof fence consisting of a

barbed-top wire mesh fence, mesh skirting, solar-powered

electrified bottom wire, and high gates.
2.2 Data collection

2.2.1 Telemetry system
Purpose-designed GPS tracking collars were fitted to a

population of wild-caught feral pigs. The telemetry system was a

GPS store-on-board unit (TGW-4200-4, Telonics Inc, Arizona,

USA). These units have a GPS receiver, a VHF transmitter, and

an ambient temperature sensor hermetically sealed into a single

metal housing. GPS receivers were pre-programmed to attempt

locational fixes at 3-minute intervals during periods when the aerial

drone surveys were being undertaken (0500-0700, 0800-1000, 1400-

1600 and 1800-2000 hours) deployed from January to February

2021 (wet season) and May to June (dry season) 2022. The collected

data was stored in a non-volatile storage unit on each collar for

retrieval upon recovery.

2.2.2 Feral pig capture and Animal
Biotelemetry deployment

The feral pigs were live captured using corral traps set in

savanna woodland habitat on the KRC property according to

current best practices methods (Sharp, 2012). The corral traps

were constructed of a welded metal frame (3.5 m (l) × 3.5 m (w)
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× 1.8 m (h)), rigid welded mesh fencing (50 × 50 mm mesh square

size) and a rooter-type door. To familiarize pigs with the trap, the

gates were propped open for more than seven days after

construction and monitored daily. During this time, an automatic

spin feeder dispensed bait (kernel corn) at 0600 hours each

morning. The prop was removed once a sounder of feral pigs had

become accustomed to the feeders. A total of 24 individuals were

captured during the seasonal trapping events. GPS tracking collars

were deployed on 16 feral pigs in total, but only seven collars were

activated or retrieved successfully in both the wet season (n = 7) and

dry season (n = 7). Each pig was directed down a single working

chute and restrained with an animal handling pole featuring a noose

that can be quickly tightened, locked, and released. The GPS

tracking collars were snugly fitted around the animal’s neck,

ensuring no irritating movement or rubbing occurred, allowing

the animal to behave normally and without discomfort. The pigs

were allowed a 7-day acclimation period to the enclosure before the

study commenced.

2.2.3 Aerial drone system
Remote sensing images were collected using a commercial drone,

the SenseFly eBee X (AgEagle Aerial Systems Inc, n.d.). This drone

was selected for its modular design and durability. The system

comprised a lightweight fixed-wing body (take-off weight 1.6kg)

with a wingspan of 116cm, constructed from shock-absorbent

drone fuselage with an underbelly made of reinforced

polypropylene woven mesh (AgEagle Aerial Systems Inc, n.d.). The

design supports hand-launching performed by the operator and

landing accomplished through an automated belly slide. The Duet

T camera system was installed in the drone’s internal payload bay to

simultaneously capture high-resolution visual (RGB) and medium-

resolution thermal infrared (greyscale) imaging data. The visual

imaging sensor (S.O.D.A) has a resolution of 5472 x 3648 pixels

and a 10.6 mm f/2.8-11 lens, while the thermal infrared (FLIR) sensor

has a resolution of 640 x 512 pixels and a 13 mm, f/1.25 lens; both
A B

C

FIGURE 1

Map of the study area (A) located 300 km south of Darwin in the Northern Territory, Australia, at the Charles Darwin University Katherine Rural
Campus (KRC). It also includes Red-Green-Blue orthomosaics generated using Agisoft Metashape Professional 1.8.3, depicting the survey area during
the (B) wet season (February 2021) and (C) dry season (June 2022).
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angled downwards. The eBee X was also equipped with a MicaSense

RedEdge-MX high-resolution multispectral sensor which captures

five narrow spectral bands to create natural and false color

composites: blue (475 + 20 nm), green (560 + 20 nm), red

(668 + 10 nm), red edge (717 + 10 nm), and near-infrared

(840 + 40 nm).

Drone flights complied with the Civil Aviation Safety

Regulations, 1998 and Part 101 (Unmanned Aircraft and Rockets)

Manual of Standards Instrument, 2019 (Austl: NSW) regarding the

operation of excluded RPA (sub-2 kg). The flights were conducted

in the wet season (12-15 February 2021; total flights = 10) and the

dry season (7-11 June 2022; total flights = 12). All flights were

planned before deployment using eMotion flight management

software and modified infield as required (AgEagle Aerial Systems

Inc, n.d.). The drone flights were scheduled during four periods

corresponding to the GPS receiver duty cycles: 0500-0600 hours

(early morning), 0900-1000 hours (mid-morning), 1400-1500 hours

(mid-afternoon), and 1800-1900 hours (early evening). These times

were selected to provide an unbiased assessment of feral pig

detectability by both camera types that may occur from only

sampling in the early morning and early evening or during low-

light conditions.

The Duet-T camera system was flown at ~52 meters above

ground level (AGL) in parallel line transects, with all imagery

captured in JPEG format. This altitude led to a ground sampling

distance (GSD) of 1.18 cm/pixel for RGB imagery and 6.80 cm/pixels

for thermal imagery. The wet season flights were programmed with a

70/70% overlap (~680 images/flight) to generate orthomosaics.

However, in the dry season, a technical error prevented GPS image

coordinates from being stored as exchangeable image files (Exif) data.

Consequently, orthomosaics were not able to be created. In response,

the flight plan was altered by lowering the overlap between images to

10/50% (~157 images per flight) to reduce the amount of redundant

(duplicate) imagery while maintaining full coverage of the enclosure.

A total of 14,870 thermal infrared and RGB images were collected

during 22 aerial drone surveys conducted in both the wet season (k =

10; N = 11,066) and the dry season (k = 12; N = 3,804). Additional

multispectral imagery was collected using the RedEdge-MX sensor to

create high-resolution orthomosaics for seasonal land cover

classifications. The RedEdge-MX sensor was deployed around

midday to minimize the occurrence of long and dark shadows

caused by low sun angles. This flight was conducted at 100 meters

altitude, acquiring 756 overlapped images per band (75% overlap)

with a GSD of 6.94 cm/pixel. As recommended by MicaSense,

calibrated reflectance panel (CRP) images were captured before and

after each flight to create reflectance-compensated outputs based on

the day’s lighting conditions for image processing.
2.3 Data processing

2.3.1 Photogrammetry data
Multispectral drone-derived imagery was collated into seasonal

RGB orthomosaics with Agisoft Metashape Professional 1.8.3

software (Figure 1; Agisoft LLC, 2022a). Processing workflow and

parameter settings followed the Agisoft Metashape user guidelines
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for multispectral cameras (Agisoft LLC, 2022b). Multispectral

imagery bands were calibrated radiometrically using the

reflectance-compensated outputs, and the CRP albedo values

provided by MicaSense as a CSV file with the panel. A Structure

from Motion photogrammetric range imaging technique was used

to create the orthomosaics. Structure from Motion is a method of

approximating a three-dimensional structure of a scene from

overlapping two-dimensional raster images (Zimmerman et al.,

2020). To form the final orthomosaics, 2262 images were used

from the red-green-blue channels; 4 to 6 images were excluded due

to image quality and location. The orthomosaics were exported as a

GeoTIFF for classification and final map generation in ArcGIS Pro

2.9 software (ESRI Inc., 2021).

Supervised classification was performed to define representative

land cover classes using a maximum likelihood parametric rule on

the orthomosaics. The raster imagery was classified into three

primary types of land cover: canopy cover, grassland, and bare

ground. In the wet season, a fourth class was assigned to water. For

the supervised classification training samples, ~150 freehand and

circular polygons of varying sizes were manually constructed per

class to guide the classification algorithm. Training polygons were

selected based on land cover grades and colours defining the study

area. The raster land cover classification was then vectorized using

the geoprocessing tool ‘raster to polygon’ to convert each land cover

class into simplified polygons. To achieve a better classification

result, polygons containing incorrectly classified pixels were

manually reshaped, with attention paid to misclassified shadows

in the dry season and canopy vegetation in the wet season.

2.3.2 Telemetry data
Data reports from each GPS tracking collar were manually

downloaded and collated into a seasonal database. The GPS location

datasets were cleaned to remove redundant information, unsuccessful

detections, and GPS fixes with horizontal errors larger than 10 meters

and filtered to align with the specific flight times obtained from the

drone flight logs. The GPS location datasets were imported into ArcGIS

as point feature classes and visualized over the RGB orthomosaics. Any

residual points outside the enclosure boundary were removed. Using

the geoprocessing tool ‘spatial join’, the point data features were

matched to the land cover vector layer based on their relative spatial

locations ‘within’ each class. The point data features were then exported

in a table format for further data processing.

Using the point data tables with the added land cover values, we

calculated the proportion of GPS detections classified as under

canopy cover relative to the total number of GPS detections

recorded for each individual per flight. The proportional scale

(0.0-1.0) represents the extent to which open habitat (0.0) or

closed woodland habitat (1.0) was used during a drone flight,

referred to as ‘time under canopy cover’. Interpretation of this

variable assumes the likelihood of obtaining an unobstructed aerial

view of the pigs per survey.
2.3.3 Manual image classification
Thermal infrared datasets (greyscale images) were processed on a

desktop using FLIR Research IR software (FLIR Systems Inc., USA)
frontiersin.org

https://doi.org/10.3389/fcosc.2023.1203736
https://www.frontiersin.org/journals/conservation-science
https://www.frontiersin.org


Hvala et al. 10.3389/fcosc.2023.1203736
and converted to pseudo-colour images to enhance the appearance of

thermal anomalies and body heat for assessment. Manual image

analysis was carried out by a single analyst who had also processed

the photogrammetry data. The imagery was reviewed twice to ensure

all available feral pigs were detected. In cases where the thermal

signature was unclear, a second analyst was consulted. Identifying

characteristics of feral pig thermal signatures were defined by their

cylindrical shape bodies akin to medium-grain rice and contrasting

brightness. Two approaches were used to validate the identity of feral

pigs in thermal infrared imagery. The first approach involved

verifying thermal signatures from corresponding RGB imagery,

light conditions permitting. The second method involved aligning

GPS detections with observer detections using the GPS point data

visualized in ArcGIS. The unique pig identifiers, GPS-fix times, and

photo timestamps were used as references. Each feral pig was

recorded as detected (1) or non-detected (0), aligned with the

telemetry data. The RGB image datasets were reviewed and

validated using the second method of aligning GPS detections with

observer detections described above. All duplicate detections were

recorded but omitted from statistical analysis.

2.3.4 Climate data
The climate data were obtained from the Tindal Royal

Australian Air Force base (station number: 014932), located 29

kilometers from the survey site operated by the Australian Bureau

of Meteorology (2022). The mean ambient temperature and relative

humidity were calculated for each survey period. An additional

measure of cloud cover was obtained and represented by the oktas

scale, which ranges from 0 oktas (clear sky) to 8 oktas (overcast).
2.4 Statistical analysis

2.4.1 Probability of detection
Feral pig detection probabilities were calculated based on

seasonal manual detection data acquired from the drone-derived

thermal infrared and RGB imagery. The probability of detection

(Pd) estimates the likelihood of feral pigs being detected within the

survey area, where if P = 1 for all pigs, visibility bias was not present.

As a result of the ground-truthing methods used, we assume that no

false positives have occurred and that each detection accurately

identifies a collared individual. The detection data were pooled from

the flight replicates to form one detection history at each survey

period per season. The probability of detection was then calculated

by dividing the total number of feral pigs detected (ndetect) by the

known number of feral pigs present in the survey area (Nobs) at a

given time, expressed as:

Pd =   ndetect   ÷  Nobs

2.4.2 Model fitting and selection
A model selection framework was used to investigate the

influence of temporal and environmental factors on feral pig

detectability for each camera type. All statistical analyses were

conducted in R software v. 4.2.1 (R Core Team, 2022). A

generalized linear model (GLM) was used to identify critical factors
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seasons and time of day and to analyze the influence of

environmental factors on the likelihood of detection. The models

were developed using the “glm” function in the R package “glm2”

(Marschner, 2011). Our initial approach used a generalized linear

mixed model (GLMM). However, small sample sizes from early

morning to mid-afternoon in the dry season led to ambiguous results

when including the survey day as a random effect. For interpretive

purposes, we changed our reference level to the evening survey period

since both seasons showed equally high detection rates around this

time. Model estimation was performed using maximum likelihood

for both temporal and environmental data sets.

An information-theoretic approach was used to compare

candidate models developed for the thermal infrared and RGB

imagery data. The “check model” function in R package

“performance” (Lüdecke et al., 2021) was used to conduct a visual

check of the base data models for various assumptions (normality of

random effects, linear relationship, homogeneity of variance,

multicollinearity). In the environmental models, humidity showed

high collinearity (VIF > 5) with the season and was excluded from

thermal infrared and visual models. Several data sub-models were

created with the remaining variables using the ‘dredge’ function in

the ‘MuMIn’ R package (Bartoń, 2022) to identify the optimal

combination of predictor factors for each response variable.

The Akaike’s Information Criterion corrected for small sample

sizes (AICc) was used to assess the sub-models goodness of fit and

parsimony (Burnham and Anderson, 2002). Sub-models with the

lowest AICc score (DAICc< 2) and highest Akaike weight (wi) were
selected as the top-ranked models. Residual diagnostics for these

models were assessed using the R package “DHARMa” (Hartig,

2022). The simulated scaled residuals were tested for homogeneity

dispersion and temporal autocorrelation violation and plotted against

each explanatory variable. In addition, we used an analysis of variance

(ANOVA) to compare the two best-performingmodels with different

variables. The confidence intervals (CI) were calculated for the top-

performing models, and the logit scale was converted to odds ratios

by exponentiating the estimates and CIs. The level of statistical

significance was determined by P< 0.05.

To further examine if visibility bias varied between landcover

classes, we analyzed the classified locations of GPS detections for the

general population compared to the areas of drone-derived observer

detections for each survey period and camera type. A simple linear

regression was performed for this analysis. The residual plots were

examined to confirm the random distribution of residuals. Finally, we

conducted a Tukey’s honestly significant difference (HSD) analysis

with the “TukeyHSD” function from the R package “Stats” (R Core

Team, 2022) in conjunction with a one-way ANOVA. The Tukey’s

HSD tests were performed separately for each season.
3 Results

3.1 GPS satellite tracking

The GPS tracking collars collected location fixes every three

minutes, resulting in a total of 8050 obtained during the week of
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aerial drone survey in the wet (N = 4008) and dry seasons (N =

4042; Figure 2). These data points were subsequently filtered to

align with the specific flight times of each aerial sampling event. In

the wet season, we obtained eight to ten location fixes per individual

during each flight (N= 660), while in the dry season, we obtained

one to four location fixes (N=294). The number of location fixes per

individual varied depending on the proportion of successful fixes

and the flight duration. By utilizing this location data, the aerial

image analyst was able to distinguish feral pigs detected in the

thermal imagery from other species or objects that exhibited similar

thermal signatures, such as Agile wallabies (Macropus agilis),

termite mounds, tree bark, hollowed tree trunks, and to filter

duplicate feral pig detections between overlapping thermal

infrared and RGB images.
3.2 Temporal influences on detectability
by aerial drone systems

Season strongly predicted feral pig detectability by thermal

infrared and RGB imagery (Table 1). Detection rates were 23.1%

higher by RGB imagery and 22.1% higher by thermal infrared

imagery in the wet season than in the dry season (Figure 3). Time of

day was also a significant predictor of feral pig detection, with effects

observed for thermal infrared imagery in mid-morning and mid-

afternoon, and for RGB imagery during all survey periods. As early

morning light conditions were too low to evaluate RGB imagery in

the dry season, all feral pigs were recorded as present but undetected

at this time. The probability of detection by thermal infrared

imagery was significantly higher during the wet season in the

early morning and mid-morning compared to the dry season.

While detection probabilities were very low in the mid-afternoon

for both seasons and camera types, ranging between 4.8-14.3%.

Conversely, the likelihood of detection by RGB imagery was highest

in the early evening of both the wet and dry seasons. During this

time, thermal infrared imagery recorded an average of 20%

fewer detections.
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3.3 Environmental factors influencing
detectability by aerial survey

The proportion of time pigs spent under canopy cover strongly

predicted detectability by thermal infrared and RGB imagery (Table 2). A

strong negative relationship was modelled for both camera types,

demonstrating an overall decline in feral pig detectability with

increased time spent under canopy cover during a drone survey

(Figure 4). In the dry season, feral pigs spent an average of 78-92% of

their time under canopy cover between early morning and mid-

afternoon when detection rates were lowest and 25% of their time in

the early evening when detection rates were highest. By comparison, feral

pigs spend less time under canopy cover in the wet season. Feral pigs

spent approximately 62% of their time under canopy cover in the mid-

afternoon when detection rates were lowest and 17-34% in the early

morning, mid-morning, and early evening when detection rates were

highest. Feral pig detection for thermal infrared and RGB imagery was

not significantly different for other landcover classes (Figure 5). Ambient

temperature was also a significant predictor of feral pig detection by

thermal infrared imagery (Table 2). A negative relationship was

modelled, demonstrating that the probability of detection by thermal

imaging decreased with increasing ambient temperatures (Figure 6).

Ambient temperature was not significant for RGB imagery. There was an

indirect influence of ambient temperature and canopy cover on feral pig

detectability in the mid-afternoon for both camera types. During this

survey period, the highest ambient temperatures were recorded for both

the wet (mean ± SD = 30.5 ± 2.6°C) and dry seasons (mean ± SD = 30.9

± 3.2°C), corresponding to when pigs spent the most time under canopy

cover, and when detection rates were lowest.
4 Discussion

The Animal Biotelemetry location data showed that the

detection of feral pigs in their natural environment using aerial

drone systems varied significantly depending on the timing of the

survey. During mid-afternoon surveys, both thermal infrared and
A B

FIGURE 2

Location data of GPS collared feral pigs within the survey area at the Charles Darwin University Katherine Rural Campus (KRC). The data is presented
for two seasons: (A) wet season (February 2021; N = 4008) and (B) dry season (June 2022; N = 4042). The GPS collars provided location fix rates at
3-minute intervals during preprogrammed sampling periods. Each colored point represents a GPS-collared feral pig, allowing for the differentiation
and tracking of individual animals.
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visual imaging sensors exhibited poor performance in detecting

feral pigs, resulting in data that would be insufficient for estimating

abundance and distribution. The study further supports that

environmental factors influence drone-based animal abundance

estimation (Linchant et al., 2018; McMahon et al., 2021).

However, it demonstrated that these factors differ over short-term

temporal scales, and thus, survey timing had confounding effects on

wildlife abundance estimation. Attaching GPS tracking collars to a

set number of individuals within a defined survey area made it

possible to determine the probability of detecting feral pigs during

each seasonal aerial sampling event. Individual GPS locations

provided the opportunity to examine visibility bias and determine

the reasons for failing to detect a feral pig in thermal infrared and

RGB images. GPS tracking was instrumental in enhancing the

accuracy and reliability of these insights by providing a method

to validate observer detections. Without GPS location information,
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the probability of feral pig detection and the limitations of detection

capabilities would have remained uncertain. As such, the

collaboration between those versed in Animal Biotelemetry and

aerial drone systems offers significant potential for accurate wildlife

abundance assessments of cryptic species.

Animal Biotelemetry technology for most wildlife can now be

purchased off-the-shelf. These devices have significantly reduced

costs in terms of hardware and data transfer in recent years (Jung

et al., 2018). Even relatively small devices can now provide frequent

accurate geolocations of individuals over many years (depending on

animal body size). Animal Biotelemetry is, however, challenging to

apply correctly, and detailed biological knowledge of the study

species is required before the attachment of a device can be

attempted. Animal ethics and permits are typically required and

sometimes the presence of a veterinary surgeon is required.

Therefore, collaboration between practitioners of Animal
A B

FIGURE 3

Manual detection success of GPS collared feral pigs during aerial drone surveys conducted in the Northern Territory, Australia. The data is presented
for two survey periods: (A) wet season (n = 7; February 2021) and (B) dry season (n = 7; June 2022). Feral pig detections are derived from RGB (light
grey) and thermal infrared imagery (dark grey) captured by the drone, displayed with 95% confidence intervals (dotted line).
TABLE 1 The results from the best-performing generalized linear models to investigate the seasonal and diurnal influence on feral pig detectability
with thermal and visual cameras.

Camera type Explanatory Estimate 95% Cl [low, high] P-value

Thermal

(Intercept) 0.951 [0.530, 0.863] 0.029

Season -1.258 [0.115, 0.375] 0.001

Mid-afternoon -2.728 [0.016, 0.179] < 0.001

Mid-morning -1.043 [0.109, 0.491] 0.046

Early morning -0.427 [0.199, 0.627] 0.378

Visual

(Intercept) 2.335 [0.787, 0.972] < 0.001

Season -1.8016 [0.057, 0.287] < 0.001

Mid-afternoon -3.729 [0.005, 0.080] < 0.001

Mid-morning -2.3308 [0.027, 0.232] < 0.001

Early morning -2.811 [0.016, 0.159] < 0.001
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Biotelemetry and users of aerial drone systems may be necessary to

enable successful and safe roll-out and data collection.

Animal Biotelemetry provides data on an individual’s

movement, association with other tagged individuals, and activity

space and habitat usage (Kays et al., 2015). It does not generally

provide information on abundance and density distributions. Thus,

by integrating the abundance and density information supplied by

aerial drone surveys, a more holistic model of the species ecology

can be developed. We recommend capturing GPS fixes at shorter

intervals, from one to three minutes, to optimize alignment between

GPS tracking and drone-derived detections. This higher frequency

of data collection, particularly for highly mobile species such as feral

pigs, can significantly improve the accuracy and precision of the

gathered information.

GPS tracking enabled us to determine the optimal time of day

and year for conducting aerial drone surveys to maximize the

likelihood of detecting feral pigs. Considering individual pig

locations, particularly those undetected by the observer, provided

further context for understanding how environmental conditions can

affect detectability (Figure 7). Canopy cover was a prominent source
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of visibility bias across both seasons and sensors, hindering our ability

to detect completely obscured pigs (McMahon et al., 2021). In some

cases, individuals located near the canopy edge or under defoliated

trees could still be detected with thermal infrared and identified by

RGB imagery. Diffuse light created by cloudy conditions or low sun

angles with minimal cloud cover offered the best conditions for

detecting feral pigs outside of cover than full sunlight. This was likely

due to reduced discriminative shadows and decreased solar radiation

or reflectance from inanimate objects (Linchant et al., 2018; Burke

et al., 2019). During the wet season, high cloud cover minimized the

effects of solar radiation on the surrounding environment, producing

thermal infrared images with homogeneous backgrounds.

Conversely, in the dry season, clear skies with direct sunlight

caused significant background cluttering in thermal infrared

imagery, with hollowed tree trunks, tree bark, bare ground and

termite mounds contributing to thermal heterogeneity.

Consequentially, this obscured the thermal signatures of feral pigs

close to these features. In the early evenings, soft sunlight from lower

sun angles produced high-quality RGB imagery, allowing dark pig

bodies to stand out against neutral backgrounds.
A B

FIGURE 4

The relationship between feral pig detection probabilities using RGB (light grey) or thermal infrared imagery (dark grey) and the proportion of time
feral pigs spent under canopy cover. We analyzed feral pig detections during the (A) wet season (February 2021) and (B) dry season (June 2022). The
time spent under canopy cover was determined using GPS location data and was compared to the overall probability of observing the feral pigs
outside of canopy cover during aerial drone surveys. Feral pig detections are represented as raw values (points) on the y-axis, indicating the
proportion detected for each flight.
TABLE 2 The results from the best-performing generalized linear models to investigate the seasonal and diurnal influence on feral pig detectability
with thermal and visual cameras.

Camera type Explanatory Estimate 95% CI [low, high] P-value

Thermal

(Intercept) 5.869 [0.924, 1.000] 0.001

Ambient temperature -0.175 [0.425, 0.485] 0.004

Time undercover -3.442 [0.008, 0.094] <0.001

Visual
(Intercept) 1.2789 [0.651, 0.880] <0.001

Time undercover -3.9433 [0.005, 0.059] <0.001
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As a future direction for this application, Artificial Intelligence

(AI) holds great promise for the automated detection, classification

and identification of animals in aerial drone surveys (Gonzalez et al.,

2016; Santangeli et al., 2020; Lenzi et al., 2023). These systems entirely

automate wildlife survey counts from the aerial imagery (thermal

infrared and RGB), offering significant potential for wildlife

conservation and management across broad scales. However, the

effectiveness of AI routines for automating object classification is still

hindered by challenges related to the visibility of study species and the

quality of training data. Factors such as lighting conditions, camera

angles, and occlusions contribute to these limitations. This is where

GPS telemetry could be helpful. GPS location data provided

confirmed locations of feral pigs within multiple images, which can

act as reference objects within the classification process. This would
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allow the AI model to learn and identify the specific characteristics of

the study species in different environments and conditions, making it

more adaptable and accurate in detecting feral pigs in the field.

Additionally, location data can help account for the variability in

thermal signatures, which can change due to factors such as ambient

temperature as well as phenotypic characteristics of the animal

(Havens and Sharp, 2015).

In conclusion, integrating individual location data obtained

through Animal Biotelemetry technology can significantly

enhance wildlife abundance and density estimates derived from

aerial drone surveys. As the technology of these two fields continues

to advance, collaboration between researchers in these fields is

imperative to maximize the benefits of wildlife conservation

and management.
A B

FIGURE 6

The relationship between feral pig detection probabilities by thermal infrared imagery and mean ambient temperature in the (A) wet season
(February 2021) and (B) dry season (June 2022). Feral pig detections are plotted as raw values (points) on the y‐axis as the proportion detected for
each flight.
A B

FIGURE 5

Comparison of the GPS locations of the known feral pig population (light grey) and the drone-derived detections from thermal infrared (dark grey)
and RGB imagery (grey) in the (A) wet season (N=70) and (B) dry season (N=84). Feral pig detections are plotted on the y‐axis as the total count of
pigs detected within each land cover class across all seasonal drone surveys.
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A

B

D

C

FIGURE 7

A side-by-side comparison of RGB and thermal infrared (greyscale) images of GPS-collared feral pigs collected at the Charles Darwin University
Katherine Rural Campus, Northern Territory, Australia. These images illustrate feral pigs detected under different conditions: (A) high cloud cover in
the wet season at 0600 hours, (B) dense vegetation parameters in the wet season at 1000 hours, (C) clear sky with direct sunlight in the dry season
at 1400 hours, and (D) clear sky with low sun angles in the dry season at 1800 hours. In Image (D), four feral pigs are present in the RGB image,
while only two were manually detected in the thermal infrared image.
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