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Wildlife exclusion fencing has become a standard component of highway

mitigation systems designed to reduce collisions with large mammals. Past

work on the effectiveness of exclusion fencing has relied heavily on control–

impact (i.e., space-for-time substitutions) and before–after study designs.

These designs limit inference and may confound the effectiveness of

mitigation with co-occurring process that also changes the rate of collisions.

We used a replicated (n = 2 sites monitored for over 1000 km years combined)

before-after-control-impact study design to assess fencing effectiveness along

the Trans-Canada Highway in the Rocky Mountains of Canada. We found that

collisions declined for common ungulates species (elk, mule deer, and white-

tailed deer) by up to 96% but not for large carnivores. The weak response of

carnivores is likely due to the combination of fence intrusions and low sample

sizes. We calculated realized fencing effectiveness by applying the same

change in collision rates observed at control (unfenced) sites as the expected

change for adjacent fenced sections. Compared with the apparent fencing

effectiveness (i.e., the difference in WVCs rates before and after fencing was

installed), the realized estimates of fencing effectiveness declined by 6% at one

site and increased by 10% at another site. When factoring in the cost of

ungulate collisions to society, fencing provided a net economic gain within 1

year of construction. Over a 10-year period, fencing would provide a net

economic gain of > $500,000 per km in reduced collisions. Our study

highlights the benefits of long-term monitoring of road mitigation projects

and provides evidence of fencing effectiveness for reducing wildlife–vehicle

collisions involving large mammals.
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Introduction

Roads are a ubiquitous feature of human activity across the

earth, with ~21 million km built as of 2018 and upwards of an

additional 25 million km of new roads developed by 2050

(Dulac, 2013; Meijer et al., 2018). Central to commerce,

resource extraction, and human connectivity, roads also

induce several negative impacts on biodiversity. These impacts

include barrier effects to animal movement (Epps et al., 2005;

Jaeger et al., 2005; Ford and Fahrig, 2008), changes to ecological

interactions (Whittington et al., 2011; Dickie et al., 2017),

increased access by people to intact habitats (Laurance et al.,

2009; Carter et al., 2020), and increase mortality from wildlife–

vehicle collisions (WVCs) (Trombulak and Frissell, 2000; Ford

and Fahrig, 2007; Clevenger et al., 2015). WVCs not only harm

biodiversity but they can also jeopardize human safety,

particularly for larger species such as ungulates. For example,

2–3% of WVCs involving deer result in human injury, and this

increases to ~20% for WVCs involving larger species such as

moose (Huijser et al., 2009).

To counteract the negative effects of WVCs on wildlife and

people, transportation and wildlife agencies have employed

several mitigation strategies and technologies. These strategies

include reduced speed limits (Riginos et al., 2019), road closures

(Lamb et al., 2018;Whittington et al., 2019), road density planning

(Carter et al., 2020), and technologies such as warning signs for

drivers (Huijser et al., 2015). One of the more common tools is

wildlife-exclusion fencing, which is designed to prevent large

animals from accessing the road right-of-way (but see Ford and

Clevenger, 2019). Fence designs vary—and may include shorter

“drift” fences for amphibians (Boyle et al., 2021) and taller wire

fences designed for large mammals (Ford et al., 2011). Fencing

may be accompanied by wildlife crossing structures, which are

intended to maintain or restore the safe movement of wildlife

across the highway via underpasses or overpasses. Because of its

cost, fencing is usually prioritized along particular road segments

or “hotspots” of WVCs (Ford et al., 2011; Huijser et al., 2016; Lee

et al., 2020).

Despite the widespread use of technologies such as fencing

and crossing structures, monitoring and evaluation of mitigation

often suffer from lack of experimental control. For example,

study designs may compare WVC rates before and after the

construction of mitigation (e.g., Clevenger et al., 2001); however,

as wildlife populations fluctuate over time independently of road

mitigation, such a before–after (“BA”) design may confound

changes in the wildlife population with mitigation effectiveness.

Likewise, study designs that compare mitigation across nearby

areas (i.e., control–impact or CI) may confound local variation

in wildlife population size, road design, or driver behavior with

mitigation (Rytwinski et al., 2015). Indeed the biophysical

process that contribute to WVCs are highly localized even for

similar species within a region or watershed (Clevenger et al.,

2015; Lee et al., 2020).
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To support evidence based approaches to the design and

management of road mitigation, it is critical that more rigorous,

quantitative approaches be used to assess mitigation

effectiveness (Rytwinski et al., 2016). Upon experimental

testing, putatively effective technologies may not work as

intended at the scales or intensity needed to reduce WVC

rates. For example, vehicle speed reductions did not affect

WVCs involving deer in Wyoming (Riginos et al., 2019).

Similarly, a meta-analysis indicated that wildlife reflector

systems are equivocal in their effect on WVC reductions for

large mammals, whereas crossings and fencing have a strong

negative effect on WVCs across studies (Rytwinski et al., 2016).

In addition, meta-analysis revealed that studies using BA and

combined BACI (before-after-control-impact) designs detected

a stronger effect of mitigation on WVC rates than CI studies

alone (Rytwinski et al., 2016). This suggests that opportunities to

assess road mitigation through BACI designs are not only more

rigorous (Boyle et al., 2021) but also likely to reduce the

probability of a Type I error (e.g., there is no effect of

mitigation per se but some unmeasured process that led to the

decline in WVCs following mitigation) and Type II error (i.e.,

there is an effect of mitigation on WVCs, but it was

not detected).

The Bow Valley of Alberta, Canada includes some of the most

well-studied and long-term monitoring of WVCs and road

mitigation (Ford et al., 2010; Lee et al., 2012; Clevenger et al.,

2015). Spurred by the upgrade of Canada’s major transportation

corridor (the Trans-Canada Highway, i.e., the “TCH”) in the 1970s,

coupled with a hyperabundant elk population, Banff National Park

undertook one of the earliest and most expansive mitigation efforts

in the world. Beginning with a series of underpasses and wildlife-

exclusion fencing, this system of mitigation expanded along a series

of phases (~15–30 km each) from the early 1980s to the present day

(Ford et al., 2010). This phased approach has enabled managers to

prioritize higher risk road segments for mitigation (e.g., Ford et al.,

2011; Lee et al., 2020), but it—along with long-term monitoring—

has also facilitated opportunistic field experiments in road ecology.

For example, Ford and Clevenger (2010) used a BACI design across

highway mitigation phases to test the prey-trap hypothesis, that is,

that wildlife crossing structures facilitate predation by

large carnivores.

Here, we used an opportunistic field experiment to employ a

BACI-design to measure the effectiveness of wildlife-exclusion

fencing at reducing large mammal WVCs. We integrate long-

term monitoring of WVCs (Gunson et al., 2009; Clevenger et al.,

2015) over a 12- to 15-year period covering in two regions of the

TCH. We focused on the occurrence of ungulate and large

carnivore WVCs. Building on published values that assess the

cost of a WVCs to society in terms of property damage, injury,

and lost opportunity costs of an animal (Huijser et al., 2009;

Ford et al., 2011), we also measured the number of years from

the completion of mitigation to reach a cost recovery in

reduced WVCs.
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Methods

The TCH runs along the Bow River Valley and is a major

east–west aligned transportation corridor spanning from

Atlantic to Pacific coast. In Alberta, the TCH traverses the

Bow River watershed on the east side of the Continental

Divide. The TCH is a four-lane highway with an estimated

annual average daily traffic (AADT) volume of 10,000–20,000

vehicles per day, with peaks of more than 30,000 vehicles per day

during summer (Highway Service Center, Parks Canada,

unpublished data; Edwards et al., 2022) during the study

period. In addition to the TCH, the Bow River Valley includes

portions of the Canadian Pacific Railway, outlying commercial

areas (ski hills and golf courses), and the towns of Lake Louise,

Banff, Canmore, and Dead Man’s Flats (Barrueto et al., 2014). In

general, the Bow River Valley represents high-quality, low-

elevation wildlife habitat in this mountain landscape. The

region is a vital movement corridor for large mammals,
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including grizzly bears (Ursus artcos), wolves (Canis lupus) elk

(Cervus elaphus), deer (Odocoileus sp.), moose (Alces alces), and

Rocky Mountain bighorn sheep (Ovis canadensis).

Within the Bow River watershed, we assess the performance

of mitigation measures to reduceWVCs in two study areas of the

TCH based on biophysical transition, Banff National Park (BNP)

and Dead Man’s Flats (DMF) (Figure 1). BNP is characterized by

higher elevation, greater precipitation, and lower human

population density compared with the DMF study area.
Field data collection

WVC data were collected year-round as part of routine

wildlife observation reporting by staff from BNP. Each accident

site was visited, and the date of the WVC was recorded along

with information about the species and the number of

individuals. For each WVC location, a Universal Transverse
FIGURE 1

Map showing the location of wildlife vehicle collisions along the Trans-Canada Highway in Banff National Park [top] and Dead Mans Flats
[bottom], AB, Canada between 1998 and 2010. Green points represent the location of collisions in the control section and purple points are the
location of collisions in the impact section.
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Mercator (UTM) coordinate was obtained using a handheld,

global positioning system (GPS) unit accurate to < 5 m (Gunson

et al., 2009). For the DMF study area, WVC data were

synthesized from four provincial datasets over a 10-year

period (Lee et al., 2012). These data were not systematically

collected (i.e., scheduled transects) but based on opportunistic

data entry from a combination of highway maintenance

contractors, provincial biologists, and the public.

In BNP, both the unfenced (i.e., control) and impact (i.e.,

fenced) segments of the highway were 17-km long. We did not

analyze buffer zones around fence ends for potential fence end

effects, because the control segment was at least 3 km from any

fence end during the entire analysis period. As a result, 34 km of

highway was analyzed during a 12-year period (6 years before

and 6 years after). Wildlife-exclusion fencing required 3 years to

completely install, so those years were excluded from the

analysis for both the fenced and unfenced segments. Fenced

sections included a number of wildlife underpasses (Ford et al.,

2009). For each of 6 years prior to mitigation (November 1988–

November 1994) and 6 years following mitigation (November

1998–November 2003), data were compiled by species and

by kilometer.

In DMF, mitigation measures consisted of a wildlife

underpass flanked by 1.5 km of fencing to the east and 4 km

of fencing to the west, with fencing constructed on both sides of

the highway (Lee et al., 2012). We compiled counts of WVCs for

each of the 6 years prior to mitigation (1998–2004) and 6 years

following mitigation (2005–2010). The “impact” segment was

defined as the portion of highway associated with the underpass

and fencing described above as well as a buffer zone extending

1 km beyond the east end of the fence to account for potentially

heightened WVCs at the fence end (Huijser et al., 2016). The

western end is contiguous with an existing fence and therefore

was not assigned as a buffer zone. WVC data were compiled for

this 4-km fenced segment and a contiguous 6-km unmitigated

control segment to the east.

For both the BNP and DMF sections, fencing accompanied

crossing structures installed below the road surface. The DMF

section was more urbanized and had a higher speed limit (110

km/h) and at lower elevation than the BNP section. This lower

elevation is typically associated with lower snow accumulation

and changes in species abundance, as determined by WVC

records. The BNP section was inside a national park, had a

lower speed limit (90 km/h), and parks’ staff are assigned to help

reduced WVCs in the event of a fence intrusion by an animal

onto the right of way. Thus, while we view these two sites as

“replicates” along the same stretch of highway, within the same

biophysical valley, there are some variables that we cannot

control from an experimental perspective. Variance caused by

these differences are addressed in the mixed effects model

structure described below. Likewise, the “control” sections in

this analysis are not actual controls in a true experimental sense.

For example, the fenced segments likely had higher WVC rates
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(i.e., higher risk) so were prioritized for fencing ahead of lower

risk segments that we adopted as control for our study.
Data analysis

Collision data were annualized and assigned to one of four

experimental groups: before-control, after-control, before-

impact, and after-impact. The control segments were not

fenced during the study period; the impact segments were

fenced in the “after” period only. We separately analyzed elk,

mule deer, and white-tailed deer, as well as separate analyses for

pooled ungulates and pooled carnivores. The pooled ungulate

analysis included elk, mule deer, white-tailed deer and taxa

which occurred too infrequently to be analyzed independently:

unidentified deer species, moose, and bighorn sheep. Similarly,

we pooled carnivores because low numbers across experimental

groups made species-specific analyses impossible in the mixed-

effect modeling framework that we used.

We used a Poisson mixed effects models to analyze these

data. We first confirmed that the count data (collisions per year

per segment) were not overdispersed or had too many zeros

using the functions testDispersion() and testZeroInflation() in

the R package, DHARMa (v 0.4.5). We used the default settings

for both functions. Test statistics that were not significant (P >

0.10) were considered not to be overdispersed or zero inflated.

We used a main-effects factor for the fenced versus unfenced

road segment (i.e., “road segment”), a main-effects factor for the

before versus after period (i.e., “time sequence”), and an

interaction term between road segment and time sequence.

We included study area (i.e., BNP or DMF) as a random

intercept to account for variation among study areas (e.g.,

elevation, traffic volume, and vehicles), with an autoregressive

(AR1) term nested within study area to account for temporal

autocorrelation. We included an offset term for effort, that is, the

number of kilometers sampled in each of the four

experimental groups.

We report on apparent and realized measures of fencing

effectiveness. Apparent effectiveness is the difference in WVCs

prior to and following mitigation for the fenced road segment

only. Realized effectiveness first calculates the difference in

WVCs prior to and following mitigation for the control

sections and applies that difference to the change in WVCs

prior to and following mitigation for the fenced sections. For

example, consider that there were 10 fewer WVCs along a

section of road following the installation the fencing and three

fewer WVCs along an adjacent unfenced section during that

same period. In this example, the apparent effectiveness is 10 and

the realized effectiveness is 7.

For the cost-benefit analysis, we assigned elk, moose, sheep,

and deer species a cost-per-collision based on Huijser et al.

(2009). We summed these costs for each road segment. We then
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examined the cost of fencing based published values for this area

($60/m; Ford et al., 2011). We then calculated the annual

reduction in collision costs caused by mitigation and any

changes in collision costs for unfenced segments. Finally, we

estimated the number of years to cost recovery for fencing by

dividing the total cost of fencing by the annualized cost

reduction in collisions.
Results

We compiled the data from 376WVCs, including 151 from the

two control road segments and 225 from the two impact segments

(Table 1). Most WVCs (92%) involved ungulates, and 43% of all

ungulate collisions involved elk. Among 31 carnivore WVCs, most

(65%) were black bears. Both study areas had comparable total

WVCs (i.e., BNP = 183; DMF = 193); however, when accounting

for road length of each study area and years of monitoring, DMF

had 1.06–3.63 collisions per km per year (for control and impact

road segments, respectively), whereas BNP had 0.33–0.85 collisions

per km per year (for control and impact road segments,

respectively) prior to mitigation. The impact road segments had

roughly twice the rate of WVCs compared with the control

segments in both study areas. Following mitigation, there were
Frontiers in Conservation Science 05
1.25 WVCs per km per year for fenced segments at DMF and 0.06

WVCs per km per year for fenced segments in BNP.

At a species-specific level, there was a significant effect of the

interaction between road segment (control vs. impact) and time

sequence (before vs. after) for elk, mule deer, and white-tailed

deer (Figure 2 and Table 2). Across all species and study areas,

there was a 2% increase (from 0.50 to 0.52 WVCs per km per

year) in WVCs from the before to the after period for unfenced

control segments. In contrast, there was a 78% reduction in

WVCs following fencing segments (from 1.32 to 0.28 WVCs per

km per year). For ungulates specifically, there was a 6% decrease

in WVCs BNP (0.33–0.31 WVCs per km per year) and a 9%

increase in WVCs in DMF (0.86–0.94 WVCs per km per year)

between the before and after periods at control segments. For

ungulates on fenced highway segments, mitigation was

associated with a 96% decrease in the BNP study area (0.96–

0.04 WVCs per km per year) and a 73% decrease in the DMF

study area (3.50–0.96 WVCs per km per year).

Reductions in WVCs were greatest for elk (81–96% decline

for fenced segments vs. 9–33% decline in control, for BNP and

DMF, respectively), white-tailed deer (100–74% decline for

fenced segments vs. 0–3% change in control, for BNP and

DMF, respectively), and mule deer (96–60% decline for fenced

segments vs. 75–30% decline in control, for BNP and DMF,
TABLE 1 Summary of wildlife–vehicle collision data collected between 1988 and 2010.

Control Impact
Study area Species Before After Before After

Banff National Park [BNP] Black bear 0 2 2 2

Cougar 0 0 0 0

Unknown deer sp 0 1 0 1

Elk 18 14 57 2

Lynx 0 0 0 0

Moose 3 3 1 0

Mule deer 10 6 23 1

Sheep 0 0 0 0

Unknown ungulate sp 0 0 0 0

Wolf 1 0 3 0

White-tailed deer 9 8 16 0

Deadman’s Flats [DMF] Black bear 6 3 0 5

Cougar 0 1 1 2

Unknown deer sp 4 11 5 7

Elk 12 8 33 6

Lynx 1 0 0 0

Moose 0 0 7 1

Mule deer 4 1 5 2

Sheep 0 3 5 0

Unknown ungulate sp 0 0 2 0

Wolf 0 0 2 0

White-tailed deer 11 11 27 7
frontier
BNP control and impact segments were monitored for 6 years each and were both 17 km. The DMF control and impacts segments were monitored for 6 years each; the DMF impact
segment was 4 km and the DMF control segment was 6 km.
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respectively) in the after period relative to the before period.

Both elk and mule deer WVCs declined in unfenced control

segments. At the taxa level, there was a significant interaction of

road segment and time sequence for ungulates but not

carnivores (Figure 3 and Table 3).

Prior to mitigation, WVCs incurred a total cost of $24,131 to

$69,325 per km per year for control and fenced road segments

(pooled across study areas), respectively Figure 4. Following

mitigation, WVCs incurred a cost of $21,387 to $8,783 per km

per year for control and fenced road segments, respectively. In

other words, the cost of WVCs across control segments declined

by $2,743 per km per year, even though these segments were

never fenced during the study. This outcome is likely driven by

the observed decline in elk and mule deer WVCs at control

segments. Over the same period, the cumulative cost of WVCs in

fenced segments declined by $60,541 per km per year. When
Frontiers in Conservation Science 06
accounting for both the cost of fencing and the benefits of WVC

reduction, fenced segments delivered a net benefit of $3,287 in

the first year. Assuming a one-time fixed cost of installing fences,

mitigation is estimated to provide a net benefit of $572,872 per

km at fenced segments over a 10-year period. Because there were

generally fewer WVCs at control segments, fencing them will

take longer to reach a net economic gain. As a thought

experiment, we assumed that all other factors affecting WVCs

are stable (e.g., animal population size, traffic volume, and driver

behavior) and projected the observed background declining cost

of WVCs of 11% per km per year. Under these conditions, it

would take 88 years to reach a net cost of < $1 per km per year

for control segments in the absence of fencing. Thus, the time

required to reach a financial break-even point for fenced

segments (< 1 year) and unfenced control segments (~70

years) is roughly 90× greater without fencing.
TABLE 2 Summary of the mixed-effect Poisson models to test for the interaction between road segments (control vs. impact) and time sequence
(before vs. after) on elk, mule deer, and white-tailed deer.

Species

Model term Elk Mule deer White-tailed deer

Intercept -4.20***
(1.25)

-4.366***
(0.843)

-4.060***
(1.179)

Road segment: Impact
[relative to control]

1.26***
(0.21)

0.785*
(0.328)

1.015***
(0.272)

Time sequence: After [relative to before] -0.05
(1.70)

-0.415
(1.085)

-0.028
(1.626)

Road segment x Time sequence -2.10***
(0.47)

-1.519*
(0.766)

-1.746***
(0.520)
***p < 0.001; **p < 0.01; *p < 0.05.
Autoregressive terms were 0.84, 0.64, and 0.83 for elk, mule deer, and white-tailed deer, respectively.
FIGURE 2

Predicted effects of the mixed-effects, Poisson regression showing the interaction between road segment (control vs. impact) and time
sequence (before vs. after) on the collision rate of elk (left panel), white-tailed deer (center panel), and mule deer (right panel). For ease of
illustration, only the main effects of the model are shown here. The complete statistical model included an AR1 autoregressive term for year
nested within study area to account for temporal autocorrelation and a random intercept for the study area.
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Discussion

Through a combination of long-term monitoring and

phased highway mitigation, we conducted an opportunistic,

BACI study design in two adjacent areas of the Canadian

Rocky Mountains. We found that wildlife-exclusion fencing

led to a significant (> 80%) reduction in WVCs for common

ungulate species. We did not detect a change in carnivore-

vehicle collisions following mitigation. Our results indicate

that that societal-wide economic benefits of mitigation can be

realised in less than 2 years for high-risk WVC road segments

and in 6 years for lower risk areas. While the effect sizes that we

observed are consistent with related studies (e.g., Clevenger et al.,

2001; Rytwinski et al., 2015; Rytwinski et al., 2016), the BACI
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study design that we employed revealed confounding variation

in WVC rates that more accurately portrays the costs and

benefits of wildlife-exclusion fencing.

Consistent with previous studies in this region (Clevenger

et al., 2001; Gilhooly et al., 2019) and abroad (McCollister and

van Manen, 2010), wildlife exclusion fencing is highly effective at

reducing vehicle collisions with ungulates. The reduction in

WVCs was greatest in the BNP study area, likely because of

the additional effects of staff at Banff National Park who will

actively direct animals off the highway right-of-way through a

series of large (4-m wide) swing gates and conduct fence repairs

when damaged (Clevenger et al., 2009). In addition, the BNP

study area of the highway was more than twice as long as the

DMF study area, possibly indicating that “fence end” intrusions
TABLE 3 Summary of the mixed-effect Poisson models to test for the interaction between road segment (control vs. impact) and time sequence
(before vs. after) for all ungulate species pooled together and for all carnivores.

Taxa

Model term Ungulates Carnivores

Intercept .658**
(2.027)

-6.749***
(1.428)

Road segment: Impact
[relative to control]

1.130***
(0.141)

0.248
(0.502)

Time sequence: After [relative to before] 0.051
(2.640)

-0.653
(1.687)

Road segment x Time sequence -1.784***
(0.269)

0.449
(0.729)
f

***p < 0.001; **p < 0.01; *p < 0.05.
Coefficient fixed effects are shown with standard errors in brackets. Autoregressive terms were 0.90 and 0.81 for ungulates and carnivores, respectively.
FIGURE 3

Predicted effects of the mixed-effects, Poisson regression showing the interaction between road segment (control vs impact) and time
sequence (before vs after) on the collision rate of all ungulates ppoled together (left panel) and all carnivore species pooled together (right
panel). For ease of illustration, only the main effects of the model are shown here. The complete statistical model included an AR1 autogressive
term for year nested within study area to account for temporal autocorrelation and a random intercept for study area. Note different scales on
the y-axis.
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could be reducing the effectiveness of this shorter section of

fencing (see Huijser et al., 2016).

Unlike ungulates, carnivore mortality rates were low but did

not change following mitigation. The lack of response by

carnivores can be explained by both biological and statistical

reasons. From a biological perspective, page wire fences can be

climbed by black bears – the most common carnivore in our

study (Serrouya, 1999; Hebblewhite et al., 2003). Downed trees

on top of the fence and soil erosion under the fences can also

open gaps in the fence that lead to intrusions onto the right of

way. Consequently, carnivore intrusions may remain an issue for

the TCH, particularly if there are food attractants such as road-

killed ungulates and herbaceous plants (i.e., for bears). In

addition to these biological explanations, our study may not

have the statistical power to detect a change in carnivore

collisions. For example, we detected no cougar mortalities in

BNP and just four in the DMF area. Of those four, only one

occurred in the control segment. Similarly, low observations

occurred for wolves and lynx, making it impossible to conduct

species-specific comparisons among carnivores. We know from

other studies that carnivores are frequently observed near the

highway and use nearby wildlife crossing structures many

hundreds of times annually, thus significantly reducing

mortality risk compared with an unfenced TCH (Clevenger

et al., 2009; Ford and Clevenger, 2010; Ford et al., 2010). From

a road safety perspective, our results suggest that carnivore-

vehicle collisions are low risk. However, the per capita effect of
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even rare mortality, especially for adult females, can be profound

for low fecund, low density species such as carnivores (Lamb

et al., 2020).

For the public, the return on investment from highway

mitigation can be realized within a few years providing that a

few conditions are met. First, the fencing needs to be placed in an

area with a high risk of collisions. While intuitive, identifying

area of high risk also requires adequate data: long-term,

consistent, and accurate data collection protocols. Variation in

such protocols, such as GPS versus landmark-located carcases

can profoundly affect where and why roadkill hotspots occur

(Gunson et al., 2009). Prior to mitigation in our study area, high-

risk road segments of the TCH incurred close to $70,000 per km

per year in damage to vehicles, human health, and lost

opportunity costs of wildlife mortality (sensu Huijser et al.,

2009). With an estimated cost of $60,000 per km for fencing

alone (Ford et al., 2011), benefits to society at large are realized

almost immediately. For the return-on-investment analysis to

function, we assumed that both funders and benefactors of

fencing share a common economic pool. However, the BNP

study area was part of a national parks system that provides

ecosystem services to visitors from all over the world, most of

whom place transportation infrastructure as a highly ranked part

of their experience (Geng et al., 2021). In this case, the funders of

the BNP mitigation costs are “national” or international in

scope, and benefactors include a largely non-resident

population of national park visitors and people passing
FIGURE 4

Estimated cost of collisions occurring within each road segment and time sequence for the two study areas, Dead Mans Flats and Banff National
Park. Cost estimates per collision are based on Huijser et al (2009).
frontiersin.org

https://doi.org/10.3389/fcosc.2022.935420
https://www.frontiersin.org/journals/conservation-science
https://www.frontiersin.org


Ford et al. 10.3389/fcosc.2022.935420
through Banff National Park. In contrast, the highway in the

DMF study area was funded through a mix of provincial and

federal funding (Lee et al., 2012), with benefits accruing to local

traffic and a smaller tourism sector (Hu et al., 2022). Thus, the

payers and benefactors of the economic analyses that we

conducted can vary significantly at different segments of the

same highway. Nonetheless, for nationally significant

infrastructure such as the TCH, the assumptions that we made

based on Huijser et al. (2009) for a net societal benefit seem

reasonable. For more localized mitigation projects, such as

secondary roads, such cost-benefit calculations of fencing

require further exploration of these assumptions.

Following perspectives shared in Rytwinski et al. (2015), our

study was one of few to conduct a BACI analyses to test for the

effectiveness of fencing to reduce WVCs. This approach was

made possible by long-term monitoring of WVCs conducted

along sequential phases of highway mitigation. Such a phased

approach can be very cost effective by targeting high-risk areas

with more efficient and shorter road segments (Ford et al., 2011;

Huijser et al., 2016). Indeed, the “before” periods for the fenced

segments had much higher rates of WVCs than the before period

for the nonfenced segments. This means that fencing was

appropriately installed at higher risk areas. High-risk locations

can be identified through WVC monitoring, as in our study

system (e.g., Clevenger et al., 2015) and through various

connectivity algorithms that simulate likely road crossing

locations (Clevenger et al., 2002; Quaglietta et al., 2019; Zeller

et al., 2020).

Another important outcome of our study was the small

decline in WVCs rates among elk and deer along unfenced road

segments. Given the short distance between fenced and unfenced

segments, the mechanisms leading to the decline of WVCs at

control segments were likely also present at the fenced segments.

We speculate that the background decline in WVCs could be

driven by a declining population abundance of elk (Hebblewhite

et al., 2002, Zimmermann Teixeira et al., 2017), changing animal

movement patterns near roads (Seiler, 2005), or changing driver

behavior associated with other mitigation efforts in the area,

such as signage (Huijser et al., 2009). Traffic volume in this area

has increased over the duration of the study area from 10,000

AADT in the early 1980s to ~20,000 AADT in 2014 (Gilhooly

et al., 2019)—the volumes are much higher than reported

thresholds of avoidance for ungulates (Seiler, 2005). In other

words, it is unlikely that the added traffic volume created a

stimulus that led to fewer attempts by individual animals to cross

the road. Thus, we do not believe that the increase in traffic

volume is causing ungulates to avoid crossing the road more in

the after period than during the before period. Changes in driver

behavior may be linked to fewer WVCs at unfenced segments;

however, it is difficult to imagine a mechanism that altered driver

behavior in such a significant manner over a short period of time

and for the BNP study area of the TCH but not the DMF

study area.
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Regardless of the mechanism for the decline in WVCs at

control segments, this signal confounds the magnitude of the

fencing effect per se and is the reason for future work to

report both apparent and realized effectiveness. Apparent

effectiveness does not consider background changes of

WVCs at control segments and may over or underestimate

fencing effectiveness. For example, the apparent effectiveness

of fencing for ungulate WVCs in BNP is a 96% decline (i.e., a

decline of 0.96–0.04 WVCs per km per year). However, when

considering that WVCs dropped by 6% at control segments

over this same period, the realized effectiveness is 90%. At

the DMF study area, the apparent effectiveness of fencing

was a 73% decline in ungulate WVCs. During this same

period, controls had a 10% increase in ungulate WVCs.

Thus, the realized effectiveness of fencing on ungulate

WVCs in DMF is 82%. In sum, the realized effectiveness of

fencing the TCH in the Rocky Mountains is an 80–90%

reduction in ungulate WVCs.

The BACI design that we used is not only associated with

stronger effect sizes than “before–after” or “control–impact”

(space for time substitutions) studies (Rytwinski et al., 2016),

but it is also critical for developing a rigorous understanding of

how large, free-ranging animals interact with transportation

infrastructure. In a few cases, such as road closures

(Whittington et al., 2019) or lockdowns associated with the

COVID-19 pandemic (Shilling et al., 2021; Abraham and

Mumma, 2021), there is limited opportunity to perform

replicated field experiments in road ecology for large

mammals. Investments in long-term monitoring of WVCs

(Gunson et al., 2009; Gilhooly et al., 2019), animal

movement at crossing structures (Clevenger et al., 2009; Ford

et al., 2017), and predator–prey interactions (Ford and

Clevenger, 2010) are a key feature of BACI designs when

infrastructure cannot be readily moved or altered following

construction. As part of this long-term approach to

monitoring, accounting for temporal autocorrelation will

become a more reliable means to meet the assumptions of

statistical analyses (Boyle et al., 2021). However, these

approaches may not be reliable for short-time series data,

even if the variances in the data are temporally structured in

the statistical model. Depending on the other variables of

interest in a study, time series analysis may require a large

number (> 10 years) of observations or resampling methods to

estimate effect sizes (e.g., Hervieux et al., 2014; McNay

et al., 2022).

Fencing is used for a variety of purposes in conservation and

science, including human–wildlife coexistence (Bauer, 1964;

Packer et al., 2013), disease mitigation (Mysterud and

Rolandsen, 2019), basic ecological research (Goheen et al.,

2018), and ecological restoration (Laskin et al., 2020; Ford,

2021). Indeed, with the growing use of fencing in conservation,

specialized analytical tools are being used to asses the response of

wildlife movement (Xu et al., 2021) amid broader calls for
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developing the science of “fence ecology” (Jakes et al., 2018;

McInturff et al., 2020). Our work extends these studies by

showing how fencing technology (i.e., high page wire) reduces

~70–90% of ungulate-vehicle collisions. Further research on

fencing effectiveness for large carnivores and other species

such as small mammals (Ford and Clevenger, 2019) will be

needed, particularly given their infrequent occurrence in WVC

studies (Ford and Fahrig, 2007).
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