AUTHOR=Saniee Kiana , Villablanca Francis TITLE=Hierarchy and Scale Influence the Western Monarch Butterfly Overwintering Microclimate JOURNAL=Frontiers in Conservation Science VOLUME=3 YEAR=2022 URL=https://www.frontiersin.org/journals/conservation-science/articles/10.3389/fcosc.2022.844299 DOI=10.3389/fcosc.2022.844299 ISSN=2673-611X ABSTRACT=
Migratory species are expected to demonstrate habitat selection that occurs at multiple spatial and temporal scales. Western monarch butterflies migrate seasonally to overwintering groves at geographically predictable locations along the coast of California. To date, overwintering habitat selection by western monarch butterflies has primarily been studied assuming the microclimate hypothesis. Specifically, that microclimate habitat selection occurs when monarchs form dense overwintering aggregations in overwintering groves. However, western monarch butterflies are migratory; thus, previous habitat selection studies could have commingled selection at different scales into a single local scale in the site of aggregation. Therefore, we explore monarch overwintering habitat selection to determine whether an explicit spatial framework is necessary. We studied nine groves on the coast of California, and at each we collected temperature, humidity, and light data from grove edges, grove interiors, and aggregation locations for several weeks during the overwintering season. We tested the hypothesis that monarchs aggregate in locations in groves that have a unique microclimate that is consistently selected across groves (the microclimate hypothesis). We find no evidence supporting the hypothesis that aggregation locations have a unique microclimate that differs significantly from that of other locations inside the grove or that aggregation locations are uniform in their microclimatic attributes across overwintering groves. Rather, we find that microclimatic attributes in aggregation locations vary spatially with latitude, and that aggregation conditions exist in a large portion of each grove. We conclude that it will be necessary to consider spatial effects when studying or managing western monarch butterfly overwintering habitats, and that interpretations of habitat selection to date likely commingle habitat selection on the local and geographical scales.