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Genetic diversity and population
structure of the antimalarial
plant Cryptolepis sanguinolenta
in Ghana

Jacqueline Naalamle Amissah1*, Denita Hadziabdic2*,
Sarah L. Boggess2 and Robert N. Trigiano2

1Department of Crop Science, University of Ghana, Legon, Accra, Ghana, 2Department of
Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
Cryptolepis sanguinolenta is an important medicinal plant used in the

treatment of malaria in Ghana. Overharvesting, destruction of entire plant

populations and poor seed viability have resulted in a substantial decrease in

wild populations thereby threatening its long-term potential and survivability. In

this study, fifteen polymorphic microsatellite loci were used to evaluate the

genetic diversity and population structure of 179 C. sanguinolenta individuals

among eight subpopulations in Ghana. The subpopulations were separated by

a distance of 8.3 – 233.3 km. Our results indicated relatively high levels of

genetic diversity (Ho= 0.41; He=0.61) and high gene flow (Nm=7.06), an

indication of greater stability and adaptability within the ecosystem, limited

genetic differentiation (mean FST=0.05; highest FST=0.1), which suggested

insignificant differentiation among the subpopulations. The high levels of

gene flow resulting from the wind-dispersed seeds might have contributed

to the limited genetic differentiation among the subpopulations. The Bayesian

cluster analysis revealed the presence of a population structure (K=2). A lack of

isolation by distance (r=0.012; P=0.34) indicated an increase in the genetic

similarity among the subpopulations as the geographic distance between them

decreased. This study described the genetic diversity and population structure

in the current C. sanguinolenta accessions and laid a foundation for future

breeding efforts.
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1 Introduction

According to a World Health Organization (WHO) 2021

report, 241 million cases of malaria were reported in 2020

(WHO, 2021). Most of these cases occurred in the African

region (228 million), followed by the Eastern Mediterranean

(5.75 million), and the South-East Asian region (5 million).

Globally, malaria deaths reached 627,000, out of which, 96% are

accounted for in sub-Saharan Africa (WHO, 2021). In addition,

children under five accounted for 80% of the malaria deaths in

Africa (WHO, 2021). Although efforts have been made towards

reducing the global burden of malaria, drug resistance,

accessibility, and the affordability of antimalarial medications

continue to threaten this effort. To mitigate these issues,

alternative approaches to using traditional medicine could

provide more sustainable and cost-effective treatment options.

An estimated 80% of the world’s population almost

exclusively depends on local medicinal plants for the

prevention and treatment of various diseases because they

are readily accessible and affordable (Kirby, 1996; WHO,

2002). Several efficacious medicines such as aspirin (an

analgesic) derived from Salix alba L., Digoxin (cadiotonic)

from Digitalis lantana Ehrh., Artemisinin (anti-malarial)

from Artemisia annua L., and Quinine from Cinchona

ledgeriana Moens ex Trimen. are used for the of malaria

treatment (Luo et al., 1998) and originate from plants

(Licciardi and Underwood, 2011; Veeresham, 2012). In the

fight against malaria, medicinal plants with a history of use as

potential antimalarials in resource-poor communities should

be considered in the development of intervention approaches

(Abebe and Garedew, 2019). In that capacity, steps to

conserve and promote sustainable, resilient, and climate-

smart agro-ecosystems must be encouraged whi le

documenting and preserving traditional medicinal plants

knowledge limited to local healers and elders in these

communities. Abebe and Garedew (2019) identified 25

plant species from 22 families that had been used in

traditional treatments of malaria in Ethiopia with Cyperus

spp., Allium sativum L., Lepidium sativum L., and Echinops

kebericho Mesfin. are utilized most extensively.

With an increase in anthropogenic activities, there is an

urgent need to prioritize the protection of wild populations

and the cultivation of useful medicinal plants to ensure future

availability for healthcare needs. Cryptolepis sanguinolenta,

locally known in Ghana as ‘Nibima’ in Twi, ‘Gangnamau’ in

Hausa, or ‘Kadze’ in Ewe, is a perennial vine belonging to the

Apocynaceae family with a history of use in Africa (Luo et al.,

1998; Osafo et al., 2017). It grows in rainforests, deciduous

forest belts, and secondary forest clearings along the west

coast of Africa from Nigeria through Ghana to Senegal

(Dokosi, 1998). In Ghana, however, it is located along the

slopes of the Akwapim and Kwahu mountain ranges (Addae-
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Kyereme, 2004) with a long-standing history of use in the

treatment of malaria.

Roots, the portion of the plant of commercial and

medicinal value, contain the highest concentration of

indoloquinoline and cryptolepine, which have the most

potent antiplasmodial activity (Dwuma-Badu et al., 1978;

Tackie et al., 1991; Cimanga et al., 1997).

Minor alkaloids including hydroquinone, quindoline,

cryptoquindoline, cryptoheptine and 11-hydroxy derivatives of

cryptolepine with biological/pharmacological activities have also

been isolated (Dokosi, 1998). The combined presence of these

alkaloids accounts for the biological and/or pharmacological

activity of C. sanguinolenta. The effectiveness of its extracts is

comparable to chloroquine when taken orally (Boye, 1989). Apart

from its antimalarial properties (Ansah et al., 2005; Tempesta,

2010; Osei-Djarbeng et al., 2015), it is recognized for its anticancer

(Ansah and Mensah, 2013), antihyperglycemic (WHO, 2002),

antimicrobial (Sawer et al., 2005) and antimycrobacterial

(Gibbons et al., 2003) potential. Preparations from C.

sanguinolenta were approved in February 2021 for clinical trials

for the treatment of COVID 19 by the Food and Drugs Authority

of Ghana (FDA, 2021) and has been shown to inhibit hepatitis B

virus replication (Domfeh et al., 2021).

In Ghana, C. sanguinolenta harvesting is done by

smallholder farmers (plant collectors) who use the roots to

make antimalarial decoctions. “Nibima” is one of the popular

decoctions sold in local markets and is produced by the Centre

for Plant Medicine Research (CPMR) (https://www.cpmr.org.

gh/product-category/decoctions). Overtime, the plants have

been overharvested and these plant collectors must travel

further into the forest, often with overnight stays, to gather

C. sanguinolenta (Amissah, personal communication 2021).

Destructive harvesting of the entire plant, along with its root

system, is not sustainable in the long term and has already

resulted in a substantial decrease in wild populations (Jansen

and Schmelzer, 2010; Amissah et al., 2016a).

Over collection and habitat loss poses a significant threat

to the conservation efforts of endangered plant species,

especially those used for medicinal purposes (Kala, 2000;

Reed and Frankham, 2003). Human activities, such as

illegal poaching or disruptive harvesting of endemic,

medicinal plants, can negatively impact biodiversity at the

gene, species, community and ecosystem levels (Meffe and

Carroll, 1997; Templeton et al., 2001). This can result in

habitat fragmentation, erosion of natural and adaptive genetic

diversity, reduction in effective population size, lower

evolutionary potential and ultimately contribute to species

extinction (Templeton et al., 2001; Soares et al., 2019).

Understanding the population genetics of a plant species

provides insight into the effects of natural selection, genetic

drift, mutation and gene flow that can be used to develop

suitable conservation methods and assist with future breeding
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programmes for plant species on the verge of extinction.

Population genetics studies have played a significant role in

the conservation of several species. For example, genetic

diversity and inbreeding were significantly influenced by the

size of the population of Chersophilus duponti, a threatened

lark in the Alaudidae (Meffe and Carroll, 1997) and

Hypericum cumulicola, a rare species of flowering plant

found in small and isolated populations (Oakley, 2015).

As is the practice with several important medicinal plants,

there is very little effort devoted to the conservation of C.

sanguinolenta. There is an urgent need for establishing a

conservation strategy for medicinal plant species in general

and specifically for C. sanguinolenta. Currently, there is very

limited knowledge of the population dynamics of C.

sanguinolenta. As part of research efforts geared at conserving

this species, our group has developed protocols for the

cultivation of C. sanguinolenta (Jansen and Schmelzer, 2010),

in addition, we have developed microsatellite loci for future

genetic diversity studies (Amissah et al., 2016b). To address

these knowledge gaps, this study seeks to: i) measure the genetic

diversity of C. sanguinolenta across eight subpopulations from

natural habitats within three regions of Ghana; and ii) describe

the spatial structure of these subpopulations.
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2 Materials and methods

2.1 Sampling localities, DNA extraction,
isolation and PCR amplification

One hundred and eighty-six plants of C. sanguinolenta were

collected and assigned to eight subpopulations of which each was

represented by 17 to 29 individuals located within the Ashanti

(Asuafo-Sekyere West), Eastern (Hwehwee-Ata n’ Ata,

Hwehwee-Yaw Gyeni, Kwahu Abene, Kwahu Pepease,

OgenyaKrobo/Krobo Gyekiti), and Brong Ahafo (Dromankese

Nkoranza North) region in the period between April and

December 2015 (Figure 1) .

The identification of plants collected from each location was

based on morphological characteristics of the species and

verified using herbarium samples from an earlier study.

Samples were maintained and grown at the Department of

Crop Science of the University of Ghana under field

conditions. The site falls within the Coastal Savannah

agroecological zone of Ghana with a total annual rainfall of

approximately 748 mm and a temperature of between 24 - 32°C.

The soil at the site is sandy loam and classified as the Adenta

series by the Soil Survey Staff (1999).
FIGURE 1

Distribution map of Cryptolepis sanguinolenta subpopulations across three different regions in Ghana.
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2.2 Genotyping

Genomic DNA was isolated from fresh C. sanguinolenta

leaf samples using a CTAB protocol (Porebski et al., 1997). The

concentration and purity of DNA samples were measured with

a NanoDrop ND-1000 spectrophotometer (NanoDrop

Technologies, Inc., Wilmington, DE, USA) before analysis.

Polymerase chain reaction (PCR) amplification was

performed in 10 µl reaction mixtures containing 1 µl DNA

template (4 ng/µl), 1 µl of GeneAmp 10x PCR Buffer II

(Applied Biosystems, Branchburg, NJ, USA), 1 µl of 25 mM

MgCl2, 1 µl of each 2 mM of dNTPs, 1 µl of 2.5 µM specific

polymorphic microsatellite primers, 0.08 µl of 5 U AmpliTaq

Gold® DNA polymerase (Applied Biosystems), and 4.92 µl of

sterile nanopure water. Nine polymorphic microsatellite
Frontiers in Conservation Science 04
primer pairs, developed from a previous study (Amissah

et al., 2016b), as well as six additional polymorphic

microsatellite primer pairs (Table 1) were selected and used

for the population studies.

Amplification reactions were temperature cycled in 96-

well plates using an Eppendorf Mastecycler Thermocycler

(Eppendorf AG, Hamburg, Germany) with the following

program: 94°C for 3 min, followed by 35 cycles of 94°C for

40 seconds, 58°C for 40 seconds, 72°C for 30 seconds, and a

final extension at 72°C for 4 min. PCR products were analyzed

with the QIAxcelCapillary Electrophoresis System (Qiagen,

Valencia, CA, USA) using an internal 25-bp DNA size ladder.

Data were automatically recorded and exported using QIAxcel

ScreenGel Software,which provided both a gel view and an

electropherogram of the separated PCR products (alleles).
TABLE 1 Microsatellite loci used to analyze 179 Cryptolepis sanguinolenta samples collected from eight locations in Ghana.

GenBank accession No. Repeat motif Locus Primer sequences (5’-3’) Size range (bp)

KU361063 (AAAT)4 Cry007* F: GACATAGCTTTGGAAGGGTAG 265-286

R: TCAGGATCAATTTCCACTTG

KU746826 (TTA)3 Cry011 F: TTTGGATTGACTCTAGCACTGG 125-155

R: GTGCCTCTCCAATCACTTCCT

KU746827 (CTT)3 Cry015 F: TGCGAAGACTCACTGAATCAA 155-196

R: CCCAACTCCTTGGTAATGAGC

KU746828 (AAT)3 Cry018 F: GTACTGTGCTCGCAGTTCGTT 190-216

R: CGAGCTCCATTAAGAATCAGG

KU361064 (GAT)3 Cry021* F: GGTGACCCTCAATCTGATGAA 179-213

R: GCTCCTGACCCCATATCAGTT

KU746829 (AAAT)4 Cry023 F: TCCTCTTCCTGAAAGGTAACAAG 226-237

R: GGTGATCCAGCAGCGTAGTTA

KU361066 (AT)2 Cry030* F: GGCATTGGCCATATATACTCCT 144-159

R: CATGTTCCAGGGCAGTAGAAA

KU361067 (TAA)3 Cry031* F: AGGATACGTGGCTCCAAGATT 136-147

R: AGGATGCCAATGAAAGGATCT

KU361068 (TTTA)4 Cry032* F: GGAAGCATCCATAAGGAGGAG 107-123

R: TGGATATTCTAGTTGCCTTGTGG

KU361071 (TAT)3 Cry036* F: GCGCAATTAAGAAATGCGTA 244-265

R: CAGCGCATTTCCAACAATAA

KU361072 (ATT)3 Cry037* F: GCGCAATTAAGAAATGCGTA 209-262

R: CAGCGCATTTCCAACAATAA

KU361074 (AAC)3 Cry044* F: CGGTTCCCCTTCTACAATTTC 238-257

R: CCCATCAACTAACGAAAAAGG

KU361075 (TTCC)4 Cry047* F: TAGGGCTTCTTTCATGCGTTT 134-154

R:CAGATTCAAGTGGACGAAACC

KU746830 (TTAT)4 Cry058 F: TCCAAGGGGAATGAAGAAAA 237-250

R: TATTACGGGTGGCATTTTGTG

KU746831 (TA)2 Cry073 F: TACGGACTGCAGATCCAGAAG 147-168

R: CCATGTGCCAATGTAGTCATC
*Primer sequences from (Amissah et al., 2016b).
frontiersin.org

https://doi.org/10.3389/fcosc.2022.1020981
https://www.frontiersin.org/journals/conservation-science
https://www.frontiersin.org


Amissah et al. 10.3389/fcosc.2022.1020981
2.3 Data analyses

2.3.1 Loci polymorphism and population
diversity

The 186 individuals were analyzed using 15 species-specific

polymorphic microsatellite primers. DNA of seven individual

samples failed to amplify across several loci and therefore were

excluded from further analyses resulting in 179 individuals in

the study. The program FLEXIBIN (Amos et al., 2007) was used

to assign alleles into appropriate classes. To achieve the best

allelic class fit, the program uses a simple algorithm through a

series of steps and phases to find the best binning combinations.

Standard measures of genetic diversity among 179

individuals of C. sanguinolenta were determined using Nei’s

gene diversity (Amos et al., 2007) in FSTAT version 2.9.3.2

(Goudet, 2001; Goudet, 2005) and program R version 4.1.2

using packages poppr (Kamvar et al., 2014; Kamvar et al., 2015)

and hierfstat (Goudet, 2005). Analyses included the number of

alleles observed at each locus (N) and across subpopulations

(Na), number of effective alleles (Ne), and allelic richness (AR),

a measure of the number of alleles independent of sample size.

Allelic richness, calculated using a rarefication method based

on a minimum sample size of 15 diploid individuals or 30

genes, is used as an estimate of the long-term evolutionary

potential of given individual(s) to adapt and persist in a

population (El Mousadik and Petit, 1996). We also estimated

observed and expected heterozygosity (gene diversity) under

Hardy Weinberg equilibrium (Ho and He, respectively),

linkage disequilibrium (rbard) (non-random association of

alleles between loci), and Shannon-Weiner diversity index

(H), which considers both allele richness and evenness of the

allelic distribution. Further analyses included the number of

unique private alleles across loci and subpopulations. F-

statistics estimates included inbreeding coefficient (FIS) and

fixation index (FST). In addition, gene flow (Nm) estimates

were calculated using GenAlEx version 6.502 (Peakall and

Smouse, 2006; Peakall and Smouse, 2012).

2.3.2 Population structure and historical
demography

Genetic structure analysis of C. sanguinolenta was

performed using Bayesian cluster analysis (Peakall and

Smouse, 2012) in program STRUCTURE version 2.3.4

(Pr i tchard and Donne l ly , 2001) wi th a ser ie s o f

complementary approaches including analysis of molecular

variance (AMOVA) (Excoffier and Lischer, 2010), and Mantel

test for isolation by distance. The program STRUCTURE was

used with 20 independent runs for each k value between one and

ten at 500,000 MCMC (Markov Chain Monte Carlo) repetitions

and a burn-in period of 500,000 iterations using an admixture

model with correlated allele frequencies (without prior

assumption of population origin). The admixture model

assumes that individuals with admixed ancestry can inherit a
Frontiers in Conservation Science 05
portion of their genome from ancestors in population k (Porras-

Hurtado et al., 2013). STRUCTURE HARVESTER (Earl and

VonHoldt, 2012), a web-based program for obtaining K values

and summarizing output data from STRUCTURE, was used to

estimate the optimum value of genetic clusters using Evanno’s

method (Evanno et al., 2005). Data was visualized using program

web-based program POPHELPER (Francis, 2017). Because the

STRUCTURE-like approach assumes panmictic populations

and unlinked markers (Pritchard et al., 2000), alternatively,

model-free approaches that utilize multivariate K-means

clustering such as Discriminant Analysis of Principal

Components (DAPC) are often used. Here, we used DAPC to

further investigate the underlying structure among C.

sanguinolenta populations using R package adegenet (Jombart,

2008; Jombart and Ahmed, 2011). The initial selection includes a

principal component analysis (PCA) identification, followed by

the selection of appropriate PCA vectors that can explain the

majority of variance while minimizing over-fit of the DAPC, and

finally using a selected number of PCAs that could reveal

differences between groups and minimize within-group

variations (Ony et al., 2021). We also performed pairwise FST
analysis for all pairs of subpopulations using 10,000

permutations in GenAlEx. Significant FST values were

calculated after sequential Bonferonni corrections (Rice, 1989;

Bergamaschi and Lama, 2015).

The hierarchical distribution of genetic variation of the C.

sanguinolenta subpopulations was measured using Arlequin

version 3.5.1.2 (Excoffier and Lischer, 2010). AMOVA was used

to partition the total variance into hierarchical components

(among subpopulations and within subpopulations). Although

AMOVA findings can complement STRUCTURE results, these

outcomes should not be taken as independent confirmation of

implied hierarchical structure. AMOVA analyses for C.

sanguinolenta subpopulations were partitioned based on all

sampling localities clustered as one hierarchal group and

clusters identified by STRUCTURE. For STRUCTURE

partitioning, each individual was clustered into one of the two

groups as determined by the program.

To determine whether or not geographical structure is

best explained by hierarchical clustering, the correlation

between pairwise genetic and geographic distance was

estimated using mass package (Venables and Ripley, 2002)

in program R. Statistical significance was evaluated using the

Mantel test using 9,999 permutations. R program was also

utilized for the construction of UPGMA (unweighted pair

group method of arithmetic averages) dendrogram based on

Bruvo ’s distance with 1,000 bootstrap replicates and

threshold set at 50% using package poppr (Kamvar et al.,

2014; Kamvar et al., 2015). Lastly, C. sanguinolenta

populations were tested for evidence of bottlenecks using

the software BOTTLENECK version 1.2 (Piry et al., 1999).

The program evaluates the presence of population bottleneck

as an excess (recent population bottleneck) or deficit (recent
frontiersin.org
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population expansion) of genetic diversity, relative to the

number of alleles present in the C. sanguinolenta.
3 Results

3.1 Population diversity

One hundred and one alleles were identified using 15

polymorphic microsatellite loci across the three regions in

Ghana where C. sanguinolenta plants are found (Table 2).

The mean allelic richness (AR), as assessed with 15

microsatellites was 4.43 and the number of alleles varied from

5 (Cry015) to 10 (Cry036) with a total number of 101 alleles

(Table 2). Overall, subpopulations differentiation was low

(FST=0.05) and indicated little genetic differentiation, high

gene flow (Nm=7.06), significant inbreeding (FIS=0.36) and

structure among the C. sanguinolenta subpopulations

(Ho<He) (Table 2). Expected heterozygosity across all loci

ranged from 0.43 to 0.76 with a mean of 0.60. Twelve of the

fifteen tested microsatellite loci yielded private alleles and

resulted in the discovery of 26 unique alleles (Table 2).

The effective number of alleles (Ne) ranged from 2.49 to 2.72

with an average of 2.60 across all subpopulations. Shannon-

Weiner diversity index (H) and allelic richness (AR) values were

high across all subpopulations (H=3.10, AR=4.15) but generally

higher for subpopulations from the Eastern region (H=3.12,

AR=4.21 for six Eastern subpopulations) when compared to

Ashanti (H=3.09, AR=3.89) and Brong-Ahafo (H=3.0, AR=4.02)

regions (Table 3).
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Mean observed (Ho) and expected heterozygosity, or gene

diversity (He), were 0.41 and 0.57, respectively, indicating the

presence of population structure (Table 3). Weak but significant

linkage disequilibrium was detected across all eight sub-

populations (rbard = 0.08, P<0.01) (Table 3).

Private alleles (total PA=26) were identified from all eight

subpopulations of C. sanguinolenta. (Table 3). Krobo Gyekiti

(PA=7), Kwahu-Atta n’ Atta (PA=5), Kwahu Pepease (PA=3),

and Hwehwee-Oboyan (PA=3) subpopulations from the eastern

region had the highest number of private alleles per

subpopulations (Table 3). The highest average number of

alleles was found in the eastern region (Hwehwee-

Mempeasem, Kwahu Pepease and Krobo Gyek i t i

subpopulations) compared to Ashanti and Brong-Ahafo

regions (Asuafu-Sekyere and Dromankese-Nkoranza North

subpopulations) (Table 3).
3.2 Population structure and historical
demography

Subpopulations of C. sanguinolenta demonstrated very low

levels of population differentiation (FST=0.05) (Table 2) despite

the distribution of the plant across three different regions in

Ghana. Comparisons among Asuafu-Sekyere West and

Dromankese-Nkoranza North subpopulations resulted in non-

significant pairwise FST values (Table 4). However, significant

values were obtained for the Hwehwee-Mempeasem

subpopulation from the east when compared to the other

seven C. sanguinolenta subpopulations in Ghana (Table 4).
TABLE 2 Diversity indices and gene flow estimates for fifteen microsatellite loci over Cryptolepis sanguinolenta populations.

Locus N AR Ho He FIS FST Nm Pa

Cry007 6 3.70 0.15 0.43 0.60 0.10 2.14 0

Cry011 6 4.06 0.37 0.66 0.40 0.07 3.08 2

Cry015 5 3.46 0.04 0.58 0.94 0.10 2.27 2

Cry018 6 4.36 0.20 0.70 0.71 0.04 6.12 1

Cry021 7 4.28 0.83 0.67 -0.24 0.01 22.75 4

Cry023 6 4.09 0.45 0.47 0.04 0.05 4.85 1

Cry030 7 3.67 0.11 0.45 0.77 0.06 4.22 2

Cry031 6 4.84 0.89 0.68 -0.31 0.02 12.15 0

Cry032 7 4.99 0.97 0.75 -0.33 0.04 6.71 2

Cry036 10 4.01 0.13 0.58 0.79 0.03 7.15 4

Cry037 6 3.60 0.26 0.46 0.45 0.07 3.58 2

Cry044 8 5.32 0.91 0.76 -0.21 0.03 9.14 2

Cry047 6 4.34 0.14 0.46 0.70 0.02 12.30 2

Cry058 6 5.32 0.58 0.71 0.19 0.05 4.62 0

Cry073 9 6.35 0.07 0.67 0.89 0.05 4.85 2

Mean/Total 101 4.43 0.41 0.60 0.36 0.05 7.06 26
frontiersin.
N, number of alleles observed at each locus; AR, Allelic richness corrected for sample size; Ho, observed portion of heterozygotes; He, expected heterozygosity (gene diversity); FIS, coefficient
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Analyses of all other subpopulations resulted in non-significant

FST values (Table 4) except for Kwahu-Abene and Krobo Gyekiti

subpopulation from the eastern region.

The greatest pairwise genetic differentiation was among

Asuafu-Sekyere West and Hwehwee-Mempeasem (FST=0.061;

P<0.001) and Hwehwee-Mempeasem and Krobo Gyekiti

subpopulations (FST=0.060; P<0.001) (Table 4), which could be

biased by differences in sample size among the regions (Table 3;

Table 4). Population structuring is best explained by the presence

of two genetic clusters (K=2), even though we examined delta k

for the presence of three and four genetic clusters (Figure 2).

All cluster groups had representatives of individuals from

the eight subpopulations present, with high levels of admixture

among the individuals in each subpopulation, and no evidence

of geographical structuring (Figure 2). Consistent with the lack

of isolation by distance (P=0.34; r=0.012; Figure 3), our

findings are further supported by the Discriminant Analysis

of Principal Components (DAPC) plot that indicated the

presence of two distinct groups with mixed individuals from

different subpopulation (Figure 4).
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To test whether Isolation by Distance (IBD) occurs on a

smaller scale, C. sanguinolenta individuals were clustered based

on geographical subpopulation assignment and analyzed

separately. Three subpopulations from the eastern region

indicated significant evidence of isolation by distance - Kwahu

Pepease, Kwahu-Atta n’ Atta and Krobo Gyekiti (P<0.05). When

C. sanguinolenta individuals were grouped based on

STRUCTURE findings, the two clusters did not have

significant correlation between genetic and geographic distance

(P=0.06). The UPGMA dendrogram revealed a similar pattern of

two groups and a lack of geographical structuring among the

examined subpopulations (Figure 5).

Two different analyses of molecular variance (AMOVA)

were conducted. The results of the first AMOVA (one

hierarchical grouping), showed that the variation within

subpopulat ions was higher (96 .95%) , than among

subpopulations (3.05%) (Table 5). A similar trend of high

individual variation (74.56%) and relatively lower variation

among subpopulations (25.44%) was obtained after data was

partitioned based on the STRUCTURE results (Table 5).
TABLE 4 Pairwise FST values between eight Cryptolepis sanguinolenta populations.

Subpopulation ASW DNN HM HO KP KA KAA KG
Region Ashanti Brong-Ahafo Eastern Eastern Eastern Eastern Eastern Eastern

ASW 0

DNN 0.021 0

HM 0.061 0.046 0

HO 0.011 0.016 0.053 0

KP 0.022 0.013 0.045 0.017 0

KA 0.035 0.026 0.032 0.023 0.026 0

KAA 0.020 0.018 0.041 0.016 0.025 0.014 0

KG 0.015 0.019 0.060 0.013 0.019 0.032 0.022 0
front
ASW, Asuafu-Sekyere West; DNN, Dromankese-Nkoranza North; HM, Hwehwee-Mempeasem; HO, Hwehwee- Oboyan; KP, Kwahu Pepease; KA, Kwahu-Abene; KAA, Kwahu-Atta n’
Atta; KG, Krobo Gyekiti. Significant FST values based on 10,000 permutations are bolded.
TABLE 3 Genetic diversity estimates for sampled Cryptolepis sanguinolenta individuals averaged across eight subpopulations and 15
microsatellite loci.

Subpopulations Region MLG Na Ne Ho He H AR rbard P value (rbard) P PA

Asuafu-Sekyere West Ashanti 22 4.07 2.49 0.40 0.54 3.09 3.89 0.12 <0.001 100 2

Dromankese-Nkoranza North Brong-Ahafo 20 4.13 2.66 0.38 0.59 3.00 4.02 0.11 <0.001 100 3

Hwehwee-Mempeasem Eastern 23 4.60 2.64 0.45 0.57 3.14 4.30 0.08 <0.001 100 2

Hwehwee-Oboyan Eastern 24 4.20 2.52 0.40 0.54 3.18 4.00 0.11 <0.001 100 3

Kwahu Pepease Eastern 23 4.60 2.67 0.40 0.58 3.14 4.25 0.11 <0.001 100 3

Kwahu-Abene Eastern 17 4.47 2.72 0.47 0.6 2.83 4.41 0.12 <0.001 100 1

Kwahu-Atta n’ Atta Eastern 21 4.27 2.53 0.38 0.58 3.04 4.10 0.09 <0.001 100 5

Krobo Gyekiti Eastern 29 4.67 2.56 0.36 0.56 3.37 4.21 0.07 <0.001 100 7

Mean/Total 22 4.38 2.60 0.41 0.57 3.10 4.15 0.08 <0.001 100 26
iersin.
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4 Discussion

The large-scale use of artemisinin since its initial discovery

in the early 1970s, has resulted in worldwide drug resistance

prompting a switch in strategy to artemisinin-based

combination therapy (ACT) in 2005 (Tu, 2011; WHO, 2020).

The problem is further compounded by the increased resistance

of malaria vectors to many insecticides currently available

(Balkew et al., 2012; Massebo et al., 2013), which are cost-

prohibitive on a large-scale and unsustainable in the long term.

According to reports from WHO (WHO, 2015), artemisinin-

based combination therapy (ACTs) had been adopted as a first-

line treatment policy in several countries but may not be readily

available in rural, remote and poverty-stricken communities of

Western Africa, including Ghana. As a result, in Ghana, Mali,

Zambia and Nigeria, traditional medicine approach is practiced

with 60% of children who reported high fever resulting from

malaria infection (Abdullahi, 2011).
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People living in developing countries have limited access to

modern medicine and sophisticated treatments (Reed and

Frankham, 2003), thus often relying on medicinal plants that

offer an alternative, cost-effective, and freely available traditional

approach for malaria control (Turkson et al., 2019). In some

areas, the traditional medicine approach is the only source of

medical care available (Romero-Daza, 2002; Abdullahi, 2011).

Based on African Health Monitor Report in 2003, there is one

healer for every 500 individuals vs. one medical doctor for every

40,000 patients in Africa; for Ghana, there is one healer for every

200 individuals vs. one medical doctor for every 20,000 patients

(Chatora, 2003; Abdullahi, 2011; WHO, 2014). These staggering

numbers, combined with the fact that the majority of doctors

reside in urban areas, stress the importance of traditional healers

and indigenous plants in treatments of communities in rural

Africa. The healers, also known as traditional doctors, approach

the patients holistically, treating not only the given condition but

restoring the social, emotional, and spiritual equilibrium of their
FIGURE 2

STRUCTURE bar plot for eight Cryptolepis sanguinolenta subpopulations showing results for (K=2-4). Each bar indicates the individual
assignment probability of that individual belonging to one of the clusters indicated by different colors, based on twenty iterations. Evanno’s
method indicated that two genetic clusters (K = 2) best explain the population structure in this species. Population designations are ASW,
Asuafu-Sekyere West; DNN, Dromankese-Nkoranza North; HM, Hwehwee-Mempeasem; HO, Hwehwee-Oboyan; KP, Kwahu Pepease;
KA, Kwahu-Abene; KAA, Kwahu-Atta n’ Atta; KG, Krobo Gyekiti.
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patients based on community history and customs (Hillenbrand,

2006; Abdullahi, 2011).

Traditional African knowledge of indigenous plants have

been utilized for healing and treating various ailments, including

malaria, for centuries. Preservation and conservation of these

nearly lost species is imperative, and documentation of

alternative medicine applications and approaches used by

traditional healers as an ancient and culture-bound method of

healing for centuries should be prioritized (Abdullahi, 2011;

Veeresham, 2012). These plants are largely understudied, and

very limited financial and technological resources are available

for research related to drug development in these countries

(Reed and Frankham, 2003). Indigenous C. sanguinolenta

contains not only antimalarial, anti-cancer, antihyperglycemic,

antimicrobial, and antimycobacterial properties, but can be

utilized to promote sustainable and climate-smart agro-

ecosystems across West Africa. This, in turn, would allow

sustainable commercialization of this plant as a cash crop

across its native distribution, thus providing farmers with

additional income while preventing destructive collection.

Despite overharvesting and near extinction of these indigenous

plants, our findings provided evidence of high genetic diversity

amongC. sanguinolenta subpopulations acrossGhana. In declining

and isolated populations unable to respond to a variety of selection
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pressures, genetic variation can be reduced rapidly as a result of the

limited number of individuals and inbreeding within the

populations that are often driven by random genetic drift

(Ellstrand and Elam, 1993; Hawley et al., 2006; Luan et al., 2006).

This can further decrease species fitness, prospects for adaptive

change, ultimately causing species extinction (Fischer andMatthies,

1998; Severns, 2003; Hawley et al., 2006; Hadziabdic, 2010).

However, this is the first comprehensive study focusing on the

population genetic and spatial structure of this medicinal plant,

thus we can expect these individuals to be somewhat resistant to

apparent population bottleneck and genetic drift effects, at least in

the short term. Long term monitoring, better propagation systems,

and selective breeding processes are necessary for better informed

conservation efforts.

Our results indicated the presence of a weak population

structure low genetic differentiation, and high gene flow among

wild C. sanguinolenta subpopulations. Findings from this study can

be attributed to the specialized wind dispersal mechanism of C.

sanguinolenta seeds over long distances, as the main factor affecting

variation in gene flow and population structure similarly reported in

Cecropia obtusifolia (Epperson andAlvarez-Buylla, 1997), and some

woody plant species (Hamrick et al., 1992), and thus providing

long-term potential for the conservation of C. sanguinolenta. Gene

flow is a directional transfer of genetic material across populations
FIGURE 3

Pairwise genetic and geographical distances of 179 Cryptolepis sanguinolenta samples collected from 8 subpopulations in Ghana displayed as a scatterplot.
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as a result of seed dispersal over a period of time and in some tree

and shrub species, it is positively correlated with the direction of

wind flows and rates (Kling and Ackerly, 2021). The signal of a

weak population structure could be due to high gene flow in the

species as reported by Waples (1998), since gene flow is known to

be the predominant evolutionary force for the genetic structure

(Garcıá-Verdugo et al., 2010). The unlimited gene flow and low

magnitude of genetic differentiation observedcould be attributed to

the relatively larger genetic neighbourhood and sampling size.

According to Franceschinelli and Kesseli (1999), the relative

magnitude of genetic differentiation is directly influenced by the

size of the sampling area such that genetic differentiation increased

with decreased sample plots in Helicteres brevispira.

In a large genetic neighbourhood, proposed by Wright

(Wright, 1943; Wright, 1946), uniform selection pressures may

limit differentiation among individuals. Alternatively, local
Frontiers in Conservation Science 10
differences and a relatively slow dispersal process of new

alleles in these smaller geographical areas may increase

differentiation between the groups (Wright, 1943; Wright,

1946). The presence of a contiguous genetic neighbourhood in

C. sanguinolenta subpopulations in the present study is

supported by STRUCTURE findings and indicated the

presence of two distinct genetic clusters and extensive

admixture as a result of gene flow. The high gene flow found

in our study indicates that the effective population size of current

C. sanguinolenta wild plants may be sufficient to offset the

impact of population decline and the effect it has on genetic

diversity. Similar to findings by Ratnaningrum et al. (2017),

larger gene flow was found to be the main emphasis for natural

genetical processes in Santalum album population.

The Mantel test revealed no correlation between Bruvo’s

distance and geographic distance suggesting that genetic
FIGURE 4

Discriminant Analysis of Principal Components (DAPC) plot of Cryptolepis sanguinolenta individuals across eight subpopulations in Ghana. Data
was constructed using 1,000 permutations. Discriminant Analysis eigenvalues are also presented.
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differentiation in the 8 subpopulations is not caused by

geographic isolation due to distance. A possible explanation

for the absence of the influence of isolation distance on genetic

diversity could be due to high gene flow, sexual reproduction,

and wind dispersal of seeds in C. sanguinolenta. The results of

the Mantel test are similar to findings in Miscanthus,M. sinensis

(Nie et al., 2014; Zhao et al., 2017).

These findings have practical implications for the

conservation of C. sanguinolenta. First, the absence of
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geographic dis tance on genet ic d i ff erent ia t ion in

C. sanguinolenta subpopulations, suggests that sampling from

one geographic area could help cover a significant proportion of

the genetic diversity in C. sanguinolenta. We recommend a

protection strategy as follows: 1) protection of the plants in

the Kwahu-Abene area, and 2) scaling-up the sampling to other

C. sanguinolenta populations with high genetic diversity such as

Hwehwee-Mempeasem, Hwehwee-Oboyan, Kwahu Pepease,

and Asuafu-Sekyere West. In addition, ex situ conservation by
FIGURE 5

An unweighted pair group method with arithmetic mean (UPGMA) dendrogram of Cryptolepis sanguinolenta populations using 15 polymorphic
microsatellite primers based on Bruvo’s genetic distance. Numbers indicate the percentage of bootstrap support using 1,000 replications
(threshold set at 50%).
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encouraging the cultivation of C. sanguinolenta among

smallholder farmers should be explored to ensure its

availability in the needed quantities, thus contributing to a

decrease in the harvest volumes from the wild, as a way of

conserving the species in situ.
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