
Frontiers in Computer Science 01 frontiersin.org

Binary and multiclass malware
classification of windows portable
executable using classic machine
learning and deep learning
Moeiz Miraoui 1* and Mohamed Ben Belgacem 2

1 Department of Computer Studies, Arab Open University, Riyadh, Saudi Arabia, 2 Department of
Computer Sciences, ISSAT, University of Gafsa, Gafsa, Tunisia

Cybersecurity has become a significant concern in recent decades. Enhancing
cybersecurity and safeguarding important information systems are essential in today’s
world. It is now one of the most important challenges in the realm of IT. Malware
has become a significant issue in the modern digital age. The primary objectives
of malware are to disrupt, harm, or impair computer systems and information
systems without the user’s consent or awareness. Currently, malwares are viewed
as some of the most prevalent cyber threats. The prevalence of Windows operating
system has made it a prime target for malware attacks. PE (Portable Executable) is
the standard file format for executable files and DLLs on Windows systems, with
PE malware being the most common form of malicious software. Static analysis,
which is mainly a signature-based method for detecting malware, can only identify
already known malware. The main weakness of this approach is its struggle with
obfuscation, such as encryption and packing. The use of machine learning methods
has demonstrated significant potential in the field of malware detection and is
an emerging field with many opportunities. Most previous works focus on binary
classification, limited number of ML algorithms and even a single dataset. In this
paper, we present both a binary and multiclass PE malware classification using four
classic machine learning algorithms and four deep learning algorithms. We have
applied this algorithm on three publicly available datasets and deduced the best
algorithm depending on the number of features and dataset size.

KEYWORDS

malware, PE file, machine learning, deep learning, classification

1 Introduction

Protecting computer systems and information systems from malware has become one of
the most challenging and complex tasks in cyber security. With the proliferation of the Internet,
the impact of malware has become dangerous and cannot be ignored. Attackers use malware
to compromise computers, steal confidential information and can cause inflict substantial
financial harm. The Windows operating system is the most popular operating system globally,
making it a prime target for malicious software. AV-TEST Institute reported that by the end of
May 2024, there were 49,582,654 newly discovered malwares, with over 85% of them designed
to attack the Windows operating system as opposed to Android, Linux, or MacOS. Moreover,
almost 90% of these malwares were specifically targeting executable files instead of archive, data,
HTML, or other file formats (AV-TEST, 2024). The file format used for executables, DLLs,
object code, and other files in the Windows operating system is known as the portable
executable (PE) format. This format is used in both 32-bit and 64-bit versions of Windows. The
PE file format serves as a data structure that provides the necessary information for the

OPEN ACCESS

EDITED BY

Eduard Babulak,
National Science Foundation (NSF),
United States

REVIEWED BY

Jorge E. López De Vergara,
Autonomous University of Madrid, Spain
Subbiah Pillai Neelakanta Pillai,
Amal Jyothi College of Engineering, India

*CORRESPONDENCE

Moeiz Miraoui
 m.miraoui@arabou.edu.sa

RECEIVED 04 December 2024
ACCEPTED 20 February 2025
PUBLISHED 06 March 2025

CITATION

Miraoui M and Belgacem MB (2025) Binary
and multiclass malware classification of
windows portable executable using classic
machine learning and deep learning.
Front. Comput. Sci. 7:1539519.
doi: 10.3389/fcomp.2025.1539519

COPYRIGHT

© 2025 Miraoui and Belgacem. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 06 March 2025
DOI 10.3389/fcomp.2025.1539519

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1539519&domain=pdf&date_stamp=2025-03-06
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1539519/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1539519/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1539519/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1539519/full
mailto:m.miraoui@arabou.edu.sa
https://doi.org/10.3389/fcomp.2025.1539519
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1539519

Miraoui and Belgacem 10.3389/fcomp.2025.1539519

Frontiers in Computer Science 02 frontiersin.org

Windows OS loader to handle the enclosed executable code. A PE file
infector is a type of malware that spreads by adding or enclosing
malicious code within other PE files on a compromised system.
Malware detection techniques are mainly categorized into two types:
signature-based (static) and behavior-based (dynamic) methods.
Signature-based detection involves comparing code signatures against
a database of known malicious signatures without executing the code,
providing efficient detection of known malware. However, this
approach is limited in detecting zero-day malware and polymorphic
malwares, as well as facing issues with the exponential increase in the
size of the signatures database affecting matching time. On the other
hand, dynamic malware analysis requires executing malware code in a
controlled environment to observe its system interactions. Despite
being computationally expensive, dynamic analysis does not cover all
possible execution paths. In recent years, there has been a significant
focus on utilizing machine learning for detecting malware, particularly
the supervised learning technique. Machine learning algorithms
leverage the efficiency and speed of static malware analysis, requiring
fewer computational resources than dynamic analysis. These
algorithms are able to differentiate between malware and legitimate
files by analyzing the properties of PE headers.

Several ML-based methods for detecting malware have been
introduced, but some of them only utilized binary classification
(malware or benign). These methods typically employed either classic
ML algorithms or deep learning algorithms, but rarely compared the
outcomes of both. Furthermore, they did not test the algorithms across
various datasets. In this paper, we present a machine learning-based
method for detecting malware in PE files. We utilized binary and
multiclass classification, employing a variety of classic machine
learning algorithms such as random forest, SVM, ANN, and Naive
Bayes, as well as deep learning algorithms like CNN, RNN, LSTM, and
CNN-LSTM. Our approach involved testing these algorithms on
multiple publicly available datasets with different characteristics related
to the number of features, dimensionality and to evaluate the outcomes.

The rest of this paper is structured in the following manner: a
review of previous work in section two. Section three provides an
overview of the PE file format. Sections four and five explain the
different stages of the ML-based malware detection process used for
both binary and multiclass classification. Section six present a
discussion about the obtained results and in the final section seven,
we present our conclusion and future work.

2 Related work

The use of machine learning techniques for PE malware detection
is not a new concept as several approaches and methods have been
proposed in the literature. Merabet and Hajraoui (2019) examined and
reviewed several methods for feature extraction and selection used in
previous machine learning based malware detectors and evaluated
classification methods used. They were interested in the accuracy rate
of each one of the previous classifiers. They concluded that a deep
learning approach could lead to a smart anti-malware program. Yanfang
et al. (2017) provided a complete survey on malware detection
techniques using machine learning. They mentioned that the
performance of a malware detection system depends greatly on the
extracted features and the methods for classification/clustering. For the
task of feature extraction, they suggested using static analysis as first
step, since over 80% of the file sample collection can be well-represented

by static features. Then use dynamic analysis. In addition, they discussed
issues and challenges of malware detection using machine learning
techniques and forecast the trends of malware development.

Raff et al. (2017) applied two different types of neural networks
for malware detection and feature learning. They restricted to the
minimum domain knowledge for the extraction a portion of the PE
header without explicit feature construction. An automatic feature
extraction was done based using n-grams features vector which used
an Elastic-Net regularized Logistic Regression classifier. They claimed
that their model was able to match and even surpass the performance
of a domain knowledge approach. Kumar et al. (2017) proposed a
static analysis technique for the detection of malicious PE file. Their
approach consists of using an integrated feature set created from raw
and derived features, based on different header fields’ values of PE file.
They claimed that their method could improve the classification
accuracy of machine learning classifiers. They used various machine
learning algorithms and provided a performance comparison of each
classifier. Gibert et al. (2020) presented an interesting review of the
most recent machine learning techniques used in malware
classification. Their paper provided a basic background in malware
analysis with a brief description of the process and tools used in
malware detection and classification.

Radwan (2019) used a static analysis method for malware
detection by deriving some new features to increase the accuracy and
improve the robustness of their classifier. He has used a dataset
containing 5,184 samples with 2,683 malware and 2,501 benign to
test his classifier. He applied seven machine learning algorithms for
the classification and found that the performance of Random Forest
is the highest among them. Varma and Narasimharao (2022) used a
dataset of 138,047 sample of malware and benign files each has 57 PE
attributes where they selected 13 most significant features. They used
six different classic Machine learning algorithms and come up with a
classification accuracy of 99.4% as they claimed in their paper.
Rakesh Kumar (2022) selected a dataset containing 138,047 samples
of PE files of which 27,610 were classified as benign and 110,432 as
malicious. He used four classic machine learning algorithms namely
AdaBoost, Random Forest, Gradient Boosting and Ensemble
Algorithm and two deep learning algorithms: CNN and a
combination of CNN and LSTM algorithms. He found that gradient
boosting performed the best of classic ML and that CNN + LSTM
gave better results than using just CNN. Yousuf et al. (2023) proposed
a static Portable Executable (PE) malware analysis system based on
seven classic machine learning models, three ensemble learning
techniques and two dimensionality reduction techniques. They used
a dataset of 27,920 samples divided into six categories and 1878
benign files. They concluded that combining the PE Header and the
PE Section provides the highest accuracy and lowest error rate.

Azmee et al. (2020) compared accuracy of nine classic machine
learning classifiers for the detection of PE malware files and showed
that XG- Boost achieved the highest accuracy. They used a dataset of
19,611 sample collected from Microsoft Kaggle where ach sample has
79 features. They also applied the PCA (Principal Component Analysis)
dimension reduction technique and used standard scalar for dataset
standardization. Connors and Sarkar (2022) used the well-known large
dataset EMBER [The Elastic Malware Benchmark for Empowering
Researchers dataset (AV-TEST, 2024)] to evaluate features of PE files
by applying common classic machine learning techniques for malware
detection. They concluded that ANN-based classifier outperformed
other used classifiers. Jhansi Priya et al. (2024) combined CNN and

https://doi.org/10.3389/fcomp.2025.1539519
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Miraoui and Belgacem 10.3389/fcomp.2025.1539519

Frontiers in Computer Science 03 frontiersin.org

LSTM networks with YARA rule-based for PE malware detection. They
used the windows malware dataset containing PE Header of malware
samples having different features and a second dataset of grayscale
images of only malware PE files (25 families of malware images) and a
benign dataset consisting of 3,000 benign images. Sumit and Amol
(2022) proposed a static analysis of malware by extracting the features
from the PE files using a deep learning algorithm. They emphasized the
importance of feature extraction and reducing the feature space and
applied their approach to the EMBER dataset Hyrum and Phil (2018)
with nearly 600,000 samples of PE files. They claimed that their model
achieved 98.85% accuracy.

Ayofe et al. (2021) proposed an ensemble learning-based
framework fully connected dense ANN and 1-D CNN as first-stage
classifiers and employed five classic machine learning algorithms as
end-stage classification. They also used principal component analysis
(PCA) for dimensionality reduction. They used a publicly available
dataset containing malicious and benign program data from Windows
Portable Executable (PE) files having 19,611 samples each has 77
features. They found that ExtraTrees classifier achieved the best
accuracy when used as a final stage. Manavi and Hamzeh (2021) used
the long short-term memory (LSTM) network to detect one type of
malware, namely ransomware by analyzing the header of executable
files and they achieved a detection accuracy of 93.25%. Al-Khshali
et al. (2024) proposed the use of adapting subspace learning-based
One-Class Classification (OCC) methods for detecting malware
namely One-Class Support Vector Machine (OCSVM) and Support
Vector Data Description (SVDD). They employed three publicly
available datasets from Kaggle where the first contains 19,611 sample
each with 77 features, the second contains 5,910 samples each with 69
samples and the last contains 43,293 samples each with 4 features.
They come up with a True Positive Rate (TPR) of 100%.

Louk and Bayu (2022) compared and evaluated the performance
of various tree-based classifiers in detecting PE malware. They used
four tree-based ensemble techniques namely XGBoost, CatBoost,
GBM, and LightGBM and trained their models on three different

datasets. They concluded that their approach outperforms existing
ML-based PE malware detectors. Ayofe et al. (2021) proposed an
ensemble learning-based method for PE malware detection where the
first-stage classifiers are composed of neural networks and examined
15 machine learning models as a final-stage classifier. They used five
different machine learning algorithms as base models for comparison.
The publicly available data set used was composed of 19,611 samples
each with 77 features. They also applied principal component analysis
(PCA) for dimensionality reduction. They found that fully connected
dense ANN and 1-D CNN models with ExtraTrees as a final-stage
classifier achieved the best accuracy.

In summary, previous works did not use a variety of data sets with
different number of features and different dimensionalities. They used
either classic machine learning algorithms or deep learning algorithms
but not both to investigate which approach gave better results. Most
previous works used one kind of classic ML algorithms or deep
learning algorithms. In addition, the malware classification was
restricted to a binary classification or limited to one type of malwares.

3 Structure of a windows portable
executable (PE) file

PE (Portable Executable) file format is a data structure used in
32-bits and 64-bits Windows operating systems that encapsulates the
information needed by the Windows OS loader to be able to load that
executable into memory and execute it. It is a file format for basically
executables (.exe) and dynamic link library (.dll). This includes
dynamic library references for linking, API export, import tables,
resource management data, and thread-local storage (TLS) data.

The basic structure of PE file contains two main parts: the header
and the sections as shown in Figure 1. The header part includes the
following sections: (1) Dos header and Dos stub for compatibility
purpose only, the former checks whether the file is valid PE file or not
and the letter prints an error message saying that the program cannot

FIGURE 1

Basic structure of PE file.

https://doi.org/10.3389/fcomp.2025.1539519
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Miraoui and Belgacem 10.3389/fcomp.2025.1539519

Frontiers in Computer Science 04 frontiersin.org

FIGURE 2

Overview of the proposed malware detection framework.

be run on windows. (2) The PE header section which contains
information about the file and made-up of three main components:
the signature which identifies the file as a PE file, the file header
which contains relevant information about the file and the optional
section which provides important information to the OS loader. The
last part of the header is the section table which contains information
about the section it refers to. The second part of a PE file is the
sections part which contains several sections, each one with its own
purpose. These sections are where the actual contents of the file are
stored. Among these sections we can find .text, .data, .rdata, .pdate,
.rsrc, .reloc etc. Analyzing and studying features of PE header files
leads to better comprehension of the file type and helps a lot in
differentiating benign files from malware ones.

4 Binary malware classification

4.1 Datasets

For binary classification, we used two publicly available datasets
that have different sizes and different number of features to check the
accuracy of our model on different datasets. Table 1 shows the
characteristics of each dataset.

4.2 Methodology

We followed the steps included in a typical machine learning project.
Figure 2 depicts the stages involved in our malware detection framework.

The first step of the cycle consists of data preprocessing to ensure
the dataset is balanced, we need to make sure that the number of
samples in each class (benign and malware) is approximately equal.
This is important for training machine learning models. Then, we need
to drop the useless features we do not such as the hash, name, etc. For
the feature selection step, we need to calculate the importance of each
feature and select the most important features and for this end we have
used the tree-base feature selection algorithm. We then split the dataset
into training (80%) and testing (20%) sets. The training set will be used
to train the model, while the testing set will assess its performance on
unseen data. This is an essential step in machine learning, as it helps us
evaluate the performance of our model. During the next step, we have
chosen eight machine learning algorithms for the file classification
among them four classic machine learning algorithms namely SVM,
Naive Bayes, Random Forest and Neural network and four deep
learning algorithms namely CNN, RNN, LSTM and CNN + LSTM.

Finally, we evaluated our model using most known metrics
such as:

 • Accuracy = (TP + TN)/(TP + TN + FP + FN)
 • Precision = TP/(TP + FP)
 • Recall = TP/(TP + FN)
 • F1-Score = 2*(precision*recall)/(precision + recall)

Where.
TP: True positive, TN: True negative, FP: False positive and FN:

False negative.
In addition, we used the confusion matrix to visualize and

summarizes the performance of each classification algorithm.

4.3 Results

Table 2 summarizes the evaluation of malware detection models
using both classic machine learning algorithms and deep learning
algorithms on the two datasets and Figure 3 shows the accuracy of

TABLE 1 Description of datasets used for binary classification.

Title Dataset 1 Dataset 2

Content PE files dataset labeled as

either malware or benign.

PE files dataset labeled as

either malware or benign.

File format CSV format CSV format

Data size 138,047 19,611

Number of Features 57 78

Target feature Value of 1 indicate a

benign file and 0 indicate

the malware file

Value of 1 indicate a benign

file and 0 indicate the

malware file

Distribution 96,724 malware files

41,323 benign files

14,599 malware files

5,012 benign files

References Jayanth (2024) Mauricio (2024)

https://doi.org/10.3389/fcomp.2025.1539519
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Miraoui and Belgacem 10.3389/fcomp.2025.1539519

Frontiers in Computer Science 05 frontiersin.org

each algorithm on dataset 1, dataset 2 and dataset 3. Figure 4 shows
the confusion matrices of the best classic machine learning algorithm
(Random Forest) and Figure 5 shows the confusion matrices of the
best deep learning algorithm (LSTM).

5 Multiclass malware classification

5.1 Datasets

For multiclass classification, we used one publicly available dataset
containing 6 types of malwares in addition to benign ones, each has
54 features. The total size of the dataset is 29,807 samples. Table 3
shows the characteristics of the dataset.

5.2 Methodology

We followed the same steps as the classic machine learning
approach except the phase of feature selection which is omitted
because deep learning algorithms achieve such task automatically.

6 Results

Table 4 summarizes the evaluation of malware detection models
using both classic machine learning algorithms and deep learning
algorithms on the selected dataset and Figure 6 shows the accuracy of
each algorithm on dataset 3. Figure 7 shows the confusion matrices of
the best classic machine learning algorithm (Random Forest) and

TABLE 2 Evaluation of binary classification.

Algorithm Dataset Accuracy Precision Recall F1-Score

SVM 1 0.4971 0.4971 1 0.0002

2 0.7381 0.6708 0.9243 0.7774

Random Forest 1 0.9926 0.9905 0.9946 0.9925

2 0.9875 0.9814 0.994 0.9877

Naive Bayes 1 0.5048 1 0.0001 0.0002

2 0.7067 0.64861 0.9192 0.7605

ANN 1 0.9584 0.98 0.9347 0.9568

2 0.8827 0.8864 0.8889 0.8877

CNN 1 0.9928 0.9902 0.9953 0.9927

2 0.9735 0.9667 0.984 0.9753

RNN 1 0.9854 0.9834 0.9872 0.9853

2 0.971 0.9564 0.9882 0.972

LSTM 1 0.9883 0.9856 0.9915 0.9885

2 0.97 0.97 0.97 0.97

CNN + LSTM 1 0.9913 0.9899 0.9926 0.9913

2 0.9765 0.9764 0.9774 0.9769

FIGURE 3

Accuracy of each algorithm on dataset 1, dataset 2, and dataset 3.

https://doi.org/10.3389/fcomp.2025.1539519
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Miraoui and Belgacem 10.3389/fcomp.2025.1539519

Frontiers in Computer Science 06 frontiersin.org

FIGURE 5

Confusion matrices of deep learning CNN and CNN-LSTM.

Figure 8 shows the confusion matrices of the best deep learning
algorithms (CNN + LSTM).

7 Discussion

The aim of this work is the classification of windows PE files into
malwares or benign ones using machine learning techniques. In
addition to the variety of algorithms used for the classification,
we tested our approach on three publicly available datasets having
different characteristics. The two datasets used in binary classification
have different number of features (high, low) and different size (high,
low) as shown in Figure 9. The dataset used for testing the multiclass
classification has six classes of malwares and one benign as in
Figure 10.

In the case of binary classification, the number of features is very
important in the classification process and the higher dimensionality
introduces more noise and complexity, making it harder for the model
to discern relevant patterns. Random forest gave the best results among
classic machine learning algorithms. In contrast, the high dimensionality
of the dataset has a greater impact on the classification accuracy
compared to the number of features in case of deep learning. The best
results were obtained using CNN and CNN-LSTM algorithms. Both
types of ML techniques achieve good results in the case of binary
classification, but the deep learning algorithms perform better in general.

In the case of multiclass classification, having fewer classes
generally simplifies the classification task, as the model needs to
differentiate between fewer categories. When using classic machine
learning algorithms, the best results were obtained using either
random forest or ANN while the Naive Bayes and SVM classifiers

FIGURE 4

Confusion matrices of ML classic random forest.

https://doi.org/10.3389/fcomp.2025.1539519
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Miraoui and Belgacem 10.3389/fcomp.2025.1539519

Frontiers in Computer Science 07 frontiersin.org

achieved the worst results. All the deep learning algorithms perform
good with almost similar results however the CNN-LSTM algorithm
provided the best classification accuracy. None of the two types of ML
algorithms was able to achieve more than 90% of accuracy.

Dataset 1 was used by Varma and Narasimharao (2022) for
detection of malware using seven supervised ML algorithms

(Decision Trees, Random Forest, GradientBoosting, AdaBoost,
Gaussian Naive Bayes, Linear Regression) where two of them are
present in our work: random forest with achieved accuracy 0.99 same
as in our work and Gaussian Naive Bayes with achieved accuracy 0.7
(in our work it is 0.5 after data balancing and selection of important
features). It was also used in Siregar et al. (2023) with just one
algorithm namely Back Propagation Neural Network (BPNN) with
Hyperparameter Variations not really similar to our work. The best
configuration achieved 0.98 of accuracy. Another use of the dataset 1
use was by Del Aguila et al. (2024) where authors used it on three
supervised ML algorithms: artificial neural networks (ANN), support
vector machines (SVMs), and gradient boosting machines (GBMs)
where two of them are present in our work: ANN with achieved
accuracy 0.94 (in our work it is 0.95 after data balancing and selection
of important features) and SVM with achieved accuracy 0.91 (in our
work it is 0.49 after data balancing and selection of important features).

Dataset 2 was used previously in Alqahtani et al. (2023) where
authors made use of 1D-CNN with different hyperparameters, and
authors achieved almost the same results as our work. Another use of

TABLE 3 Description of dataset used for multiclass classification.

Title Dataset 3

Content PE files dataset of 6 malware types and one benign

File format CSV format

Data size 29,807

Number of features 54

0: benign file

Target feature 1: RedLineStealer

2: Downloader

3: RAT

4: BankingTrojan

5: SnakeKeyLogger

6: Spyware.

Distribution 1877 benign

5,047 RedLineStealer

4,864 Downloader

4,973 RAT

5,104 BankingTrojan

4,236 SnakeKeyLogger

3,706 Spyware

Reference Joe Beach (2024)

TABLE 4 Evaluation of multi-class classification.

Algorithm Accuracy Precision Recall F1-Score

SVM 0.5098 0.5029 0.5098 0.4709

Random Forest 0.8876 0.8915 0.8876 0.8888

Naive Bayes 0.4188 0.5693 0.4188 0.3647

ANN 0.8108 0.8219 0.8108 0.8138

CNN 0.7913 0.8071 0.7913 0.7962

RNN 0.778 0.7882 0.778 0.7802

LSTM 0.7643 0.7744 0.7643 0.7676

CNN + LSTM 0.8124 0.8244 0.8124 0.8164

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Al
go

rit
hm

 sc
or

e

0.9

1

Accuracy

FIGURE 6

Accuracy of each algorithm on dataset 3.

https://doi.org/10.3389/fcomp.2025.1539519
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Miraoui and Belgacem 10.3389/fcomp.2025.1539519

Frontiers in Computer Science 08 frontiersin.org

FIGURE 8

Confusion matrices CNN + LSTM (best deep learning algorithm).

FIGURE 7

Confusion matrices of random forest (best classic ML).

https://doi.org/10.3389/fcomp.2025.1539519
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Miraoui and Belgacem 10.3389/fcomp.2025.1539519

Frontiers in Computer Science 09 frontiersin.org

this dataset can be found in Paza et al. (2022) where the dataset was
used mainly with the Gradient Boosting algorithm.

Dataset 3 was used in Yousuf et al. (2023) with seven classic
machine learning models: gradient boosting, decision tree, random
forest, support vector machine, K-nearest neighbor, naive Bayes, and
nearest centroid, and three ensemble learning techniques including
Majority Voting, Stack Generalization, and AdaBoost to classify the
malware. Three of these algorithms were used in our work and
achieved better results than ours. This dataset was also used in
Baghirov (2024) where seven ML models are evaluated on both
binary and multiclass classification tasks before and after applying
Principal Component Analysis (PCA). They achieved better results
for binary classification and lower results for multiclass classification.

8 Conclusion

Due to the increase in the types of malwares and the number
of malicious activities, the demand and need for effective malware
detectors to protect against zero-day attacks has increased. Our
main goal was to develop and analyze a machine learning system
that can detect as many malwares as possible using binary and
multiclass classification. We applied both classic machine learning
and deep learning algorithms to different publicly available
datasets. In the case of binary classification, both machine learning
techniques performed good and the best results were obtained
when using random forest, CNN and CNN-LSTM. In the case of
multiclass classification, the deep learning algorithms performed

FIGURE 9

Characteristics of datasets used in binary classification.

FIGURE 10

Characteristics of datasets used in multiclass classification.

https://doi.org/10.3389/fcomp.2025.1539519
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Miraoui and Belgacem 10.3389/fcomp.2025.1539519

Frontiers in Computer Science 10 frontiersin.org

generally better than classic machine learning algorithms however
with a good configuration of classic machine learning hyper-
parameters, these algorithms can achieve better results than deep
learning. A final word would be to encourage the use of classic
machine learning algorithms when detecting windows PE malware
files and there is no raison to use deep learning in such a
task as the same result or better can be obtained with less
computational resources.

Our future work consists of focusing on the algorithms that gave
the best classification results and try to refine the process further or
combine the best algorithms to obtain better results and detect
zero-day attacks.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found at: https://www.kaggle.com/.

Author contributions

MM: Conceptualization, Formal analysis, Methodology, Writing –
review & editing. MB: Data curation, Investigation, Visualization,
Writing – review & editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Generative AI was used in the creation
of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References
Al-Khshali, H. H., Ilyas, M., Sohrab, F., and Gabbouj, M. (2024). Malware detection

with subspace learning-based one-class classification. IEEE Access 12, 81017–81029. doi:
10.1109/ACCESS.2024.3409937

Alqahtani, A., Azzony, S., Alsharafi, L., and Alaseri, M. (2023). Web-based malware
detection system using convolutional neural network. Digital 3, 273–285. doi:
10.3390/digital3030017

AV-TEST. (2024). Available online at: https://portal.av-atlas.org/malware/statistics
(Accessed May 30, 2024).

Ayofe, A. N., Odufuwa, O. E., Misra, S., Oluranti, J., and Damaševicˇius, R. (2021).
Windows PE malware detection using ensemble learning. Informatics 8:10. doi:
10.3390/informatics8010010

Azmee, A. B. M. A., Choudhury, P. P., Alam, M. D., Dutta, O., and Hossain, M. (2020). I:
performance analysis of machine learning classifiers for detecting PE malware. Int. J. Adv.
Comput. Sci. Appl. 11, 510–517. doi: 10.14569/IJACSA.2020.0110163

Baghirov, E. (2024). Advanced machine learning and interpretability for windows
malware detection. Journal of Modern Technology and Engineering 9, 165–177. doi:
10.62476/jmte93165

Connors, C., and Sarkar, D. (2022). Machine learning for detecting malware in PE
files. doi: 10.48550/arXiv.2212.13988

Del Aguila, B. R., Pérez, C. D. C., Silva-Trujillo, A., Cuevas-Tello, G. C., and
Nunez-Varela, J. (2024). Static malware analysis using low-parameter machine learning
models. Computers 13:59. doi: 10.3390/computers13030059

Gibert, D., Mateu, C., and Planes, J. (2020). The rise of machine learning for detection
and classification of malware: research developments, trends and challenges. J. Netw.
Comput. Appl. 153:102526. doi: 10.1016/j.jnca.2019.102526

Hyrum, S.A., and Phil, R. (2018), EMBER: an open dataset for training static PE
malware machine learning models. arXiv:1804.04637.

Jhansi Priya, S., Sadiq, A., Akanksh, Pn., Dhruva, S. K., and Sudhamani, M. V. (2024).
Malware Detec- tion and classification in portable executable files using deep learning
methods. Int. J. Eng. Res. Technol. 13. doi: 10.17577/IJERTV13IS040270

Jayanth, D. (2024). Available online at: https://www.kaggle.com/datasets/
dasarijayanth/pe-header-data (Accessed April 15, 2024).

Joe Beach, C. (2024). Available online at: https://www.kaggle.com/datasets/
joebeachcapital/windowsmalwares?select=PE_Header.csv (Accessed May 20, 2024).

Kumar, B. S. R. (2022). Detection of PE malware files using machine learning and deep
learning techniques. Int. J. All Res. Educ. Scientific Methods 10, 1269–1277.

Kumar, A., Kuppusamy, K.S., and Aghila, G. (2017), “A learning model to detect ma-
liciousness of portable executable using integrated feature set”, Journal of King Saud
University - Computer and Information Sciences.

Louk, M. H. L., and Bayu, A. T. (2022). Tree-based classifier ensembles for PE malware
analysis: a performance revisit. Algorithms 15:332. doi: 10.3390/a15090332

Manavi, F., and Hamzeh, A. (2021). Static detection of ransomware using LSTM
network and PE header. Proc. 26th Int. Comput. Conf., Comput. Soc. Iran, 1–5.

Mauricio, A. (2024). Available online at: https://www.kaggle.com/datasets/amauricio/
pe-files-malwares/data (Accessed May 15, 2024).

Merabet, H. E., and Hajraoui, A. (2019). “A survey of malware detection techniques
based on machine learning”, IJACSA. Int. J. Adv. Comput. Sci. Appl. 10, 366–373. doi:
10.14569/IJACSA.2019.0100148

Paza, S. L., Pudjiantoro, T. H., and Hadiana, A. (2022). “Malware detection using
portable executable header and gradient boosting classification algorithm” in 3rd Asia
Pacific international conference on industrial engineering and operations management,
vol. 2022. doi: 10.46254/AP03.20220174

Radwan, A.M. (2019), “Machine learning techniques to detect maliciousness of
portable executable files, 2019 international conference on promising electronic
technologies (icpet)”.

Raff, E., Sylvester, J., and Nicholas, C. (2017). “Learning the PE header, malware
Detec- tion with minimal domain knowledge” in Proceedings of the 10th ACM
workshop on artificial intelligence and security - AISec ‘17.

Siregar, A. A., Soim, S., and Fadhli, M. (2023). Optimizing Malware Detection Using
Back Propagation Neural Network and Hyperparameter Tuning. J. Artificial Intelligence
Data Mining 6, 220–230. doi: 10.24014/ijaidm.v6i2.24731

Sumit, S. L., and Amol, C. A. (2022). Improved deep learning model for static PE files
malware detection and classification. Int. J. Computer Network Information Security 14,
14–26. doi: 10.5815/ijcnis.2022.02.02

Varma, S., and Narasimharao, J. (2022). Malware analysis with machine learning:
classifying malware based on PE header. Int. J. Res. Applied Sci. Eng. Technol. 10,
3583–3590. doi: 10.22214/ijraset.2022.44668

Yanfang, Y., Tao, L., Donald, A., and Sitharama, L. S. (2017). A survey on malware detection
using data mining techniques. ACM Comput. Surv. 50, 1–40. doi: 10.1145/3073559

Yousuf, M. I., Anwer, I., Riasat, A., Zia, K. T., and Kim, S. (2023). Windows malware
detection based on static analysis with multiple features. PeerJ Comput. Sci 9:e1319. doi:
10.7717/peerj-cs.1319

https://doi.org/10.3389/fcomp.2025.1539519
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.kaggle.com/
https://doi.org/10.1109/ACCESS.2024.3409937
https://doi.org/10.3390/digital3030017
https://portal.av-atlas.org/malware/statistics
https://doi.org/10.3390/informatics8010010
https://doi.org/10.14569/IJACSA.2020.0110163
https://doi.org/10.62476/jmte93165
https://doi.org/10.48550/arXiv.2212.13988
https://doi.org/10.3390/computers13030059
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.17577/IJERTV13IS040270
https://www.kaggle.com/datasets/dasarijayanth/pe-header-data
https://www.kaggle.com/datasets/dasarijayanth/pe-header-data
https://www.kaggle.com/datasets/joebeachcapital/windowsmalwares?select=PE_Header.csv
https://www.kaggle.com/datasets/joebeachcapital/windowsmalwares?select=PE_Header.csv
https://doi.org/10.3390/a15090332
https://www.kaggle.com/datasets/amauricio/pe-files-malwares/data
https://www.kaggle.com/datasets/amauricio/pe-files-malwares/data
https://doi.org/10.14569/IJACSA.2019.0100148
https://doi.org/10.46254/AP03.20220174
https://doi.org/10.24014/ijaidm.v6i2.24731
https://doi.org/10.5815/ijcnis.2022.02.02
https://doi.org/10.22214/ijraset.2022.44668
https://doi.org/10.1145/3073559
https://doi.org/10.7717/peerj-cs.1319

	Binary and multiclass malware classification of windows portable executable using classic machine learning and deep learning
	1 Introduction
	2 Related work
	3 Structure of a windows portable executable (PE) file
	4 Binary malware classification
	4.1 Datasets
	4.2 Methodology
	4.3 Results

	5 Multiclass malware classification
	5.1 Datasets
	5.2 Methodology

	6 Results
	7 Discussion
	8 Conclusion

	References

