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Cybersecurity has become a significant concern in recent decades. Enhancing 
cybersecurity and safeguarding important information systems are essential in today’s 
world. It is now one of the most important challenges in the realm of IT. Malware 
has become a significant issue in the modern digital age. The primary objectives 
of malware are to disrupt, harm, or impair computer systems and information 
systems without the user’s consent or awareness. Currently, malwares are viewed 
as some of the most prevalent cyber threats. The prevalence of Windows operating 
system has made it a prime target for malware attacks. PE (Portable Executable) is 
the standard file format for executable files and DLLs on Windows systems, with 
PE malware being the most common form of malicious software. Static analysis, 
which is mainly a signature-based method for detecting malware, can only identify 
already known malware. The main weakness of this approach is its struggle with 
obfuscation, such as encryption and packing. The use of machine learning methods 
has demonstrated significant potential in the field of malware detection and is 
an emerging field with many opportunities. Most previous works focus on binary 
classification, limited number of ML algorithms and even a single dataset. In this 
paper, we present both a binary and multiclass PE malware classification using four 
classic machine learning algorithms and four deep learning algorithms. We have 
applied this algorithm on three publicly available datasets and deduced the best 
algorithm depending on the number of features and dataset size.
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1 Introduction

Protecting computer systems and information systems from malware has become one of 
the most challenging and complex tasks in cyber security. With the proliferation of the Internet, 
the impact of malware has become dangerous and cannot be ignored. Attackers use malware 
to compromise computers, steal confidential information and can cause inflict substantial 
financial harm. The Windows operating system is the most popular operating system globally, 
making it a prime target for malicious software. AV-TEST Institute reported that by the end of 
May 2024, there were 49,582,654 newly discovered malwares, with over 85% of them designed 
to attack the Windows operating system as opposed to Android, Linux, or MacOS. Moreover, 
almost 90% of these malwares were specifically targeting executable files instead of archive, data, 
HTML, or other file formats (AV-TEST, 2024). The file format used for executables, DLLs, 
object code, and other files in the Windows operating system is known as the portable 
executable (PE) format. This format is used in both 32-bit and 64-bit versions of Windows. The 
PE file format serves as a data structure that provides the necessary information for the 
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Windows OS loader to handle the enclosed executable code. A PE file 
infector is a type of malware that spreads by adding or enclosing 
malicious code within other PE files on a compromised system. 
Malware detection techniques are mainly categorized into two types: 
signature-based (static) and behavior-based (dynamic) methods. 
Signature-based detection involves comparing code signatures against 
a database of known malicious signatures without executing the code, 
providing efficient detection of known malware. However, this 
approach is limited in detecting zero-day malware and polymorphic 
malwares, as well as facing issues with the exponential increase in the 
size of the signatures database affecting matching time. On the other 
hand, dynamic malware analysis requires executing malware code in a 
controlled environment to observe its system interactions. Despite 
being computationally expensive, dynamic analysis does not cover all 
possible execution paths. In recent years, there has been a significant 
focus on utilizing machine learning for detecting malware, particularly 
the supervised learning technique. Machine learning algorithms 
leverage the efficiency and speed of static malware analysis, requiring 
fewer computational resources than dynamic analysis. These 
algorithms are able to differentiate between malware and legitimate 
files by analyzing the properties of PE headers.

Several ML-based methods for detecting malware have been 
introduced, but some of them only utilized binary classification 
(malware or benign). These methods typically employed either classic 
ML algorithms or deep learning algorithms, but rarely compared the 
outcomes of both. Furthermore, they did not test the algorithms across 
various datasets. In this paper, we present a machine learning-based 
method for detecting malware in PE files. We  utilized binary and 
multiclass classification, employing a variety of classic machine 
learning algorithms such as random forest, SVM, ANN, and Naive 
Bayes, as well as deep learning algorithms like CNN, RNN, LSTM, and 
CNN-LSTM. Our approach involved testing these algorithms on 
multiple publicly available datasets with different characteristics related 
to the number of features, dimensionality and to evaluate the outcomes.

The rest of this paper is structured in the following manner: a 
review of previous work in section two. Section three provides an 
overview of the PE file format. Sections four and five explain the 
different stages of the ML-based malware detection process used for 
both binary and multiclass classification. Section six present a 
discussion about the obtained results and in the final section seven, 
we present our conclusion and future work.

2 Related work

The use of machine learning techniques for PE malware detection 
is not a new concept as several approaches and methods have been 
proposed in the literature. Merabet and Hajraoui (2019) examined and 
reviewed several methods for feature extraction and selection used in 
previous machine learning based malware detectors and evaluated 
classification methods used. They were interested in the accuracy rate 
of each one of the previous classifiers. They concluded that a deep 
learning approach could lead to a smart anti-malware program. Yanfang 
et  al. (2017) provided a complete survey on malware detection 
techniques using machine learning. They mentioned that the 
performance of a malware detection system depends greatly on the 
extracted features and the methods for classification/clustering. For the 
task of feature extraction, they suggested using static analysis as first 
step, since over 80% of the file sample collection can be well-represented 

by static features. Then use dynamic analysis. In addition, they discussed 
issues and challenges of malware detection using machine learning 
techniques and forecast the trends of malware development.

Raff et al. (2017) applied two different types of neural networks 
for malware detection and feature learning. They restricted to the 
minimum domain knowledge for the extraction a portion of the PE 
header without explicit feature construction. An automatic feature 
extraction was done based using n-grams features vector which used 
an Elastic-Net regularized Logistic Regression classifier. They claimed 
that their model was able to match and even surpass the performance 
of a domain knowledge approach. Kumar et al. (2017) proposed a 
static analysis technique for the detection of malicious PE file. Their 
approach consists of using an integrated feature set created from raw 
and derived features, based on different header fields’ values of PE file. 
They claimed that their method could improve the classification 
accuracy of machine learning classifiers. They used various machine 
learning algorithms and provided a performance comparison of each 
classifier. Gibert et al. (2020) presented an interesting review of the 
most recent machine learning techniques used in malware 
classification. Their paper provided a basic background in malware 
analysis with a brief description of the process and tools used in 
malware detection and classification.

Radwan (2019) used a static analysis method for malware 
detection by deriving some new features to increase the accuracy and 
improve the robustness of their classifier. He  has used a dataset 
containing 5,184 samples with 2,683 malware and 2,501 benign to 
test his classifier. He applied seven machine learning algorithms for 
the classification and found that the performance of Random Forest 
is the highest among them. Varma and Narasimharao (2022) used a 
dataset of 138,047 sample of malware and benign files each has 57 PE 
attributes where they selected 13 most significant features. They used 
six different classic Machine learning algorithms and come up with a 
classification accuracy of 99.4% as they claimed in their paper. 
Rakesh Kumar (2022) selected a dataset containing 138,047 samples 
of PE files of which 27,610 were classified as benign and 110,432 as 
malicious. He used four classic machine learning algorithms namely 
AdaBoost, Random Forest, Gradient Boosting and Ensemble 
Algorithm and two deep learning algorithms: CNN and a 
combination of CNN and LSTM algorithms. He found that gradient 
boosting performed the best of classic ML and that CNN + LSTM 
gave better results than using just CNN. Yousuf et al. (2023) proposed 
a static Portable Executable (PE) malware analysis system based on 
seven classic machine learning models, three ensemble learning 
techniques and two dimensionality reduction techniques. They used 
a dataset of 27,920 samples divided into six categories and 1878 
benign files. They concluded that combining the PE Header and the 
PE Section provides the highest accuracy and lowest error rate.

Azmee et al. (2020) compared accuracy of nine classic machine 
learning classifiers for the detection of PE malware files and showed 
that XG- Boost achieved the highest accuracy. They used a dataset of 
19,611 sample collected from Microsoft Kaggle where ach sample has 
79 features. They also applied the PCA (Principal Component Analysis) 
dimension reduction technique and used standard scalar for dataset 
standardization. Connors and Sarkar (2022) used the well-known large 
dataset EMBER [The Elastic Malware Benchmark for Empowering 
Researchers dataset (AV-TEST, 2024)] to evaluate features of PE files 
by applying common classic machine learning techniques for malware 
detection. They concluded that ANN-based classifier outperformed 
other used classifiers. Jhansi Priya et al. (2024) combined CNN and 
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LSTM networks with YARA rule-based for PE malware detection. They 
used the windows malware dataset containing PE Header of malware 
samples having different features and a second dataset of grayscale 
images of only malware PE files (25 families of malware images) and a 
benign dataset consisting of 3,000 benign images. Sumit and Amol 
(2022) proposed a static analysis of malware by extracting the features 
from the PE files using a deep learning algorithm. They emphasized the 
importance of feature extraction and reducing the feature space and 
applied their approach to the EMBER dataset Hyrum and Phil (2018) 
with nearly 600,000 samples of PE files. They claimed that their model 
achieved 98.85% accuracy.

Ayofe et  al. (2021) proposed an ensemble learning-based 
framework fully connected dense ANN and 1-D CNN as first-stage 
classifiers and employed five classic machine learning algorithms as 
end-stage classification. They also used principal component analysis 
(PCA) for dimensionality reduction. They used a publicly available 
dataset containing malicious and benign program data from Windows 
Portable Executable (PE) files having 19,611 samples each has 77 
features. They found that ExtraTrees classifier achieved the best 
accuracy when used as a final stage. Manavi and Hamzeh (2021) used 
the long short-term memory (LSTM) network to detect one type of 
malware, namely ransomware by analyzing the header of executable 
files and they achieved a detection accuracy of 93.25%. Al-Khshali 
et al. (2024) proposed the use of adapting subspace learning-based 
One-Class Classification (OCC) methods for detecting malware 
namely One-Class Support Vector Machine (OCSVM) and Support 
Vector Data Description (SVDD). They employed three publicly 
available datasets from Kaggle where the first contains 19,611 sample 
each with 77 features, the second contains 5,910 samples each with 69 
samples and the last contains 43,293 samples each with 4 features. 
They come up with a True Positive Rate (TPR) of 100%.

Louk and Bayu (2022) compared and evaluated the performance 
of various tree-based classifiers in detecting PE malware. They used 
four tree-based ensemble techniques namely XGBoost, CatBoost, 
GBM, and LightGBM and trained their models on three different 

datasets. They concluded that their approach outperforms existing 
ML-based PE malware detectors. Ayofe et  al. (2021) proposed an 
ensemble learning-based method for PE malware detection where the 
first-stage classifiers are composed of neural networks and examined 
15 machine learning models as a final-stage classifier. They used five 
different machine learning algorithms as base models for comparison. 
The publicly available data set used was composed of 19,611 samples 
each with 77 features. They also applied principal component analysis 
(PCA) for dimensionality reduction. They found that fully connected 
dense ANN and 1-D CNN models with ExtraTrees as a final-stage 
classifier achieved the best accuracy.

In summary, previous works did not use a variety of data sets with 
different number of features and different dimensionalities. They used 
either classic machine learning algorithms or deep learning algorithms 
but not both to investigate which approach gave better results. Most 
previous works used one kind of classic ML algorithms or deep 
learning algorithms. In addition, the malware classification was 
restricted to a binary classification or limited to one type of malwares.

3 Structure of a windows portable 
executable (PE) file

PE (Portable Executable) file format is a data structure used in 
32-bits and 64-bits Windows operating systems that encapsulates the 
information needed by the Windows OS loader to be able to load that 
executable into memory and execute it. It is a file format for basically 
executables (.exe) and dynamic link library (.dll). This includes 
dynamic library references for linking, API export, import tables, 
resource management data, and thread-local storage (TLS) data.

The basic structure of PE file contains two main parts: the header 
and the sections as shown in Figure 1. The header part includes the 
following sections: (1) Dos header and Dos stub for compatibility 
purpose only, the former checks whether the file is valid PE file or not 
and the letter prints an error message saying that the program cannot 

FIGURE 1

Basic structure of PE file.
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FIGURE 2

Overview of the proposed malware detection framework.

be  run on windows. (2) The PE header section which contains 
information about the file and made-up of three main components: 
the signature which identifies the file as a PE file, the file header 
which contains relevant information about the file and the optional 
section which provides important information to the OS loader. The 
last part of the header is the section table which contains information 
about the section it refers to. The second part of a PE file is the 
sections part which contains several sections, each one with its own 
purpose. These sections are where the actual contents of the file are 
stored. Among these sections we can find .text, .data, .rdata, .pdate, 
.rsrc, .reloc etc. Analyzing and studying features of PE header files 
leads to better comprehension of the file type and helps a lot in 
differentiating benign files from malware ones.

4 Binary malware classification

4.1 Datasets

For binary classification, we used two publicly available datasets 
that have different sizes and different number of features to check the 
accuracy of our model on different datasets. Table  1 shows the 
characteristics of each dataset.

4.2 Methodology

We followed the steps included in a typical machine learning project. 
Figure 2 depicts the stages involved in our malware detection framework.

The first step of the cycle consists of data preprocessing to ensure 
the dataset is balanced, we need to make sure that the number of 
samples in each class (benign and malware) is approximately equal. 
This is important for training machine learning models. Then, we need 
to drop the useless features we do not such as the hash, name, etc. For 
the feature selection step, we need to calculate the importance of each 
feature and select the most important features and for this end we have 
used the tree-base feature selection algorithm. We then split the dataset 
into training (80%) and testing (20%) sets. The training set will be used 
to train the model, while the testing set will assess its performance on 
unseen data. This is an essential step in machine learning, as it helps us 
evaluate the performance of our model. During the next step, we have 
chosen eight machine learning algorithms for the file classification 
among them four classic machine learning algorithms namely SVM, 
Naive Bayes, Random Forest and Neural network and four deep 
learning algorithms namely CNN, RNN, LSTM and CNN + LSTM.

Finally, we  evaluated our model using most known metrics 
such as:

 • Accuracy = (TP + TN)/(TP + TN + FP + FN)
 • Precision = TP/(TP + FP)
 • Recall = TP/(TP + FN)
 • F1-Score = 2*(precision*recall)/(precision + recall)

Where.
TP: True positive, TN: True negative, FP: False positive and FN: 

False negative.
In addition, we  used the confusion matrix to visualize and 

summarizes the performance of each classification algorithm.

4.3 Results

Table 2 summarizes the evaluation of malware detection models 
using both classic machine learning algorithms and deep learning 
algorithms on the two datasets and Figure 3 shows the accuracy of 

TABLE 1 Description of datasets used for binary classification.

Title Dataset 1 Dataset 2

Content PE files dataset labeled as 

either malware or benign.

PE files dataset labeled as 

either malware or benign.

File format CSV format CSV format

Data size 138,047 19,611

Number of Features 57 78

Target feature Value of 1 indicate a 

benign file and 0 indicate 

the malware file

Value of 1 indicate a benign 

file and 0 indicate the 

malware file

Distribution 96,724 malware files

41,323 benign files

14,599 malware files

5,012 benign files

References Jayanth (2024) Mauricio (2024)

https://doi.org/10.3389/fcomp.2025.1539519
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Miraoui and Belgacem 10.3389/fcomp.2025.1539519

Frontiers in Computer Science 05 frontiersin.org

each algorithm on dataset 1, dataset 2 and dataset 3. Figure 4 shows 
the confusion matrices of the best classic machine learning algorithm 
(Random Forest) and Figure 5 shows the confusion matrices of the 
best deep learning algorithm (LSTM).

5 Multiclass malware classification

5.1 Datasets

For multiclass classification, we used one publicly available dataset 
containing 6 types of malwares in addition to benign ones, each has 
54 features. The total size of the dataset is 29,807 samples. Table 3 
shows the characteristics of the dataset.

5.2 Methodology

We followed the same steps as the classic machine learning 
approach except the phase of feature selection which is omitted 
because deep learning algorithms achieve such task automatically.

6 Results

Table 4 summarizes the evaluation of malware detection models 
using both classic machine learning algorithms and deep learning 
algorithms on the selected dataset and Figure 6 shows the accuracy of 
each algorithm on dataset 3. Figure 7 shows the confusion matrices of 
the best classic machine learning algorithm (Random Forest) and 

TABLE 2 Evaluation of binary classification.

Algorithm Dataset Accuracy Precision Recall F1-Score

SVM 1 0.4971 0.4971 1 0.0002

2 0.7381 0.6708 0.9243 0.7774

Random Forest 1 0.9926 0.9905 0.9946 0.9925

2 0.9875 0.9814 0.994 0.9877

Naive Bayes 1 0.5048 1 0.0001 0.0002

2 0.7067 0.64861 0.9192 0.7605

ANN 1 0.9584 0.98 0.9347 0.9568

2 0.8827 0.8864 0.8889 0.8877

CNN 1 0.9928 0.9902 0.9953 0.9927

2 0.9735 0.9667 0.984 0.9753

RNN 1 0.9854 0.9834 0.9872 0.9853

2 0.971 0.9564 0.9882 0.972

LSTM 1 0.9883 0.9856 0.9915 0.9885

2 0.97 0.97 0.97 0.97

CNN + LSTM 1 0.9913 0.9899 0.9926 0.9913

2 0.9765 0.9764 0.9774 0.9769

FIGURE 3

Accuracy of each algorithm on dataset 1, dataset 2, and dataset 3.
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FIGURE 5

Confusion matrices of deep learning CNN and CNN-LSTM.

Figure  8 shows the confusion matrices of the best deep learning 
algorithms (CNN + LSTM).

7 Discussion

The aim of this work is the classification of windows PE files into 
malwares or benign ones using machine learning techniques. In 
addition to the variety of algorithms used for the classification, 
we tested our approach on three publicly available datasets having 
different characteristics. The two datasets used in binary classification 
have different number of features (high, low) and different size (high, 
low) as shown in Figure 9. The dataset used for testing the multiclass 
classification has six classes of malwares and one benign as in 
Figure 10.

In the case of binary classification, the number of features is very 
important in the classification process and the higher dimensionality 
introduces more noise and complexity, making it harder for the model 
to discern relevant patterns. Random forest gave the best results among 
classic machine learning algorithms. In contrast, the high dimensionality 
of the dataset has a greater impact on the classification accuracy 
compared to the number of features in case of deep learning. The best 
results were obtained using CNN and CNN-LSTM algorithms. Both 
types of ML techniques achieve good results in the case of binary 
classification, but the deep learning algorithms perform better in general.

In the case of multiclass classification, having fewer classes 
generally simplifies the classification task, as the model needs to 
differentiate between fewer categories. When using classic machine 
learning algorithms, the best results were obtained using either 
random forest or ANN while the Naive Bayes and SVM classifiers 

FIGURE 4

Confusion matrices of ML classic random forest.
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achieved the worst results. All the deep learning algorithms perform 
good with almost similar results however the CNN-LSTM algorithm 
provided the best classification accuracy. None of the two types of ML 
algorithms was able to achieve more than 90% of accuracy.

Dataset 1 was used by Varma and Narasimharao (2022) for 
detection of malware using seven supervised ML algorithms 

(Decision Trees, Random Forest, GradientBoosting, AdaBoost, 
Gaussian Naive Bayes, Linear Regression) where two of them are 
present in our work: random forest with achieved accuracy 0.99 same 
as in our work and Gaussian Naive Bayes with achieved accuracy 0.7 
(in our work it is 0.5 after data balancing and selection of important 
features). It was also used in Siregar et  al. (2023) with just one 
algorithm namely Back Propagation Neural Network (BPNN) with 
Hyperparameter Variations not really similar to our work. The best 
configuration achieved 0.98 of accuracy. Another use of the dataset 1 
use was by Del Aguila et al. (2024) where authors used it on three 
supervised ML algorithms: artificial neural networks (ANN), support 
vector machines (SVMs), and gradient boosting machines (GBMs) 
where two of them are present in our work: ANN with achieved 
accuracy 0.94 (in our work it is 0.95 after data balancing and selection 
of important features) and SVM with achieved accuracy 0.91 (in our 
work it is 0.49 after data balancing and selection of important features).

Dataset 2 was used previously in Alqahtani et al. (2023) where 
authors made use of 1D-CNN with different hyperparameters, and 
authors achieved almost the same results as our work. Another use of 

TABLE 3 Description of dataset used for multiclass classification.

Title Dataset 3

Content PE files dataset of 6 malware types and one benign

File format CSV format

Data size 29,807

Number of features 54

0: benign file

Target feature 1: RedLineStealer

2: Downloader

3: RAT

4: BankingTrojan

5: SnakeKeyLogger

6: Spyware.

Distribution 1877 benign

5,047 RedLineStealer

4,864 Downloader

4,973 RAT

5,104 BankingTrojan

4,236 SnakeKeyLogger

3,706 Spyware

Reference Joe Beach (2024)

TABLE 4 Evaluation of multi-class classification.

Algorithm Accuracy Precision Recall F1-Score

SVM 0.5098 0.5029 0.5098 0.4709

Random Forest 0.8876 0.8915 0.8876 0.8888

Naive Bayes 0.4188 0.5693 0.4188 0.3647

ANN 0.8108 0.8219 0.8108 0.8138

CNN 0.7913 0.8071 0.7913 0.7962

RNN 0.778 0.7882 0.778 0.7802

LSTM 0.7643 0.7744 0.7643 0.7676

CNN + LSTM 0.8124 0.8244 0.8124 0.8164
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FIGURE 6

Accuracy of each algorithm on dataset 3.

https://doi.org/10.3389/fcomp.2025.1539519
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Miraoui and Belgacem 10.3389/fcomp.2025.1539519

Frontiers in Computer Science 08 frontiersin.org

FIGURE 8

Confusion matrices CNN + LSTM (best deep learning algorithm).

FIGURE 7

Confusion matrices of random forest (best classic ML).
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this dataset can be found in Paza et al. (2022) where the dataset was 
used mainly with the Gradient Boosting algorithm.

Dataset 3 was used in Yousuf et  al. (2023) with seven classic 
machine learning models: gradient boosting, decision tree, random 
forest, support vector machine, K-nearest neighbor, naive Bayes, and 
nearest centroid, and three ensemble learning techniques including 
Majority Voting, Stack Generalization, and AdaBoost to classify the 
malware. Three of these algorithms were used in our work and 
achieved better results than ours. This dataset was also used in 
Baghirov (2024) where seven ML models are evaluated on both 
binary and multiclass classification tasks before and after applying 
Principal Component Analysis (PCA). They achieved better results 
for binary classification and lower results for multiclass classification.

8 Conclusion

Due to the increase in the types of malwares and the number 
of malicious activities, the demand and need for effective malware 
detectors to protect against zero-day attacks has increased. Our 
main goal was to develop and analyze a machine learning system 
that can detect as many malwares as possible using binary and 
multiclass classification. We applied both classic machine learning 
and deep learning algorithms to different publicly available 
datasets. In the case of binary classification, both machine learning 
techniques performed good and the best results were obtained 
when using random forest, CNN and CNN-LSTM. In the case of 
multiclass classification, the deep learning algorithms performed 

FIGURE 9

Characteristics of datasets used in binary classification.

FIGURE 10

Characteristics of datasets used in multiclass classification.
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generally better than classic machine learning algorithms however 
with a good configuration of classic machine learning hyper-
parameters, these algorithms can achieve better results than deep 
learning. A final word would be to encourage the use of classic 
machine learning algorithms when detecting windows PE malware 
files and there is no raison to use deep learning in such a 
task as the same result or better can be obtained with less 
computational resources.

Our future work consists of focusing on the algorithms that gave 
the best classification results and try to refine the process further or 
combine the best algorithms to obtain better results and detect 
zero-day attacks.
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