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Introduction: Advances in requirements engineering, driven by various

paradigms and methodologies, have significantly influenced software

development practices. The integration of agile methodologies and model-

driven development (MDE) has become increasingly critical in modern software

engineering. MDE emphasizes the use of models throughout the development

process, necessitating structured approaches for handling requirements written

in natural language.

Methods: This paper proposes an automated requirements engineering

framework for agile model-driven development to enhance the formalization

and analysis of textual requirements. The framework employs machine learning

models to extract essential components from requirements specifications,

focusing specifically on class diagrams. A comprehensive dataset of

requirements specification problems was developed to train and validate

the framework’s e�ectiveness.

Results: The framework was evaluated using comparative evaluation and

two real-world experimental studies in the medical and information systems

domains. The results demonstrated its applicability in diverse and complex

software development environments, highlighting its ability to enhance

requirements formalization.

Discussion: The findings contribute to the advancement of automated

requirements engineering and agile model-driven development, reinforcing

the role of machine learning in improving software requirements analysis.

The framework’s success underscores its potential for widespread adoption in

software development practices.

KEYWORDS

requirements engineering,model-driven engineering,model-driven development, agile

development, machine learning, NLP

1 Introduction

The model-driven engineering (MDE) approach to software development advocates

the construction of software models, often in the form of Unified Modeling Language

(UML) diagrams, that depict how the software system should work, and the production

of executable code. The construction of such models constitutes a key requirements

engineering activity. Requirements Engineering (RE) focuses on identifying and specifying

the real-world objectives, functions, and constraints of software systems (Abdouli et al.,

2016). Within the context of functional requirements, RE plays a pivotal role in defining

the specific actions and operations that a system must execute to achieve its intended

objectives. RE is widely recognized as a fundamental process for ensuring the quality

of software products. Despite its inherently complex and interdisciplinary nature, which
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presents challenges in software and systems development, it

remains essential for the successful delivery of software projects

(Aguirre, 2017). Moreover, the significance of requirements

engineering extends beyond traditional development models, as

it is also integral to agile development methodologies, where it

ensures iterative refinement and alignment with evolving project

goals.

Requirements engineering plays a crucial role in agile

development by ensuring that the evolving needs and expectations

of stakeholders are accurately captured, documented, and

addressed throughout the development process. Thus,

requirements engineering serves as the bridge between stakeholders

and development teams, focusing on the elicitation, analysis

and specification, validation, and management of software

requirements (Inayat et al., 2015); which ensures the end

product aligns precisely with the envisioned functionality and

user expectations. The synergy between Agile Development and

requirements engineering is rooted in their complementary nature.

Agile’s iterative cycles accommodate changing requirements,

and requirements engineering provides the structured process

for defining, prioritizing, and managing those requirements

within each iteration. Therefore, regular collaboration between

developers and stakeholders ensures a continuous feedback

loop, refining and clarifying requirements as the project evolves

(Elallaoui et al., 2018). Requirements engineering practices such as

observations, interviews, workshops, and strong team collaboration

are integrated into iteration-based agile methods, alongside

customer involvement, requirements prioritization, modeling, and

documentation. However, the software development community

still lacks a deep understanding of how these RE practices function

within agile environments and how they address common issues

found in traditional RE processes, despite their perceived benefits

and potential challenges (Bjarnason et al., 2011; Inayat et al., 2015).

The growing demand for more effective requirements

engineering processes has prompted the introduction and

adoption of automated requirements engineering to overcome the

limitations of traditional requirements engineering. Automated

requirements engineering refers to using software tools and

techniques to support and automate eliciting, analysing, specifying,

validating, and managing software requirements. These tools

can help streamline and optimize the requirements engineering

process, which can be complex and time-consuming. The goal of

automation in requirements engineering is to minimize the time,

effort, and cost involved in the RE process (Nassar and Khamayseh,

2015; Saini et al., 2020; Vemuri et al., 2017; Ibrahim and Ahmad,

2010) by leveraging the power of NLP tools and technologies

(Letsholo et al., 2013; Harmain and Gaizauskas, 2003; Yue et al.,

2015; Elallaoui et al., 2018; Mu et al., 2009). This approach aims

to avoid or minimize human mistakes in reading and analyzing

large volumes of natural language text (Thakur and Gupta, 2014;

Seresht et al., 2008; Deeptimahanti and Sanyal, 2011), as well as in

software development in general, while simultaneously enhancing

the quality and accuracy of the requirements.

More recently, machine learning (ML) and deep learning (DL)

approaches have been used for requirements engineering, including

the use of Large Language Models (LLMs) (Abukhalaf et al., 2023,

2024; Camara et al., 2023; Fill et al., 2023; Saini et al., 2022; Wang

et al., 2024).

In the context of Agile methodology, where adaptability and

rapid response to change are paramount, automated requirements

engineering emerges as a crucial asset. By automating the

elicitation, analysis, and validation of requirements, agile teams

can significantly enhance their ability to respond swiftly to

evolving project needs. Automated requirements engineering

not only accelerates the initial phase of requirements gathering

but also ensures continuous alignment with changing project

dynamics. Furthermore, the iterative and collaborative nature of

agile development can benefit from the efficiency and consistency

offered by automated processes.

Our proposed automated requirements engineering framework

for agile development using NLP and ML is described in Figure 1

focusing primarily on functional requirements. In the figure, we

have added an automation component to allow for automated RE

because RE is a continuous process throughout the development

life cycle in agile development. We acknowledge that RE is part

of agile development; however, usually in agile development the

requirements analysis, especially generating UML models, is done

in the traditional (manual) agile manner. Thus, the integration of

an automated framework will enhance the existing benefits of the

synergy between agile development and requirements engineering.

In particular, it achieves:

I. Adaptability: The iterative nature of Agile allows for the

seamless integration of new requirements, enabling adaptation

to changing project landscapes.

II. User-Centric Development: Requirements Engineering ensures

that development is tightly aligned with user needs, promoting

user satisfaction and product success.

III. Early and Continuous Delivery: Agile’s emphasis on incremental

development and rigorous requirements analysis enables early

and continuous delivery of valuable software features.

In object-oriented design, a fundamental aspect is to represent

and understand the domain of interest accurately. Object-oriented

analysis focuses on creating a description of the domain from the

perspective of classification by objects. Decomposing the domain

involves identifying the concepts, attributes, and associations that

are considered significant. The result can be expressed in a

domain model, which is represented by a set of diagrams showing

domain concepts or objects. A domain model visualizes conceptual

classes or real-world objects within a domain of interest (Fowler,

1996). Using UML notation, this domain model is described

using class diagrams that do not include operations but depict

domain objects or conceptual classes, their associations, and their

attributes (Larman, 2004). Traditional requirements elicitation and

analysis often rely on textual descriptions, which can be ambiguous,

inconsistent, and prone to misinterpretation. To address these

challenges, formal methods have emerged as a promising approach

to enhance the precision and rigour of requirements engineering.

Among the various formalization techniques, class diagrams, a

visual modeling language, have gained significant attention due to

their intuitive nature and ability to capture static structural aspects

of a system. According to Li and Liu (2014), the core models

employed in system requirement analysis are conceptual and use-

case models. A conceptual model serves as a static representation

of the application domain, delineating domain concepts as classes

and their interconnections as associations.
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FIGURE 1

Automated agile requirements engineering in agile iterations.

Model-driven development and class diagrams are often

used together. MDD promotes the use of models as primary

artifacts in software development, emphasizing their essential

role in system specification, design, and implementation. Class

diagrams, a fundamental UML construct, excel at capturing static

structural aspects of a system, aligning seamlessly with MDD’s

model-centric approach. By serving as a visual representation

of classes, attributes, and relationships, class diagrams provide a

concrete foundation for model-driven transformations, allowing

automated code generation and system evolution. Consequently,

the integration of class diagrams within an MDD framework

enhances development efficiency, reduces errors, and improves

system maintainability. Thus, MDD can help verify the accuracy

of models and generate source codes, minimizing the development

time needed to evaluate the software and allowing for greater focus

on the modeling process (Akayama et al., 2013). Class diagrams

are versatile tools in the software development lifecycle. Early in

a project, they serve as exploratory domain models to visualize

domain concepts and relationships, aiding in understanding the

problem domain (Larman, 2004). Later, they can act as system

domain models, specifying aspects of the domain relevant to the

system, or as system designmodels, detailing operations and classes

for user interfaces and architecture. Additionally, class diagrams

can specifymetamodels, providing higher abstraction formodeling.

This paper focuses on exploratory domain models developed

during the early stages of software projects.

The remainder of this paper is organized as follows: Section

2 discusses the literature survey by highlighting related works.

Section 3 describes the framework architecture. Section 4 presents

the model training and testing of the proposed framework. Section

5 discusses evaluation comprising comparative evaluation and two

experimental studies evaluation. In Section 6, we discuss the results

and their implications. Section 7 describes the threats to the validity

of our study. Finally, Section 8 concludes and highlights prospects

for future research directions.

2 Literature review and analysis

With the rapid advancement of technology, Artificial

Intelligence (AI) has emerged as a powerful assistant in enhancing

various aspects of software engineering, including Requirements

Engineering. There has been considerable adoption of artificial

intelligence techniques and technologies in requirements

engineering, ranging from natural language processing techniques

that enable machines to understand and process human language

efficiently (Nazir et al., 2017) to requirement analysis (Letsholo

et al., 2013; Yue et al., 2015) and prioritization (Duan et al., 2009)

that allows AI algorithms to analyse large datasets of requirements

and user feedback to identify trends, extract valuable insights, and

aid in requirement prioritization.

Despite the advances in AI in software engineering, specifically

in requirements engineering, a key challenge persists in the

requirements analysis phase. During this phase, data is often

unstructured and requires careful analysis to extract valuable

information for use in the subsequent development phases

(Al-Hroob et al., 2018). This challenge not only underscores

the need for further innovation in AI-driven techniques for

effective requirements analysis but also implies significant research

opportunities in developing methodologies and tools that can

better handle unstructured data in this critical phase of software

development. Therefore, this section presents related work on

research efforts in requirements analysis with support tools with

a specific focus on datasets, model extraction from text and tool
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evaluation techniques/approaches. We also identify the research

gaps and the contributions of our approach to address these gaps.

2.1 Datasets

In automated requirements engineering, support tools play

a crucial role in streamlining the process of eliciting, analyzing,

and managing requirements for software systems. These tools

rely heavily on datasets, which are collections of data used for

various purposes such as training machine learning models, testing

algorithms, and validating system functionality.

The availability of high-quality datasets is essential for

the development and evaluation of automated requirements

engineering tools. These datasets typically consist of real-world

or simulated examples of software requirements, user stories, use

cases, and other artifacts relevant to the requirements engineering

process. By using diverse and representative datasets, developers

can ensure that their tools are robust, accurate, and applicable to

a wide range of scenarios (Zhao et al., 2021).

Despite the proliferation of automated tools in this field, a

common challenge is the lack of availability of comprehensive

datasets. Many existing tools are developed and evaluated using

proprietary or limited datasets, making it difficult for researchers

and practitioners to assess their performance objectively (Umar and

Lano, 2023). This limitation hinders the advancement of the field

and may lead to tools that are not fully effective or generalizable

across different contexts (Umar and Lano, 2024). For example,

Nasiri et al. (2020) and Jabbarin andArman (2014) utilized only one

requirement problem, while Al-Hroob et al. (2018) employed two,

Vemuri et al. (2017); Vidya Sagar and Abirami (2014), and Letsholo

et al. (2013) used three, Yue et al. (2015) used 7 problems, Saini

et al. (2020) included 18, and Deeptimahanti and Sanyal (2011)

used 26 problems, constituting the highest number. Overall, this

suggests the need for greater diversity and depth in the datasets

used to develop and evaluate tools for addressing requirements

problems. Thus, this would enhance the robustness, reliability, and

applicability of these tools in real-world settings.

Addressing this gap in dataset availability is crucial for

advancing the state-of-the-art in automated requirements

engineering. Researchers and tool developers need access to large,

diverse, and well-curated datasets that reflect the complexities and

nuances of real-world software projects. By openly sharing datasets

and establishing standard benchmarks for tool evaluation, the

community can foster innovation, collaboration, and continuous

improvement in automated requirements engineering practices. In

order to address this research gap, our work establishes a working

dataset of 105 requirements problems, which is publicly available to

researchers and practitioners in automated RE tool development.

Details on how the data for the dataset were sourced and collected

are discussed in Section 3.

2.2 Extracting models from text

Over the years, researchers have proposed various approaches

to extract UML models from natural language automatically.

This was prompted by the recognition within both industry

practitioners and the research community of the need for tool

support to generate UML diagrams automatically. In doing so,

several methods and techniques were employed, including those

based on grammatical rules and heuristics (Lee and Bryant, 2002),

ontology and knowledge representation (Shibaoka et al., 2007), and,

more recently, on NLP and ML techniques (Saini et al., 2020).

The recent techniques leverage artificial intelligence technologies,

especially generative artificial intelligence. Therefore, we present

related works in extracting models from requirements text written

in natural language.

Using NLP techniques, Ibrahim and Ahmad (2010) introduced

a tool called Requirements Analysis and Class Diagram

(RACE), designed to streamline the analysis of requirements

for extracting class diagrams through NLP techniques. The

tool consists of three key components: the first conducts

syntactic and lexical analysis of the requirements, and the

second focuses on extracting and refining diagram elements.

At the same time, the third manages the extracted UML

concepts. Despite its functionality, the tool has limitations,

as it may produce class diagrams that are incomplete and

missing attributes.

Vemuri et al. (2017) proposed an automated tool to generate

UML use case diagram components (actors and use cases) from

requirements documents leveraging natural language processing

and machine learning using a probabilistic classification. The

approach used three short requirements documents in a single

domain to evaluate the model developed. However, a case study

evaluation of the proposed approach was conducted. This is similar

to the approach proposed in Deeptimahanti and Babar (2009)

but used syntactic reconstruction rules and NLP tools to extract

required Object-oriented artifacts like use cases, actors, classes, and

attributes. Neither approach defines rules for generalization.

Narawita and Vidanage (2016) developed a web-based

application called UML Generator, designed to efficiently and cost-

effectively produce both UML use cases and class diagrams from

informal software specifications. The SharpNLP library powers the

application’s NLP capabilities. To enhance extraction accuracy, the

approach applies a set of XML rules to filter out noise words from

the identified entities. A classification model, Weka, is then used

to categorize these entities as elements of either a class diagram

or a use case diagram. Users can review the generated diagrams

and either accept or reject them using the Visual Studio Modeling

module. However, there is a lack of quantitative evaluation of the

accuracy of the extracted UML models and the dataset used for

evaluation.

Yang and Sahraoui (2022) introduced an approach for

automatically generating UML class diagrams from English-

language specifications, leveraging machine learning algorithms

to build language models. The process begins by pre-processing

the requirements and replacing pronouns to reduce sentence

interdependency. The SpaCy library and an English language

model are then used to break down the pre-processed text into

individual sentences. A Naive Bayes classifier is subsequently

applied to categorize each sentence as either describing a “class” or a

“relation.” For sentence vectorization during classifier training, the

TF-IDF method is employed. Following classification, analysis and

extraction methods are used to generate UML fragments from the
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labeled sentences, which are ultimately combined to construct the

final class diagram.

Another work by Elallaoui et al. (2018) used a model-driven

development approach to propose automatic transformation of

user stories into UML use case diagrams using NLP techniques. The

approach takes semi-structured user stories as input and applies

POS tagging as its main NLP technique. The input text sentences

are POS-tagged, and the words of each sentence are filtered to

remove adjectives and auxiliary words, retaining only nouns and

verbs. The approach was compared with the manually extracted,

and case study evaluation results showed precisions between 87%

and 98%.

Nasiri et al. (2020) developed an approach for generating

UML class diagrams from user stories using Stanford CoreNLP.

The method transforms user stories (CIM) into a Platform-

Independent Model (PIM) by creating an XMI file that outlines

classes, attributes, relationships, and operations. NLP techniques

such as tokenization, POS tagging, coreference resolution, and

stemming (via WordNet) are applied to process user stories

and remove redundancy. Design elements are extracted through

predefined rules analysing typed dependencies. Actors and classes

are identified first, followed by relationships and attributes based on

composition. An XMI file is then generated using PyEcore API, and

the class diagram is visualized through PlantUML. Although 98%

accuracy was reported, the approach lacks case study evaluation

and addresses only one requirement specification.

Saini et al. (2022) proposed a tool named DoMoBOT, which

leverages the capabilities of natural language processing (NLP)

and machine learning to automate the generation of domain

models, specifically class diagrams, from natural language textual

descriptions. The tool emphasizes user interaction and maintains

traceability between different artifacts produced during the model

development process. The first component of DoMoBOT utilizes

the SpaCy library to pre-process the problem description. The

second component, called descriptive, identifies relevant domain

concepts such as classes and attributes by applying NLP techniques

based on extraction rules. The third component incorporates a pre-

trained predictive model using machine learning and deep learning

methods to enhance the accuracy of identifying concepts and

relationships. Finally, the fourth component applies two algorithms

to integrate the results from the NLP and machine learning

modules, constructing a complete domain model with a median

F1 score of 86%. Even though the approach was supported with

an interactive user interface, the resulting output accuracy can be

improved with additional datasets and case study evaluation.

The studies reviewed indicate that larger training datasets

improve model accuracy and reliability in capturing user

requirements. Building on this, our work aims to extract domain

models, specifically class diagrams, using a broader dataset.

We developed three models: one extracts classes and attributes,

another identifies their relationships, and the third recognizes

relationships among classes. Our models were trained and tested

on diverse requirement problems from various sources, as detailed

in Section 4. By using labeled words from realistic requirement

scenarios, our approach ensures contextually relevant diagrams,

unlike earlier studies, such as Saini et al. (2022), which used rule-

based NLP methods and noun-based corpora. The latter approach

lacked the pattern recognition essential for complex requirements

analysis, positioning our work as a comparative advancement over

this baseline.

2.3 Tool evaluation approaches

Evaluation is a critical stage in every software development

project, to determine whether a tool has attained its objectives.

Various evaluation approaches are employed in assessing

automated requirements engineering tools, including controlled

experiments, simulations, proof of concept (prototypes), case

studies, and user studies (Meth et al., 2013) . These methods

collectively contribute to a comprehensive understanding of the

tool’s effectiveness and suitability for practical application. Thus,

the two studies extensively reported and discussed evaluation

approaches for automated requirements engineering tools as

employed by empirically published works. According to the

findings, controlled experiments were the most commonly utilized

evaluation approach. However, the industry practitioners favored

the case study evaluation approach (Umar and Lano, 2023). This

preference stems from the fact that the case study evaluation

approach is more appropriate, as it allows for real-world use and

provides valuable feedback on a particular tool. Thus, this suggests

that conducting in-depth case studies to assess the effectiveness of

automated RE tools is a valuable approach. This can lead to the

development of more robust evaluation frameworks that mimic

real-world usage scenarios and gather feedback from actual tool

users, enhancing the credibility and practical applicability of the

assessment.

Therefore, considering the important role of case study

evaluation in validating theoretical frameworks and assessing their

practical applicability, our study embarked on a comprehensive

exploration. This is achieved through analysis of two distinct

case studies, we aimed to scrutinize the efficacy and versatility

of the proposed framework in real-world scenarios. Furthermore,

we augmented our evaluation by soliciting expert insights into

the process of extracting class diagram components from the

requirements outlined in the case study texts. Through the

combination of case study evaluation and expert assessment,

our objective was to obtain a comprehensive understanding of

the framework’s performance and its alignment with industry

standards and best practices.

3 Framework architecture

Our work is motivated by the growing need for more intuitive

and efficient methods to translate textual descriptions, often

contained in software requirements or documentation, into visual

representations that may be seamlessly integrated into the software

development lifecycle. The UML class diagram is one of the

essential artifacts extracted for requirements analysis. A class

diagram is a powerful visualization tool in this context, offering

insights into the structure and relationships within a software

system. This diagram helps in requirements analysis and provides

the basis for the software design and subsequent development

phases (Sharma et al., 2015). Providing automated requirement

formalization reduces development effort, cost and time. Therefore,
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the proposed automated tool will be able to analyse text written in

natural language to extract various components of a class diagram,

including classes, Attributes, and Relationships. The structure of

a requirements sentence typically includes several key parts that

ensure clarity and completeness (Wang and Zhang, 2016). These

parts provide a standardized way to communicate system needs,

making them suitable for analysis and implementation. The main

components include the subject, which identifies who or what

is performing the action (e.g., the user); the action or behavior,

which specifies the functionality to be performed (e.g., book); the

target or object, which defines what the action applies to (e.g.,

an appointment); the conditions or context, which provide details

about how or under what circumstances the action occurs (e.g.,

by selecting an available time slot from a calendar interface); and,

optionally, the outcome or goal, which describes the expected

result (e.g., ensuring the appointment is scheduled and confirmed).

For example, a well-structured requirement sentence might state:

“The user should be able to book an appointment by selecting

an available time slot from a calendar interface.” This structure

ensures the requirement is actionable, precise, and ready for further

analysis or implementation. This aligns closely with a typical user

story format in requirements, which often follows the structure of

“As a [user], I want to [perform an action] so that [I achieve a

specific outcome].” Lucassen et al. (2017) For instance, the example

sentence could be reframed as a user story: “As a user, I want to

book an appointment by selecting a time slot so that my booking is

confirmed.”

For functional requirements, specific elements or attributes

considered as part of a requirement sentence are critical for

accurately assessing the machine learning algorithm’s capability

to extract components essential for the model. These elements

include: Entities (Classes): Objects referenced in requirements,

such as “user” or “appointment,” are modeled as classes central

to system operations. For example, in the requirement sentence

“The user should be able to book an appointment,” the entities

include user and appointment. Attributes of Entities: Properties of

entities, such as a “user” with attributes like name or email and

an “appointment” with attributes like time or date. Relationships

Between Classes: Connections between entities, such as “A user

can book multiple appointments,” which define a one-to-many

relationship.

The process of extracting and understanding requirements

from textual data is a crucial step in the software development

lifecycle. Machine learning models are increasingly employed

to enhance accuracy and automate this process. This section

outlines the architecture of a model designed for extracting

classes, attributes, and relationships from textual requirements. To

facilitate the development of this automated support tool, we have

developed three distinct machine-learning models: (1) A model

to extract classes and attributes, (2) A model to extract attributes

of a given class, and (3) A model to depict relationships between

extracted classes.

These models represent a significant step forward in

automating requirement analysis, a foundation for effective

software development. Figure 2 shows an overview of the

architecture used to develop the class diagram from data

pre-processing to model evaluation for the automated requirement

engineering framework for model-driven agile development. Thus,

the following constitute the various components of the framework

architecture:

3.1 Dataset development

Data collection is a critical phase that shapes the model’s

effectiveness in applying learned patterns to real-world scenarios,

particularly for generating class diagram components. The quality

and relevance of collected data are essential for enabling the

model to accurately interpret requirement specifications. Figure 3

shows the data collection process used for this work. The collected

dataset is publicly available on GitHub1 to support transparency,

reproducibility, and research collaboration.

1. Data collection: This component discusses the creation of the

dataset used to train the machine learning models for generating

class diagrams from requirement texts. This dataset comprises

105 requirement problems covering various domains sourced

from academic literature (Bozyigit et al., 2023; Saini et al., 2020;

Alessio Ferrari et al., 2017), open educational resources (GitHub

and Kaggle). The quality and appropriateness of this dataset are

vital for the project’s success, forming the foundation of our

research and model development.

Creating a well-structured dataset is critical for developing

a machine learning model that can effectively extract classes,

attributes, and relationships from textual requirements. This

process is essential for training and evaluating the model’s

performance, ensuring accurate, and robust results. Data

annotations provide the necessary ground truth labels that

guide the model during training, enhancing its ability to

generalize effectively to new and unseen data. Consequently,

we employed a combination of automated and manual data

annotations to create the machine learning dataset. In the

absence of a standard RE dataset suitable for training our

model to extract class diagram components, we developed a

customized dataset specifically aimed at enabling the automatic

extraction of class diagrams from textual requirements. The

dataset, derived primarily from academic literature, presented

challenges due to its limited availability. To address these

challenges, we focused on ensuring the dataset provided realistic

and unbiased information—an essential factor for the model’s

effectiveness in practical applications. In its development, we

carefully considered several concerns highlighted by Paullada

et al. (2021) regarding dataset creation and use in machine

learning research:

• Avoiding biases in dataset annotation: A dataset

characterized by subjective values, judgments, and

biases may result in undesirable or unintended dataset

bias. To mitigate this, our dataset was carefully annotated

objectively.

• Dataset documentation practices: Proper documentation

is essential to avoid data under-specification and

1 https://github.com/amiinuumar/AutomatedRE
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FIGURE 2

An overview of the requirements engineering ML architecture from data collection to evaluation of the model.

FIGURE 3

Data collection and extraction steps.

inconsistency. We ensured that our data reflects

the ground truth by careful annotation to allow

for applicability.

• Reproducibility concerns: The absence of rigorous and

standardized documentation processes contributes to

reproducibility issues. We addressed this by ensuring
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detailed documentation to support other researchers in

replicating and reproducing our work.

Additionally, we followed the three dataset creation

elements by Sim et al. (2003): a motivating comparison, a

representative sample task, and performance measures.

• Motivating comparison: Combining motivation with

comparison, this element provides both the technical

comparison and the research agenda, aiming to support

dataset development for software engineering research.

Despite limited requirements texts available for model

generation, a literature search was conducted to address

this need.

• Sample task: Benchmark tests should reflect tasks that

the tool or technique will solve in practice. Given the

impracticality of including all problem domain cases, a

subset of tasks was selected based on criteria established

through a thorough search.

• Performance measures: Quantitative or qualitative,

performance measures are used to evaluate features,

showcase tool capabilities, and compare technologies.

These measures are detailed in Section 4.

In summary, we created the dataset with careful attention

to data collection, annotation, and documentation to ensure

replicability. Table 1 presents part of the statistics description of

the 105 requirements problems used in this study.

2. Data annotation and pre-processing: This is an essential

process to ensure that the data is well-annotated and formatted

correctly for use in training and evaluating the machine

learning model. Effective data preprocessing is crucial for

model development, as inaccurately preprocessed data can

lead to errors and unreliable predictions from the ML model,

potentially trained on these erroneous inputs. The following are

details of the specific preprocessing techniques we utilized to

prepare the datasets for model development.

(a) Data annotation: A key part of data collection is annotating

the dataset with ground truth labels, where class diagram

components (classes, attributes, and relationships) act as

reference points for model training. This annotation process

enables the model to learn linguistic patterns and understand

the semantics of class diagram elements. To create these

labels, we manually review and categorize the requirements

data, identifying classes, attributes, and relationships within

each requirement problem. The dataset includes five

columns: problem number, requirement text, and labeled

class, attribute, and relationship entries.

(b) Problem tokenization: To facilitate this process, we employed

the Natural Language Toolkit (NLTK) library.2 The primary

use of NLTK was to tokenize the requirement problems

into sentences, words, and parts of speech (POS). Each

requirement problem is broken down into sentences, the

sentences are broken down into words, and the POS of each

2 https://www.nltk.org/

word is labeled using the NLTK library. This ensures that the

model has efficient features to learn from.

(c) Processed data: Here, we combine the annotated data

with the tokenized data to form the final dataset used

in training the model. In the class/attribute column,

we label each class and attribute as identified in the

annotated data. The class/attribute/relationship column is

specifically used to label attributes that belong to a class,

while the class/class/relationship column is used to identify

relationships between classes. Excluding stop words, which

are discarded, any remaining words in the sentence are

tagged as “Other.” The resulting dataset contains the

following columns:

• Problem-number: A unique identifier for each

requirement problem.

• Sentence: Each sentence that makes up the problem

specification.

• Word: Each word comprising a sentence.

• POS: Parts of Speech.

• Class and attribute: Each word is identified as either

a class or an attribute, while the remaining words are

categorized as “other.”

• Class—Attribute relationship: The relationship of each

word (attribute) to a Class.

• Class—Class relationship: The relationship between

two classes.

Table 2 presents a sample requirement problem that has

been preprocessed for training. It illustrates how sentences

are tokenized into individual words and annotated with

linguistic and semantic information. Each word is assigned

its Part of Speech (POS), a tag indicating its role (e.g.,

“Class,” “Attributes,” or “Other”), and additional classifications

related to domain concepts: “Class_Related,” which defines the

relationship between a class and its attributes, and “Class_R,”

which depicts relationships among classes. The example

highlights relationships between domain-specific entities, such

as “Event” and “Venue,” within the context of a software

requirement. Therefore, the complete table for the preprocessed

data of the 105 requirements problems has 19,194 rows, which

constitute the dataset used for the study.

3. Data transformation: In our data transformation process,

we employ a ColumnTransformer to apply distinct

preprocessing techniques to various columns of our dataset,

tailoring the treatment according to the nature of the data

in each column. This approach ensures that each feature is

optimally prepared for the machine learning model.

Firstly, for the “Word” column, we use a

TfidfVectorizer with an n-gram range of (1, 2). This

means that the transformer not only considers individual words

(unigrams) but also pairs of consecutive words (bigrams) in its

analysis. This technique converts the text data into a TF-IDF

(Term Frequency-Inverse Document Frequency) format, which

is effective in capturing the importance of words in relation to

the corpus of documents, thereby enhancing the model’s ability

to understand and leverage textual data.
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TABLE 1 Statistics of the requirements problems.

No. R
e
q
u
ir
e
m
e
n
ts

n
a
m
e

S
o
u
rc
e

D
o
m
a
in

S
e
n
te
n
c
e
s

W
o
rd
s

U
n
iq
u
e
w
o
rd
s

S
to
p
w
o
rd
s
re
m
o
v
e
d

C
la
ss
e
s

A
tt
ri
b
u
te
s

R
e
la
ti
o
n
sh

ip
s

R1 Movie database Academic Entertainment 14 188 81 90 6 13 8

R2 Restaurant management Academic Business 18 211 104 130 10 28 8

R3 Veterinary clinic Academic Health 13 176 93 90 6 18 6

R4 Company database Saini et al., 2020 Business 10 107 61 67 8 12 8

R5 Food delivery system Saini et al., 2020 Business 8 84 48 50 3 5 3

R6 Event management

system

Saini et al., 2020 Business 9 76 44 40 5 5 4

R7 Course registration Bozyigit et al., 2023 Education 16 253 121 148 7 28 7

R8 Banking system Bozyigit et al., 2023 Finance 10 173 95 102 9 14 8

R9 Conference system Saini et al., 2020 Education 9 124 74 56 5 5 2

R10 Online auction Academic Business 15 266 110 143 8 23 7

R11 Online library system Saini et al., 2020 Education 12 120 59 69 4 4 3

R12 Course enrolment Saini et al., 2020 Education 7 82 51 45 3 4 2

... ... ... ... ... ... ... ... ... ... ...

R36 Estate agency Academic Construction 11 222 108 149 5 18 5

R37 Health and fitness

tracker

Academic Health 12 207 115 143 6 20 7

R38 Customer support

ticketing

Academic Business 13 232 123 157 4 14 3

R39 Car rental system Bozyigit et al., 2023 Business 9 167 87 113 6 20 7

R40 Library management Academic Education 10 170 106 114 4 16 5

... ... ... ... ... ... ... ... ... ... ...

R101 Finance management Academic Finance 10 128 76 81 3 14 3

R102 Smart agriculture Academic Agriculture 9 199 113 140 4 13 3

R103 Movie store Academic Entertainment 7 108 73 58 6 18 5

R104 Team management Academic Sports 16 171 89 97 8 13 7

R105 Pizza ordering system Academic Business 17 136 67 71 9 15 8

Next, the “Sentence” column undergoes a two-step

transformation within a Pipeline. Initially, it is processed

by a TfidfVectorizer, similar to the “Word” column,

but it only considers unigrams (individual words). This

is followed by a dimensionality reduction step using

TruncatedSVD with 100 components. Truncated

Singular Value Decomposition (SVD) is particularly useful

for handling the sparse matrices that result from TF-IDF,

enabling the model to capture the essence of the data with

reduced complexity.

Lastly, for the Part of Speech column, an OneHotEncoder

is applied. This transformer converts the categorical data of parts

of speech into a binary matrix — a format that is more suitable

for machine learning algorithms. It is set to ignore unknown

categories, ensuring robustness in handling a variety of inputs.

By using these tailored transformations, our data preprocessing

pipeline effectively prepares each aspect of the textual data,

enhancing the subsequent model’s performance and accuracy.

4. Data splitting: After pre-processing, data splitting divides

the dataset into training, validation, and test sets to enable

accurate model evaluation, hyperparameter tuning, and reduce

overfitting. The training set helps the model learn patterns in

the data, the validation set fine-tunes and evaluates the model

during training, and the test set assesses the final performance on

unseen data, simulating real-world scenarios. In this work, we

adopted the common 80:20 split ratio, widely used in machine
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TABLE 2 A sample preprocessed requirements problem description.

Sentence Word POS Tag Class_Related Class_R

An event is organized in a venue. An DT Other Other Other

An event is organized in a venue. event NN Class Event Venue

An event is organized in a venue. is VBZ Other Other Other

An event is organized in a venue. organized VBN Other Other Other

An event is organized in a venue. in IN Other Other Other

An event is organized in a venue. a DT Other Other Other

An event is organized in a venue. venue NN Class Venue Event

An event can be a concert event or

a theatrical event.

An DT Other Other Other

An event can be a concert event or

a theatrical event.

event NN Class Event Venue

An event can be a concert event or

a theatrical event.

can MD Other Other Other

An event can be a concert event or

a theatrical event.

be VB Other Other Other

learning, to dedicate 80% of data for training and 20% for

testing, following the Pareto principle for balancing learning and

evaluation. Increasing the training set size typically enhances

model performance (Neto et al., 2024).

3.2 Machine learning algorithm

We choose the Support Vector Machines (SVMs) algorithm,

which is a powerful supervised learning method used for text

classification. The SVM is particularly favored in text classification

due to its effectiveness in high-dimensional spaces, which is

typical of text data. It utilizes text vector representations like

TF-IDF (Term Frequency-Inverse Document Frequency) and can

create a feature space with thousands of dimensions. SVMs excel

in such settings by not only handling the high dimensionality

but also by focusing on the most critical features that define

the decision boundary. At its core, SVM works by finding the

hyperplane that best separates different categories in the data. This

separation is achieved by maximizing the margin between data

points of different categories, which is key to SVM’s robustness and

generalization ability in text classification.

SVM also has different kernel functions, which allow the

algorithm to fit the maximum-margin hyperplane in a transformed

feature space. We choose the linear kernel for our text classification

after we find that the kernel accuracy is better than that of the

other kernels [Polynomial and Radial Basis Function (RBF)]. We

leveraged the grid search to test all the kernels and hyperparameters

and found that the accuracy of the linear kernel was better in the

developed models.

3.2.1 Model evaluation
The evaluation phase in our machine learning framework

ensures the model performs well on both training and unseen data.

This involves using precision, recall, and F1 scores to measure

accuracy in categorizing data, particularly in classification tasks.

These metrics highlight strengths and areas for improvement,

offering insights into performance aspects like error rates and

balancing false positives and negatives. For tasks with imbalanced

datasets or specific outcomes, selecting appropriate metrics is

essential to provide a fair, comprehensive assessment of the model’s

capability to identify relevant instances effectively.

Precision: Precision measures the proportion of correctly

predicted positive instances (e.g., correctly identified classes or

attributes) out of all instances that were predicted as positive. High

precision indicates that the model makes fewer false positive errors.

Precision =
True Positives

True Positives+ False Positives
(1)

Recall: Recall assesses the model’s ability to identify relevant

components by measuring the proportion of correctly predicted

positive instances out of all actual positive instances. High recall

means the model misses fewer relevant components (e.g., classes or

attributes).

Recall =
True Positives

True Positives+ False Negatives
(2)

F1 score: The F1 score provides a harmonic mean of precision

and recall, offering a balanced metric that considers both false

positives and false negatives. This is particularly important in our

case, as it ensures that the model performs well in both accuracy

(precision) and completeness (recall).

F1 = 2×
Precision× Recall

Precision+ Recall
(3)

These metrics collectively offer a robust framework for

evaluating the machine learning model’s capability in accurately

and comprehensively extracting class diagram components from

natural language requirements. Precision focuses on the quality
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of the positive predictions, recall emphasizes capturing all true

instances, and the F1 score balances these two aspects to provide

an overall performance measure.

4 Model training and testing

The training of the machine learning model was structured

using a Pipeline, which streamlined the process by combining

data preprocessing and classification into a single step. The

pipeline included a preprocessor for data transformation and

an SVC (Support Vector Classifier) with probability=True

for classification. To optimize the SVM classifier, we employed

a grid search approach, systematically exploring a range of

hyperparameters for each SVM kernel: linear, RBF, polynomial,

and sigmoid. For each kernel type, we varied the regularization

parameter C, and for the RBF, polynomial, and sigmoid kernels,

we also varied the gamma parameter. Additionally, for the

polynomial kernel, the degree of the polynomial was varied. This

comprehensive grid search was conducted using GridSearchCV

with 5-fold cross-validation, ensuring a robust search for the most

effective model parameters.

The grid search process was executed separately for each

kernel type, with the results of each search being carefully

recorded. For each kernel, key metrics like mean test score,

standard deviation of the test score, and rank based on test

score were analyzed. Additional parameters such as C, gamma,

and degree were also displayed where relevant. This detailed

analysis allowed for a nuanced understanding of each kernel’s

performance. After identifying the best-performing model for each

kernel, we evaluated them on the test set. The performance of

these models was then summarized in a classification report,

providing a comprehensive overview of metrics such as precision,

recall, and F1-score. The results from each kernel were compiled

into a summary table, offering a clear comparison of the

efficacy of different kernels and their respective hyperparameter

configurations in our specific classification task.

The model testing phase assesses the performance of machine

learning models in extracting class diagram components (classes,

attributes, and relationships). Following standardmethodology, the

models were tested on unseen data to evaluate their generalization

ability, using precision, recall, and F1 score as key metrics. These

metrics, commonly applied in NLP and requirements engineering,

provide a balanced view of the model’s accuracy, completeness,

and effectiveness in correctly identifying relevant components

from natural language requirements, ensuring comparability with

existing studies.

To apply this framework, we developed and tested

three distinct models, each designed to predict one of

the key features required for generating class diagrams:

class_attribute, class_attribute_relationship,

and class_class_relationship. The following section

presents the results of testing these models, providing insights into

their performance and effectiveness in addressing requirement

problems.

In our evaluation of the class_attribute prediction

model, we employed a comprehensive grid search approach to

identify the optimal kernel and hyperparameter settings for our

SVM classifier. The grid search revealed that the linear kernel

provided the best accuracy, approximately 93.5%. The identified

hyperparameters were kernel=’linear’ and C=1, which were

used to develop the final model. The overall accuracy of the model

stands at 92%, indicating its reliability in predicting correct classes

and attributes, which is critical for reducing errors in real-world

applications.

For the class_attribute_relationship model, we

similarly conducted a grid search to determine the optimal

configurations for the SVM classifier. The results indicated that

the linear kernel provided the best performance, with a mean test

score of approximately 93.4%. The chosen hyperparameters were

kernel=’linear’ and C=10. This model achieved an overall

accuracy of 94% and high weighted average precision and F1-score

of 0.97 and 0.94, respectively.

Lastly, the class_class_relationship model was also

evaluated through a grid search, where the linear kernel achieved

a high mean test score of approximately 96.3%. The final

hyperparameters selected were kernel=’linear’ and C=100.

This model reached an impressive accuracy of 97%, with weighted

averages for precision, recall, and F1-score all exceeding 0.97.

The comprehensive results of these evaluations are summarized

in Table 3. The high precision, recall, and F1-scores across

models indicate robust performance in extracting relevant

components for class diagram generation. While the macro

averages suggest some inconsistency across classes, particularly

in the class_attribute_relationshipmodel, the overall

high weighted averages demonstrate the models’ effectiveness

and reliability in practice. These findings support the utility of

the selected linear kernels and their respective hyperparameters,

confirming their suitability for the task of extracting class diagram

components from natural language requirements.

4.1 Model deployment

In the model deployment phase, we used the NLTK

library to preprocess the text and then used the three

trained models to process and analyse the structured

text data. These models are class_attribute model,

class_attribute_relationship model, and

class_class_relationship model, each dedicated to

a specific aspect of text classification. The models are loaded using

the load function from the joblib library. For demonstration,

a sample text representing a problem statement is introduced for

processing. This text undergoes tokenization and POS tagging

using NLTK’s sentence and word tokenization methods, along

with POS tagging. The tokenization process breaks the text into

sentences and words, while POS tagging assigns grammatical

categories to each word.

After preprocessing, the data is structured into a

DataFrame, comprising columns for sentences, words, and

their respective POS tags. The class_attribute model

is first applied to predict tags for each word, categorizing

them as potential classes or attributes. Following this, the

class_attribute_relationship model predicts

the relationships of these words to classes, indicating
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TABLE 3 Precision, recall, F1-score, and accuracy results for di�erent models.

Models Precision Recall F1-score Accuracy

class_attribute 0.85 0.82 0.83 0.92

class_attribute_relationship 0.97 0.66 0.65 0.94

class_class_relationship 0.98 0.97 0.97 0.97

Macro avg 0.87 0.74 0.72 -

Weighted avg 0.92 0.92 0.92 -

FIGURE 4

Model deployment workflow.

whether each word is related to a class or not. Finally, the

class_class_relationship model uses the Class

and Attribute and class-Attribute Relations

predictions to determine relationships between classes. Figure 4

shows an overview of the model flow. This figure illustrates

deploying the trained models to analyze new text data. Starting

from tokenization and tagging the sample problem text, it follows

through the prediction stages using the three models, culminating

in extracting key information like tags, class-related words, and

class relationships. The predictions from these models provide

comprehensive insights into the structure and components of the

text, identifying classes, attributes, and their interrelations. This

information is crucial for understanding and extracting meaningful

patterns from the text.

5 Evaluation

In the previous section, we tested the models using validation

data from the requirements dataset. Therefore, to assess the

applicability of the proposed automated requirements engineering

framework, we conducted two forms of evaluation: comparative

evaluation and experimental study with real-world requirements

specification. The importance of rigorous evaluation in machine

learning cannot be overstated, especially in requirements

engineering, where the accuracy and relevance of extracted

information directly impact the quality of the resulting software

models. Given the inherent variability and complexity of natural

language, especially in software requirements, a more robust and

comparative evaluation is required to ensure that the models

can generalize effectively beyond the dataset used for training.

Additionally, experiments conducted with real-world software

requirements will help determine whether the models can handle

diverse and complex scenarios, providing valuable insights into

their practical applicability.

5.1 Evaluation data and methodology

This section details the evaluation techniques and metrics

employed to assess the machine learning models’ performance

for extracting class diagram components from natural language

requirements. The approach adopted follows the standard

methodology commonly used in evaluating machine learning

models, ensuring consistency and comparability with existing

studies in the field. Specifically, the evaluation consists of three

key metrics: precision, recall, and F1 score. These metrics provide

a comprehensive understanding of the model’s performance,

particularly in accuracy, completeness, and balance between

precision and recall.

5.1.1 Comparative evaluation data
The dataset used for the evaluation consists of 12 requirement

problems, which were sourced from the work of Saini et al.

(2022). The problems (1–12) consist of software requirements

described in natural language (NL). Each requirement description

comprises sentences mostly in the format described earlier, i.e.,

subject, action, object, context, etc., with a focus on functional

requirements. Each problem provides a detailed description of a

specific requirement for the design and development of software

across various domains. These problems facilitate the extraction

of components for class diagrams, namely classes, attributes, and

relationships, which form the primary focus of this study. Based
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on the three models developed, the components are systematically

analyzed and extracted for further modeling and implementation.

This dataset was selected based on its alignment with the nature

of the evaluation problem and for the sake of maintaining

fairness and consistency in comparisons with previous approaches.

The selection of this dataset ensures that the performance of

our model can be directly compared to the results reported

by Saini et al. (2022), thus allowing for a meaningful evaluation

and benchmarking. The dataset contains a diverse range of

software requirements, covering different domains which were

originally used to evaluate their tool for extracting domain models,

particularly class diagrams, from natural language requirements. By

using the same dataset, we ensure that the complexity and variety

of the requirements remain consistent with the prior study, thereby

enhancing the rigour and comparability of our evaluation—an

aspect notably lacking in previous research. Moreover, the use of

a common dataset mitigates potential biases or inconsistencies that

might arise from using different datasets across studies.

A comparative assessment of our machine learning models

and existing approaches for extracting class diagrams from

natural language requirements is presented, highlighting

both strengths and limitations. The evaluation combines

quantitative and qualitative analyses using metrics such as

accuracy, precision, recall, and F1 score. Models were selected

for comparison based on their relevance to class diagram

extraction tasks. Specifically, our models are compared to those

in prior studies, such as Saini et al. (2022), which used a rule-

based and machine learning approach. The work was chosen

because we were able to obtain the requirements problems

used in their evaluation, ensuring a fair, direct baseline for

comparison.

Table 4 shows the comparative results of our model vs.

DoMoBot, highlighting F1, precision, and recall across 12

requirement problems. Our model consistently outperforms

DoMoBot in most cases; for instance, in Problem 1, it achieves

an F1 score of 87% compared to DoMoBot’s 71%, with similarly

higher recall (91% vs. 67%), reflecting better true positive detection.

In some problems, the difference is minimal; for example, in

Problem 10, both models perform well, with our model at an F1

of 91% and DoMoBot slightly higher at 94%. The trend shows our

model’s balanced precision and recall performance, particularly for

class and attribute extraction. This comparison uses DoMoBot’s

“Found Configurations” (pre-interactive adjustments), providing a

fair baseline of initial output capabilities.

The comparison highlights our model’s robustness across

diverse requirements while also noting areas where DoMoBot

remains competitive, particularly in precision for certain problems

(e.g., Problems 10 and 11). Overall, our model’s consistently

high recall and F1 scores demonstrate its strength in balancing

precision and recall, effectively managing false positives and

negatives in class diagram extraction. In summary, this analysis

confirms our model’s high accuracy and strong performance

across key metrics like F1 score and recall in processing

natural language requirements, showcasing its potential for

reliable class diagram extraction and identifying areas for further

refinement.

5.1.2 Analysis of the experimental studies
We evaluated our machine learning models on two real-

world software requirements: a stroke recovery assistant system

(medical domain) and an archive space project (information

management domain). These longer, more complex requirements

test the model’s ability to handle domain-specific language and

ambiguity. Statistical data, presented in Table 5, highlights key

metrics such as vocabulary diversity and class relationships,

informing the evaluation of the model’s precision and robustness.

Thus, demonstrating the model’s adaptability and effectiveness in

extracting class diagram components across diverse domains.

The results of testing the proposed machine learning models

on two real-world requirements problems are summarized. These

experiments evaluate the models’ performance in extracting class

diagram components and their generalization ability with diverse

data. The outcomes include quantitative metrics such as precision,

recall, and F1 score, offering insight into themodels’ effectiveness in

identifying key components from natural language requirements.

Table 6 presents the performance of our class diagram extraction

model on two real-world requirements problems. While accuracy

is high for both systems (96% and 93%, respectively), a significant

discrepancy exists between precision and recall, impacting the

overall F1-score.

For System 1, both precision and recall are low (32%

and 33%, respectively), resulting in a low F1-score of 32.5%.

This indicates a difficulty in correctly identifying relevant

components while minimizing false positives. For System 2, the

model achieves high recall (97%), demonstrating its ability to

capture most relevant components. However, lower precision

(46%) leads to a moderate F1-score of 62.6%, suggesting

a higher rate of false positives. These results highlight two

key challenges:

• Compound words and implicit relationships: The presence

of compound words in the ground truth and implicit

relationships between classes posed a significant challenge for

the model. For example, System 1’s requirements included

terms like “MobileInterface,” “WebInterface,” “MedicalEvent,”

and “DataCollection,” which the model sometimes failed to

correctly segment into their constituent parts (e.g., separating

“Mobile” and “Interface”). This difficulty in recognizing the

individual components of compound terms contributed to

lower precision. Furthermore, when relationships between

classes were implied rather than explicitly stated, the models

struggled to consistently extract accurate relationships.

• Data imbalance: The software requirement problems

exhibit an imbalance, with high-frequency words like “the”

contributing to high accuracy but not necessarily reflecting

true performance in extracting meaningful class diagram

components. This imbalance also likely contributes to the

divergence between precision and recall, as the model may be

biased toward predicting frequent terms.

To address the model’s weaknesses in precision, increasing the

amount of training data is essential, as larger datasets enhance

generalization and reduce false positives. Future work could involve
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TABLE 4 Comparison between our model and Base Model (DoMoBot) using the same requirement problems.

Requirements F1 (%) Precision (%) Recall (%)

Our model Base model Our model Base model Our model Base model

Problem 1 87 71 84 75 91 67

Problem 2 83 77 77 83 93 71

Problem 3 81 67 76 75 90 60

Problem 4 81 80 76 86 92 75

Problem 5 74 82 77 87 71 78

Problem 6 95 93 93 100 98 87

Problem 7 96 80 93 80 100 80

Problem 8 73 90 76 93 79 87

Problem 9 81 94 77 96 91 92

Problem 10 91 94 90 100 92 89

Problem 11 80 95 77 100 85 91

Problem 12 98 89 97 100 99 80

TABLE 5 Statistical overview of the experimental studies.

No R
e
q
u
ir
e
m
e
n
ts

n
a
m
e

D
o
m
a
in

S
e
n
te
n
c
e
s

W
o
rd
s

U
n
iq
u
e
w
o
rd
s

S
to
p
w
o
rd
s
re
m
o
v
e
d

C
la
ss
e
s

A
tt
ri
b
u
te
s

R
e
la
ti
o
n
sh

ip
s

System 1 Stroke recovery assistant Health 12 256 131 174 13 10 5

System 2 Archive space project Information

system

11 187 123 132 11 2 6

TABLE 6 Results of the two studies.

Requirements Accuracy Precision Recall F1

System 1 96 32 33 32.5

System 2 93 46 97 62.6

fine-tuning large language models (LLMs) such as GPT or BERT,

which excel at understanding complex language patterns, on

domain-specific datasets for class diagram extraction.

In addition to the quantitative results, a qualitative evaluation

compared the class diagrams generated by the machine learning

models with those created by human experts to assess alignment

with human understanding of the requirements. To establish the

ground truth, a human expert extracted the components of the

class diagrams based on the problem descriptions, producing

a manual sketch that identified relevant classes, attributes, and

relationships. A second expert reviewed these diagrams to ensure

accuracy and reliability, providing a trustworthy benchmark for

comparison with machine-generated outputs. The comparison

showed that the machine learning models successfully extracted

most classes and attributes identified by human experts. The

automated models often recognized attributes and relationships

similar to the human interpretations, demonstrating thorough

parsing of the natural language descriptions. In some cases,

the models identified additional classes and attributes, although

these were technically functions of the system. However, when

relationships were implied rather than explicitly stated, the

models struggled to extract them accurately, reflecting the lower

F1 scores in this area. Overall, the machine learning model

extracted the most relevant classes, attributes, and relationships

for the Stroke Recovery Assistant System and the archive space

system, though some differences in naming conventions and

relationship identification were noted between the machine-

generated and manually crafted diagrams. The results indicate

that the framework can extract class diagram components—classes,

attributes, and relationships—providing requirements analysts

with a quick overview to facilitate model-driven engineering.

Figure 5 summarizes the evaluation of the extracted class diagrams

for the two case studies.
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FIGURE 5

Evaluation of extracted class diagram for the studies.

6 Discussion

The comparative evaluation of our models against existing

approaches, particularly Saini et al. (2022), reveals several key

insights on the validation and evaluation of an automated RE tool.

Across the 12 natural language requirements problems, our models

demonstrated better performance in most tasks, especially in terms

of recall and F1 score. For example, in Problem 1, our model

outperformed DoMoBot with an F1 score of 87% compared to

DoMoBot’s 71%, and a recall of 91% vs. DoMoBot’s 67%. This trend

highlights the model’s ability to capture a broader range of relevant

class and attribute components, effectively reducing false negatives.

However, the performance comparison also exposes areas for

improvement, particularly in precision. While the model excels

at recall—detecting most of the correct elements—it occasionally

identifies irrelevant components, leading to false positives. In

Problem 10, for instance, DoMoBot narrowly surpasses our model

in precision (100% vs. 90%), indicating that DoMoBot’s rule-based

approach may handle certain edge cases better. This demonstrates

that while our model maintains a more balanced trade-off between

precision and recall, further refinement is needed in cases where

precision is critical.

In the real-world evaluation using two larger problems (System

1 and System 2), the model achieved high accuracy (96% and

93%, respectively). However, a significant discrepancy between

precision and recall impacted the F1-score. For System 1, both

precision and recall were low (32% and 33%, respectively), resulting

in a low F1-score of 32.5%. This indicates difficulty in correctly

identifying relevant components while minimizing false positives.

This difficulty was exacerbated by the presence of compound

words within the requirements, which the model struggled to

segment correctly. The high accuracy, despite low precision and

recall, suggests the model may be influenced by factors like

data imbalance, rather than accurately extracting class diagram

components. While the results from both comparative and real-

world evaluations indicate strong potential, several limitations need

to be addressed. One major limitation is the model’s precision,

especially when dealing with real-world, complex requirements

where ambiguities are more frequent. The model often misclassifies

irrelevant components as part of the class diagrams, contributing

to false positives. This issue was especially pronounced in System

2 of the real-world evaluation, where the precision was only 46%,

despite the recall being high at 97%. This imbalance suggests that

the model’s ability to generalize may be limited by the complexity of

the requirements language. Another performance gap is themodel’s

struggle to infer implied relationships between classes. In the

qualitative evaluation against human-expert-generated diagrams,

the model successfully identified the most explicit classes and

attributes but faltered when relationships were implied rather than

clearly stated. This limitation indicates that the model still lacks the

deep contextual understanding required to capture implicit details,

which often form the basis of more complex class relationships in

real-world systems.

This study highlights significant implications for automating

class diagram extraction from natural language in requirements

engineering. The model’s high recall across diverse specifications

demonstrates its potential to streamline processes by generating

system models directly from requirements, reducing the workload

on human analysts. However, precision issues limit its reliability for

fully replacing manual efforts, especially in safety-critical systems.

While it performs well in identifying components, its limitations

in handling complex, ambiguous requirements necessitate human
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oversight to ensure accuracy. Despite these challenges, the

model shows promise as a supplementary tool, particularly in

agile environments, enhancing productivity by automating initial

diagram extraction. Academically, it offers a foundation for

research and education in automated requirements engineering,

bridging theoretical concepts with practical applications.

In conclusion, the proposed model demonstrates strong

potential, particularly in recall, but further refinement is required

to improve precision and address the complexities of real-world

requirements. The insights gained from this research provide a

solid foundation for future advancements, paving the way for

more practical, reliable, and efficient automated requirements

engineering solutions.

7 Threats to validity

While the framework developed and evaluated in this paper

shows promising results, several threats to its validity must

be considered. These limitations arise from the methodology,

experimental design, and the inherent constraints of automated

approaches, and they affect both the internal and external validity

of the study.

Internal validity: A key limitation of this study lies in

the ground truth used for evaluation, as the manually created

class diagrams by human experts introduce subjectivity, which

can vary in interpreting requirements. Although these diagrams

were verified by a second expert to reduce bias, differences in

expertise and understanding can lead to inconsistencies, affecting

the internal validity of the comparison with the model’s output.

Additionally, the model’s inability to extract compound words for

class names or attributes limits its accuracy; missing terms like “user

profile” or “student type” results in incomplete representations

of system components. Furthermore, the model struggles to

capture implicit concepts within requirements, often failing to

infer meanings that human experts would readily understand,

such as the notion of “status” or “type” associated with student

classifications. These limitations collectively challenge the model’s

ability to accurately represent requirements and compromise the

validity of the results.

External validity: The generalizability of the framework

raises significant concerns, primarily because the evaluation was

conducted using software requirements exclusively in English,

limiting its applicability to non-English-speaking environments.

Given that software development projects are often multinational,

the framework’s performance in other languages remains untested,

which threatens its external validity. Additionally, while the two

real-world requirements specifications evaluated reflect typical

software engineering scenarios, they may not encompass the full

diversity and complexity of real-world projects. The limited scope

of these case studies makes it challenging to generalize the findings

across various software development contexts. Therefore, a broader

evaluation using a more diverse range of requirements from

different industries and project sizes is necessary to enhance the

framework’s robustness and applicability.

Construct validity: The model’s reliance on natural language

processing (NLP) and machine learning techniques presents

inherent limitations that may affect the construct validity of the

study. NLP models often struggle with domain-specific language

and ambiguity, which are prevalent in software requirements.

Although the framework attempts to mitigate these challenges,

its capability to interpret ambiguous terms and specialized

terminology remains constrained, threatening its effectiveness

in accurately capturing all relevant class diagram components.

Furthermore, the framework currently lacks integration with

Large Language Models (LLMs), which could enhance context

comprehension and enable more informed inferences about

implicit concepts. Incorporating these advanced techniques could

significantly improve the model’s ability to interpret complex

requirements, thereby bolstering the overall construct validity of

the approach.

Conclusion validity: Finally, the comparison between the

model’s output and the manually created ground truth raises

potential risks to conclusion validity. The subjective nature of

human-generated class diagrams means that observed differences

between the model’s performance and the ground truth may

not only indicate model errors but also reflect discrepancies in

human interpretation. Although human validation was conducted

to address this issue, any biases or inconsistencies in the manual

process could still impact the reliability of the evaluation results.

Additionally, evaluation metrics such as precision, recall, and F1

score provide valuable quantitative insights but may not fully

capture the model’s performance nuances in real-world scenarios.

While these metrics indicate accuracy, they do not consider

factors like usability or the model’s ability to manage complex,

dynamic requirements. Consequently, the recorded accuracy may

not completely represent the model’s effectiveness in practical, less-

controlled environments, posing a potential threat to conclusion

validity.

8 Conclusion and future work

In conclusion, our work on developing an automated

requirements engineering framework for agile model-

driven development, aimed at analysing natural language

text and extracting class diagrams, has resulted in a solid

foundational solution. The framework incorporates three

distinct machine learning models, which were specifically

developed for this purpose: the Class_Attribute model for

extracting classes, the Class_Attribute_Relationship

model for identifying class attributes, and the

Class_Class_Relationship model for identifying

relationships between extracted classes. Trained and evaluated

on a carefully curated dataset of requirements specification

problems across various domains, these models achieved high

accuracy. We also conducted a comparative evaluation against

an existing approach using the same 12 requirements problems

and standard evaluation metrics (precision, recall, and F1

score). Our framework achieved an average F1 score of 85.00%,

precision of 82.75%, and recall of 90.08%, demonstrating its

effectiveness in capturing relevant components across diverse

scenarios. Additionally, we tested the framework on two real-world

requirements descriptions—one from the medical field and
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another from information systems—yielding promising accuracy

rates of 96% and 93%, respectively. Overall, these findings highlight

the potential for widespread adoption of automated requirements

engineering frameworks, leading to improved accuracy, reduced

manual effort, and more reliable software development practices.

However, challenges remain, particularly in handling requirements

where the model occasionally misidentifies irrelevant elements.

Addressing these limitations will be crucial for further refining the

framework’s capabilities and ensuring its practical utility.

In the future, we plan to enhance the framework’s usability

and adoption by exploring multilingual representations using large

language models (LLMs). Key priorities include fine-tuning LLMs

for improved extraction of class diagrams, better handling of

compound words, and integrating an interactive user interface. The

potential of LLMs, such as ChatGPT, is substantial. Furthermore,

recognising the importance of non-functional we will explore

machine learning techniques for their extraction and analysis

from textual descriptions. To extend these capabilities, we will

also consider integrating requirements management activities,

such as tracking and implementing changes throughout the

software development life cycle, ensuring alignment with agile

methodologies.
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