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The advancement of cloud computing technologies has led to increased usage 
in application deployment in recent years. Kubernetes, a widely used container 
orchestration platform for deploying applications on cloud systems, provides 
benefits such as autoscaling to adapt to fluctuating workload while maintaining 
quality of service and availability. In this research, we designed and evaluated a 
proactive Kubernetes autoscaling using Facebook Prophet and Long Short-Term 
Memory (LSTM) hybrid model to predict the HTTP requests and calculate required 
pod counts based on the Monitor-Analyze-Plan-Execute loop. The proposed 
model not only captures seasonal data patterns effectively but also proactively 
predicts the pod requirements for timely and efficient resource allocation to 
reduce resource wastage while enhancing cloud computing applications. The 
proposed hybrid model was evaluated using real-world datasets from NASA 
and the Federation Internationale de Football Association (FIFA) World Cup to 
benchmark and compare with existing literature. Evaluation results indicate that 
the proposed novel hybrid model outperforms single-model proactive autoscaling 
by a maximum margin of 65–90% accuracy when compared to NASA and FIFA 
World Cup datasets. This study contributes to the fields of cloud computing and 
container orchestration by providing a refined proactive autoscaling mechanism 
that enhances application availability, efficient resource usage, and reduced costs 
and paves the way for further exploration in increased prediction speed, integrated 
with vertical scaling and implementations using Kubernetes.
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1 Introduction

The advancement of cloud computing has fundamentally transformed the landscape of 
application development and deployment (Al-Dhuraibi et al., 2018). One core component of 
cloud computing is virtualization technology—often referred to as containerization and 
Kubernetes. Virtualization provides an abstraction layer to application deployment without 
coupling with underlying host devices, allowing application developers and infrastructure 
engineers to use the most suitable technology for the designed application (Varghese and 
Buyya, 2018).

The advancement of containerization technology allows for research and development 
in application development, deployment, and container orchestration platforms. 
Containerization enables developers to encapsulate the application and its dependencies 
into a single package that operates in a decoupled manner with the host machine 
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(Hardikar et  al., 2021). The introduction of microservice 
architecture has significantly improved the ability to use 
containerization and Kubernetes deployment in 
cloud environments.

Initially developed as an open-source project, Kubernetes is a 
technology that abstracts away the underlying infrastructure of the 
deployment. The advancements in cloud computing allow engineers 
to focus away from resources and move to application-centric 
deployments and management. Kubernetes introduced the concepts 
of state management and autoscaling, making the applications highly 
available and reliable in large-scale deployments (Shah and Dubaria, 
2019). Kubernetes allows the deployment of different workloads and 
combines multiple deployment targets, making it an indispensable 
part of modern cloud infrastructure (Megino et al., 2020).

Adopting the advanced forecasting models in Kubernetes 
autoscaling leads to significantly reducing the wastage of resources 
while improving the application availability and timely scaling actions 
(Marie-Magdelaine and Ahmed, 2020). The application of 
reinforcement learning for dynamic autoscaling allows systems to 
learn and adapt to change the scaling conditions based on the feedback 
(Garí et  al., 2021). Using hybrid models combining two or more 
machine learning methods also shows improved forecasting accuracy 
compared to single model furcating (Podolskiy et al., 2018).

The integration of machine learning models into Kubernetes 
autoscaling has made significant improvements, but current solutions 
lack the ability to capture complex seasonal patterns and workload 
fluctuations accurately. Current research has examined either 
statistical methods or neural network-based approaches; however, 
limited studies integrate both methodologies to exploit their 
advantages in Kubernetes autoscaling. This raises a critical question: 
How can a hybrid time series forecasting model that combines 
statistical and neural network-based approaches enhance the accuracy 
and efficiency of proactive autoscaling in Kubernetes compared to 
single-model solutions and default Kubernetes HPA? This study aims 
to develop and assess a hybrid model-based proactive Kubernetes 
autoscaling framework that enhances cloud computing applications’ 
workload prediction and scaling accuracy for cloud 
computing applications.

The proposed framework utilizes time-series analysis (TSA), a 
mechanism that can be used in forecasting future trends and patterns 
based on historical data to predict future resource requirements. TSA 
has two significant implementations. Statistical methods such as 
Autoregressive Integrated Moving Average (ARIMA) model, Seasonal 
Autoregressive Integrated Moving Average (SARIMA) model, 
Facebook Prophet (also known as Prophet), and neural network-
based methods such as Artificial Neural Networks (ANN), Recurrent 
Neural Networks (RNN), Long Short-Term Memory (LSTM), 
Bidirectional Long Short-Term Memory (Bi-LSTM). The practical 
applications of TSA methods have been widely discussed in both 
workload prediction and economics (Ahmed et al., 2021), weather, 
healthcare, and logistics. The proposed framework uses a combination 
of a statistical model, Prophet, and a neural network-based method, 
LSTM, to build a hybrid forecasting model.

Significant contributions from this study are listed as follows:

 1 Using a hybrid model to increase the prediction accuracy of a 
seasonal data series in TSA, highlighting the accuracy 
compared to other TSA methods.

 2 Hybrid model-based proactive autoscaling architecture for 
Kubernetes highlights higher accuracy in scaling decisions 
than default Kubernetes HorizontalPodAutoscaler (HPA) and 
single-model-based solutions.

The proposed algorithm was tested and benchmarked against 
real-world datasets to compare with default HPA and single model-
based solutions. The proposed algorithm was compared against 
different dataset types with complex seasonal patterns and different 
hybrid model combinations to test efficiency and accuracy.

2 Related work

This section provides an overview of current research that has 
examined the application of TSA techniques in cloud systems and 
Kubernetes for autoscaling applications. TSA is utilized in various 
fields, including weather forecasting, earthquake prediction, and 
mathematical finance. The method uses past and present observed 
data to predict future values. Table 1 shows a comprehensive overview 
of significant autoscaling techniques employed in cloud and 
Kubernetes applications.

2.1 Reactive autoscaling

HPA is the default scaling mechanism in Kubernetes. It employed 
rule-based reactive scaling based on the pod’s CPU or memory 
consumption (Kubernetes Documentation, 2024). HPA is effective in 
many scenarios, but its reactive nature can lead to overprovision or 
performance degradations due to the cold start time of the applications 
(Pahl and Lee, 2015).

Zhang et al. (2009) presented a framework to optimize cost and 
resources in hybrid clouds by distributing the workloads between 
private and public clouds using ARIMA-based TSA. Al-Dhuraibi 
et al. (2017) proposed an architecture called ELASTICDOCKER, 
an autonomic vertical elasticity system for Kubernetes that 
automatically adjusts the resources allocated to containers based 
on workload demands. Even though vertical scaling comes with 
default Kubernetes, the limitations of unavailability in Docker 
deployments, human intervention, host machine capacity issues, 
and performance degradations were addressed with 
ELASTICDOCKER. ELASTICDOCKER framework improved 
resource utilization, optimized cost and enhanced application 
performance. Yan et al. (2021) developed the HANSEL framework, 
which is focused on adaptive horizontal scaling for microservices. 
It uses Bi-LSTM to capture complex patterns in workload data to 
generate scaling decisions.

However, the reactive approaches have limits in scaling since the 
system can only react after the actual workload change happens. In 
contrast, the proactive approach studies past data and predicts 
the demand.

2.2 Proactive autoscaling

Prachitmutita et al. (2018) present a cost-effective autoscaling 
framework for an Infrastructure as a Service (IaaS) platform using 
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ANN and RNN for the predictions and a resource scaling 
optimization algorithm. It showed that the accuracy of the ARIMA 
model became worse with more predicted steps ahead. Fang et al. 
(2012) propose a novel Resource Prediction and Provisioning 
Scheme (RPPS) for cloud data centers for hybrid clouds. RPPS uses 
CPU utilization to predict future resource requirements through 
ARMA, which achieves better results than default HPA. Borkowski 
et  al. (2016) used ANN to forecast task duration and resource 
utilization. This approach focuses on task-based applications only. 
Ciptaningtyas et  al. (2017) proposed an ARIMA-based resource 
elasticity controller for docker-based web applications. The proposal 
is limited to predicting resource allocations only. Tang et al. (2018) 
proposed a workload prediction model, “Fisher” for Docker-based 
environments using Bi-LSTM. This study only discusses the 
prediction part and lacks autoscaling.

Calheiros et  al. (2015) proposed ARIMA-based workload 
prediction, which can provision resources proactively based on 
HTTP requests. The results show that the model provides 91% 
accuracy with seasonal data. This proposed method lacks accuracy in 
non-seasonal workloads and comparison with other approaches. 
Messias et  al. (2015) explore using genetic algorithms (GAs) to 
combine time-series prediction models for autoscaling web 
applications. However, this proposal lacks the Kubernetes integration. 
Imdoukh et  al. (2019) proposed an LSTM-based autoscaling 
framework for Kubernetes pods. The authors concluded that the 
proposed LSTM model has a slightly higher error than ARIMA in 1 
step, but LSTM has a higher prediction speed. Toka et al. (2020) 
proposed a proactive Kubernetes autoscaling using AI-based 
forecasting. The proposed proactive auto scaler uses the best model 
from Autoregressive (AR), Hierarchical Temporal Memory (HTM), 
and LSTM in the given moment. This proposed method can 

be  considered integration-friendly despite lacking forecasting 
accuracy and validation results against standard datasets.

Dang-Quang and Yoo (2021) also proposed a proactive Kubernetes 
autoscaling model using Bi-LSTM. The authors discussed the 
implementation in Kubernetes and validated the results using (Arlitt 
and Jim, 1998) and (NASA-HTTP, 1995). The proposed implementation 
was evaluated against an actual application that uses the Resource 
Removal Strategy (RRS) to optimize resource usage and cost. Even 
though this study did not discuss the seasonality component, results 
show that the proposed model performs better than ARIMA and LSTM.

About published studies, the majority of the reactive approaches 
use rule-based models to perform autoscaling. In the existing 
implementations, reactive approaches are common and widely used 
due to implementation simplicity, despite limitations such as correct 
threshold determination problems and overprovisioning. In contrast, 
proactive methods focus more on workload predictions based on 
metrics, such as CPU usage, memory usage, or request rate. The 
majority of related work focused on Dockized environments, which 
are not widely used in enterprise-grade systems. Toka et al. (2020) and 
Dang-Quang and Yoo (2021) published Kubernetes-related proactive 
autoscaling approaches, which can be categorized as more relevant to 
the current technology landscape. None of the studies discussed using 
the hybrid model and seasonality capturing to improve the prediction 
accuracy in proactive autoscaling.

Based on an analysis of the literature, there is a significant research 
opportunity for Kubernetes in the field of proactive autoscaling. 
Therefore, driven by the aforementioned issues, we  suggest 
implementing a proactive Kubernetes autoscaling that utilizes a hybrid 
model combining Prophet and LSTM. This model aims to enhance 
forecast accuracy by effectively capturing seasonality patterns and 
conducting residual analysis.

TABLE 1 Overview of Kubernetes autoscaling with TSA.

Study/Resource Target Metric Method Technique

Kubernetes HPA Pod CPU, memory Reactive Rule based

Al-Dhuraibi et al. (2017) Pod CPU, memory Reactive Rule based

Zhang et al. (2009) Node Request rate Reactive ARIMA1

Yan et al. (2021) Pod CPU, memory Hybrid Bi-LSTM2

Prachitmutita et al. (2018) Pod Request rate Proactive ANN3, RNN4

Calheiros et al. (2015) Node Request rate Proactive ARIMA

Messias et al. (2015) - Request rate Proactive GA5

Borkowski et al. (2016) - Task Proactive ANN

Fang et al. (2012) Pod CPU Proactive ARMA6

Ciptaningtyas et al. (2017) Pod Request rate Proactive ARIMA

Imdoukh et al. (2019) Pod Request rate Proactive LSTM

Tang et al. (2018) Pod CPU Proactive Bi-LSTM

Toka et al. (2020) Pod Request rate Proactive AR7, HTM8, LSTM

Dang-Quang and Yoo (2021) Pod Request rate Proactive Bi-LSTM

1Autoregressive integrated moving average model.
2Bidirectional long short-term memory.
3Artificial neural networks.
4Recurrent neural networks.
5Genetic algorithm.
6Autoregressive moving average model.
7Autoregressive.
8Hierarchical temporal memory.
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3 System architecture

In this section, we discuss the system architecture of the proposed 
hybrid model and proactive autoscaling, as shown in Figure 1.

3.1 Hybrid model

The proposed hybrid model integrates the Prophet and LSTM 
models to increase the prediction accuracy needed for web 
application scaling. The core idea is to leverage Prophet’s ability to 
capture seasonality and combine the LSTM strength in residual 
analysis. Even though Prophet is a statistical model, it is well-known 
for its effectiveness in predicting time-series data with multiple 
seasonality patterns. After data are processed through the Prophet 
model, the complex, non-linear residual time series is predicted by 
LSTM. Residuals in time series analysis are the differences between 
observed and predicted values. They represent the portion of the data 
that the model cannot explain and are essential for assessing the 
model’s performance and validity. Without a deep learning model, 
the error component is higher and unreliable for real-world use cases.

3.1.1 Metric selection for forecasting
The metric used by the proposed model is the request rate, which 

translates to HTTP requests experienced by a pod at a fixed interval. 
Unlike CPU and Memory usage, the HTTP request rate directly 
reflects the demand on the application, which can be considered more 
relevant in scaling decisions. Kubernetes default HPA does not 
support request rate as a scaling parameter. Still, for reactive scaling, 
the request rate can be used via the Kubernetes-based event-driven 
autoscaling component (KEDA) Project, which supports external or 
application-fed metrics via Prometheus (Bartelucci and Bellavista, 
2023). For the proposed model, by focusing on the HTTP request rate, 

the relevance of proactive scaling can be increased due to its direct 
relation to demand on the application (Zhang et al., 2009).

3.1.2 Facebook prophet model
The Facebook Prophet model is capable of handling multiple 

seasonality patterns. For the model evaluation, the daily and weekly 
seasonality is only used, and the model is capable of supporting yearly 
and custom seasonality. Also, the model supports configuring holidays 
and growth patterns for the overall trend (Taylor and Letham, 2018). 
Prophet can be considered as a nonlinear regression model in the 
form of Equation 1.

 ( ) ( ) ( )t ty g t s t h t ε= + + +  (1)

where ( )g t  describes the growth trend, ( )s t  denotes seasonal 
patterns, ( )h t  captures holiday effects and tε  is the white noise error 
term. The trend growth patterns are experimented with the 
appropriate approach for testing datasets in the validation stages.

Facebook Prophet model was used effectively in various forecasting 
applications such as export quantity forecasting (Aytaç, 2021), 
cryptocurrency prices (Cheng et al., 2023), stock market predictions 
(Annapoorna et al., 2024) and environmental studies (Bekkar et al., 2024).

3.1.3 Long short-term memory
LSTM is considered a member of the deep RNN family. Introduced 

by Hochreiter and Schmidhuber (1996), it has a modified version of RNN 
architecture. In contrast to conventional neural networks, RNNs use 
previous and current steps to build the network. Even though RNNs are 
simple and powerful models, the model has challenges in training and 
experiencing exploding gradient issues. LSTM was proposed (Pascanu 
et al., 2012) To address these issues. In the proposed hybrid model, the 

FIGURE 1

System architecture.
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LSTM model is used for processing the residuals after seasonality removal. 
The LSTM model is capable of learning from the temporal dependencies 
within the residuals. The proposed model has two layers with 50 units and 
one dense layer. Equations 2–4 can be used to express LSTM model.

 [ ]1( ,t i t t ii h x bσ ω −= +  (2)

 [ ]1( ,t f t t ff h x bσ ω −= +  (3)

 [ ]1( ,t o t t oo h x bσ ω −= +  (4)

where ti  represents input gate, tf  represents forget gate, to  
represents the output gate, σ  represents the sigmoid function, 

, ,andi f oω ω ω  are weight for the neurons, and , ,andi f ob b b  are the 
bias of gates. 1th −  is the output from the previous LSTM block and tx
is the input at the current timestamp.

LSTM can be seen in more diverse forecasting applications, such 
as Kubernetes workload predictions (Imdoukh et al., 2019), wind 
speed forecasting (Yang et al., 2024), stock market price predictions 
(Kothari et  al., 2024) and power generation related studies 
(Abumohsen et al., 2024).

3.1.4 Time complexity analysis
Time complexity analysis of prediction models provides valuable 

information on prediction latency and computational demand. The 
time complexity of the Prophet model can be approximated as due to 
its reliance on Fourier transformation and additive regression 
modeling as follows in Equation 5.

 ( )( )·O T k m n+ +
 (5)

where k  is the order of the Fourier series, m  is the number of 
change points and n is the iterations required for optimization.

The time complexity of the LSTM model can be expressed as 
follows in Equation 6.

 ( )· ·O T n m
 (6)

where T  is the sequence length, n is the number of input features 
and m is the number of hidden units.

The linear complexity with respect to T ensures scalability for large 
datasets. Integrating the Prophet model with other forecasting 
mechanisms, such as LSTM or ensemble models, can significantly 
increase the computational demands of both prediction latency and 
resource requirements (Wang and Gu, 2023).

3.2 Proactive autoscaling

The proposed proactive custom autoscaling architecture consists 
of a Kubernetes cluster, HPA, Metric collector, and Custom autoscaling. 
The proposed system follows the Monitor-Analyze-Plan-Execute 
(MAPE) loop for scaling decisions, considering the accuracy and 
effectiveness shown by Dang-Quang and Yoo (2021).

3.2.1 Kubernetes components
The components indicated in the architecture related to the 

Kubernetes ecosystem are as follows:

 • Ingress exposes the HTTP and HTTPS routes from the internet 
to the services in the cluster.

 • Service is a method for exposing a network application that runs 
as one or multiple pods in the cluster. Services help to service 
discovery inside the cluster without modifying the application.

 • ReplicaSet (RS) controls how many pods must be deployed in the 
cluster. Autoscaling adjust the desired pod count in RS to execute 
scale-up/down commands.

 • Pod is a workload or application running in the cluster. This is 
the target of the autoscaling (Ibryam and Huß, 2023).

 • Kubernetes scheduler and Kubernetes API-server are Kubernetes 
control plane components. The Kubernetes scheduler is designed 
to assign the new pods to the most appropriate nodes. 
Kubernetes API-server is exposed to Kubernetes API. These 
APIs are used to collect and control the Kubernetes cluster 
(Kubernetes Documentation, 2024).

Prometheus is used as the metric collector in the proposed 
architecture. It is a robust, widely used open-source monitoring, time-
series database. It enables autoscaling to access each scaling target pod 
required matric request rate (Chen et al., 2020).

3.2.2 Scaling loop
The proposed system architecture uses a MAPE loop to automate 

the scaling decisions. The MAPE control loop, shown in Figure 2, is 
not a sequential process but a structural arrangement of its 
subprocesses (Ashraf et al., 2023).

Monitoring Phase: Prometheus metric collector, an application 
monitoring service, shown in Figure 1 collects the incoming HTTP 
request rate for the pods. After collection, the Prometheus server 
aggregated and added the data to the built-in time-series database for 
predictions and model training during the phase of the analysis.

Forecasting Phase: The developed Prophet and LSTM hybrid 
model forecasts the predicted request rate by obtaining the latest 
collected metric data through Prometheus’s APIs. The model will 
predict the expected workload in the next 1t +  min and be fed to the 
planning phase for replica calculation.

Planning Phase: Based on the rated workload of the pod (request 
rate), the algorithm will calculate the desired pod count needed for 
the predicted workload from the analysis phase. This will indicate the 
system to provision or de-provision replicas based on the forecasted 
workload. Replica calculation utilizes the Adaptation Manager 
Service algorithm proposed by Dang-Quang and Yoo (2021). Desired 
pods are calculated as in Equation 7

 

1
1

t
t

pod

workloadpods
workload

+
+ =

 
(7)

Execution Phase: Based on the output of the replica calculation, 
a request to scale commands is sent to Kubernetes API-server. The 
Kubernetes scheduler executes the Equation 8 or Equation 9 
command to achieve the desired replica count for the forecasted 
period to handle the predicted workload.
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FIGURE 3

Preprocessed NASA dataset.

 ( )1  t tif pods pods EXECUTE SCALE UP+ < →
 (8)

 ( )1  t tif pods pods EXECUTE SCALE DOWN+ < →
 (9)

4 Experiments

This section presents the proposed hybrid model evaluation results 
and then comparing them with LSTM, Bi-LSTM, and ARIMA models.

4.1 Datasets

4.1.1 NASA dataset
HTTP requests with timestamps collected by NASA Kennedy 

Space Center over 2 months. The dataset has two subsets ranging from 

1 July 1995 to 31 July 1995 and 1 August 1995 to 31 August 1995, 
containing 3,461,612 requests. The dataset used by Messias et  al. 
(2015), Ye et al. (2017), Aslanpour et al. (2017), and Dang-Quang and 
Yoo (2021) to evaluate autoscaling. The dataset was preprocessed to 
aggregate same-minute logs to calculate the HTTP request rate per 
minute, as shown in Figure 3.

4.1.2 FIFA world cup 1998 dataset
HTTP requests with timestamps collected during FIFA World 

Cup 1998. The dataset ranges from 30 April 1998 to 26 July 1998, 
containing 1,352,804,107 requests. The dataset used by Messias 
et al. (2015), Imdoukh et al. (2019), Roy et al. (2011), and Dang-
Quang and Yoo (2021) to evaluate autoscaling. This distribution 
demonstrates more significant anomalies than the NASA dataset, as 
shown in Figure 4. The dataset was preprocessed to aggregate logs 
within the same minute to calculate the HTTP request rate 
per minute.

FIGURE 2

MAPE loop.
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4.2 Experimental settings

The proposed hybrid model was evaluated using NASA and 
FIFA World Cup datasets, which took 70% for training and 30% for 
evaluation while preserving the time order. The datasets were 
preprocessed to replace missing data with zero and eliminate 
duplicate timestamps. The FIFA World Cup dataset was normalized 
to the 0–1 range to facilitate comparability with other published 
studies, showcasing the effectiveness of multivariate approaches to 
data analysis, as highlighted by Ahmed et al. (2024). The hybrid 
model was then evaluated with Bi-LSTM, LSTM, and ARIMA 
models. Other hybrid model combinations, such as Prophet with 
Bi-LSTM and Prophet with GRU, were also assessed. Python 
programming language and TensorFlow framework were used to 
implement models.

4.2.1 Model configuration
The model configuration used for training, testing, and evaluation 

is listed in Table  2. The final parameters were derived following 
hyperparameter tuning. Other parameters in the model configuration 
not listed in Table 2 utilized default settings.

A hyperparameter tuning was performed to determine the ideal 
parameters for both Prophet and LSTM models. The parameters used 
during the study, together with the tested ranges and values, are 
presented in Table 3.

4.2.2 Evaluation metrics
The proposed hybrid model was evaluated using mean squared 

error (MSE) (Equation 10), root mean squared error (RMSE) 
(Equation 11), mean absolute error (MAE) (Equation 12), the 
coefficient of determination (R2) (Equation 13), and total prediction 

FIGURE 4

Preprocessed FIFA dataset.

TABLE 2 Model configuration.

Model Parameter Configured value

Prophet

Growth Linear

Changepoint prior scale 5.1

Yearly seasonality False

Weekly seasonality 20

Weekly seasonality 50

Seasonality prior scale 30

LSTM

Layers 2 LSTM, 1 dense

Hidden layers 50

Loss function MSE

Early stopping 5

Epochs 50

Batch size 16

Optimizer adam

Learning rate 0.001

GRU and Bi-LSTM models also use the same configuration with GRU and bidirectional layers.
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time (TPT) (Equation 14). MSE, RMSE, and MAE were used to 
evaluate the model’s prediction error, where the smaller the value, the 
greater the precision. R2 shows how well the dataset fits the model—
the higher, the better fit. TPT shows the prediction latency of the 
model where lower TPT means faster results. Evaluation metrics can 
be expressed as follows:

 
( )2

1

1 n
i i

i
MSE a f

n =
= −∑

 
(10)

 
( )2

1

1 n
i i

i
RMSE MSE a f

n =
= = −∑

 
(11)

 1

1 n
i i

i
MAE a f

n −
= −∑

 
(12)
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2
1

1
n

i ii
n

i ii

a f
R

a f
=

=

−
= −

−

∑
∑  

(13)

     TPT Prophet Prediction Time LSTM Prediction Time= +  (14)

Where ia  represents actual value, if  represents forecasted value 
and if  represents the mean of if .

4.3 Results

4.3.1 NASA dataset
The proposed hybrid model is compared with ARIMA single and 

multistep, Bi-LSTM single-step and multistep, hybrid model 

combinations with Bi-LSTM and GRU. As indicated in Table 4, the 
proposed model achieves more minor prediction errors on MSE, 
RMSE, MAE, and R2. Since the model consists of two models, the 
prediction latency is more significant than single models where 
Bi-LSTM single-step records the smallest TPT. All the hybrid models 
show higher R2, indicating a better fit for the dataset due to the 
seasonality capturing since it was not present in single model tests. 
Finally, the proposed Prophet–LSTM hybrid model overperforms 
both single and hybrid models in predictions.

Figure 5 shows the trend captured by the Prophet model. The 
residual input and the prediction from LSTM are shown in Figure 6 
which denotes the LSTM model’s capability of capturing the residual 
pattern. The final combined output is shown in Figure 7.

4.3.2 FIFA world cup 1998 dataset
Table  5 shows the experimental results obtained for the FIFA 

World Cup 1998 dataset. The proposed hybrid model outperforms all 
the compared models as ARIMA, LSTM, and Bi-LSTM in single-step 
and multistep modes. The proposed hybrid model shows significant 
improvement in MSE, RMSE, and MAE, but has higher TPT than all 
the other models.

Figures  8–10 shows the results obtained for the FIFA World 
Cup 1998 testing dataset. Considering the pattern of the dataset, trend 
growth is neglected, and base seasonality detection from the Prophet 
model is indicated in Figure 8. In the graphs, the difference between 
the actual and predicted is negligible and can only be seen with the 
three most significant spikes in the testing dataset.

5 Discussion

Based on the testing conducted, it was observed that hybrid 
models outperform TSA of HTTP requests compared to ARIMA and 
Bi-LSTM in both single and multistep. In comparison with hybrid 
models shown in Table 4, Prophet with LSTM shows 6.1% higher 
accuracy in prediction with Bi-LSTM and 15.7% with GRU in MSE 
metric. The Prophet–LSTM model shows 65.2% higher accuracy in 

TABLE 3 Hyperparameter tuning study summary.

Model Parameter Range/values used for tuning

Prophet

Growth Linear, flat

Changepoint prior scale 1–10 (steps of 1) and 5–6 (steps of 0.1)

Seasonality prior scale 5–50 (steps of 5)

LSTM
Hidden layers 32–512 (steps of 32)

Optimizer adam, rmsprop

TABLE 4 Experiment results on NASA dataset.

Model Prophet–
LSTM hybrid 

model

Prophet–Bi-
LSTM hybrid 

model

Prophet–GRU 
hybrid model

ARIMA
1 step

Bi-LSTM
1 step

ARIMA
5 step

Bi-LSTM
5 step

Metric

MSE 63.836 67.995 75.74 196.288 183.642 237.604 207.313

RMSE 7.990 8.246 8.703 14.010 13.551 15.414 14.39

MAE 6.164 6.312 6.64 10.572 10.280 11.628 10.592

R2 0.900 0.894 0.882 0.692 0.712 0.628 0.675

TPT (ms) 3,492 4,647 4,124 2,300 4.3 2,488 45.1

*Bold values indicate the best results.
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FIGURE 5

Prophet model prediction output vs. original distribution.

FIGURE 6

Residual prediction from LSTM vs. actual residual distribution.

FIGURE 7

Combined prediction results from prophet and LSTM.
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FIGURE 9

Residual prediction from LSTM vs. actual residual distribution.

prediction with MSE metric compared to the best single model 
Bi-LSTM 1 step.

All the hybrid models showed higher latency compared to single 
models, as indicated in Tables 4, 5. Since the predictions are made 
using two separate models, the total time for the final prediction given 

by Equation 14 combines the sum of Prophet and LSTM prediction 
times. As presented in section 3.1.4, hybrid models have higher 
complexity and require more computational demand for the 
prediction tasks. Using a single model can give computational 
efficiency with reduced accuracy. Hence, the usage of an appropriate 

TABLE 5 Experiment results on FIFA World Cup 1998 dataset.

Model Prophet—LSTM 
Hybrid Model

ARIMA
1 step

LSTM
1 step

Bi-LSTM
1 step

ARIMA
5 step

Bi-LSTM
5 step

Metric

MSE 0.000011 0.000040 0.000043 0.000036 0.000172 0.000120

RMSE 0.003358 0.006350 0.006523 0.006015 0.0131 0.010

MAE 0.000675 0.003302 0.003958 0.003127 0.0049 0.00428

R2 0.998318 0.998496 0.998397 0.998637 0.9930 0.9954

TPT (ms) 3,971 37,00 5.1 5.8 4,076 51.2

*Bold values indicate the best results. *Results are normalized.

FIGURE 8

Prophet model prediction output vs. original distribution.
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prediction mechanism depends on the requirement of the scaling 
strategy of the target system.

The exact configuration was used and tested in the World Cup 1998 
dataset, which shows the same observations as with the NASA dataset, 
as indicated in Table 5. Prophet–LSTM model shows 90.8% higher 
accuracy than the best single model Bi-LSTM 5 steps. Prophet–LSTM 
hybrid model shows higher latency than the fastest single model, LSTM.

The R2 in the hybrid model is higher in the NASA dataset with a 
regular seasonality pattern. This higher R2 was achieved from the 
seasonality capturing done by the Prophet model. In the World 
Cup  1998 dataset, R2 is 0.032% lower compared to the Bi-LSTM 
single-step model. This was caused by the dataset’s complex 
seasonality patterns and abnormalities. This shows that hybrid 
models can fit the model to the dataset better compared to single 
models, but it can introduce errors if the dataset does not show a clear 
pattern or has extensive abnormalities.

The lower R2 occurred due to seasonality capturing done by the 
Prophet model. Seasonality capturing can introduce significant 
variations to the prediction when the dataset contains more 
abnormalities. NASA dataset, which has fewer abnormalities and 
demonstrates clear seasonality throughout the period, shows the 
efficient capture of seasonality patterns by Prophet as shown in 
Figure 5. In contrast, the World Cup 1998 dataset has three large 
HTTP request spikes and different HTTP request patterns in time 
ranges 1998 July 01–05, 1998 July 06–10, 1998 July 10–15, and 1998 
July 16–27, as indicated in Figure 4. The effect of the abnormalities 
can be seen in Figure 8, where, starting July 14, the prediction is 
higher than the actual and predicted data, not capturing spikes in the 
prediction period. This caused the residual prediction to correct the 
induced error, as shown in Figure 9 as spikes. In the NASA dataset, 
this behavior cannot be seen in residual prediction (Figure 6) since 
the Prophet model captured the dataset’s seasonality, which has fewer 
abnormalities and a consistent seasonality pattern.

The original NASA dataset has a “No Data” period from 1995 
July 28 to 1995 July 31 and from 1995 August 01 to 1995 August 03. 
For the prediction studies conducted, this section was considered 
as no traffic days and can be  highlighted as an anomaly of the 

workload. These days, less workload or no workload can 
be commonly seen in production applications based on customer 
behavior or external considerations. Even though this period can 
be filled with dummy data to increase the accuracy of seasonality 
capturing, we have not generated the dummy data to observe the 
model behavior under abnormalities and increase the comparison 
accuracy with existing literature.

The results demonstrate that the proposed model achieves 
higher prediction accuracy than the existing scaling solutions. This 
showcases its potential as a reliable approach for predictive scaling. 
Even though Kubernetes integration of the model has been 
hypothesized, direct application as a proactive autoscaling requires 
further elaboration. The model utilizes the autoscaling framework 
described in Section 3.2.2, which provides the necessary architecture 
for seamless integration with Kubernetes. By expanding upon the 
methodology suggested by Dang-Quang and Yoo (2021), the model 
ensures compatibility with Kubernetes’ current scaling mechanisms 
and highlights the advantages of real-time resource management.

Implementing the approach effectively as a proactive autoscaling 
requires specific measures to be considered. This includes integrating 
the proposed hybrid model into either Kubernetes HPA or custom 
autoscaling, such as the KEDA Project, developing necessary APIs, 
calibrating it to pod forecasting based on the system parameters, and 
preemptively initiating scaling triggers. This procedure necessitates 
comprehensive implementation guidelines, including API specifications, 
input/output mapping between TSA predictions and Kubernetes API 
calls, and latency and performance monitoring optimization.

The proposed model uses an HTTP request rate for the scaling, 
considering it provides a more immediate and holistic view of demand 
fluctuations (Zhang et  al., 2009). Still, properly allocating CPU and 
memory to the target pod is crucial for proper deployment. Although the 
HTTP request rate may not precisely correspond to the CPU and memory 
utilization due to the differing computational and memory requirements, 
engineers should rate the pod for the maximum request rate allowed. This 
metric is crucial in proactive autoscaling to calculate the necessary pod 
counts in scaling up or down scenarios. Adding a fixed CPU and memory 
allocation to the pod and the maximum replicas in a scaling environment 

FIGURE 10

Combined prediction results from Prophet and LSTM.
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is essential and recommended to appropriately upscale to underline 
infrastructure automatically to the upcoming resource demand. Proactive 
autoscaling decisions can be executed without the Kubernetes server 
running into resource limitations by ensuring proper CPU and memory 
settings and maximum replicas.

6 Conclusion

Cloud computing is becoming increasingly popular among large-
scale cloud applications and Software as a Service (SaaS) applications, 
considering its flexibility on elasticity. Kubernetes is one of the widely 
employed deployment strategies that supports elasticity and adjusts the 
computing power based on the dynamic workload. Autoscaling is a key 
feature of Kubernetes, which gives resource elasticity to provision and 
de-provision resources automatically. This mechanism helps the 
deployers to maintain high service availability while reducing the cloud 
cost. This study proposes a proactive autoscaling system to Kubernetes 
based on Prophet and LSTM-based hybrid models. The proposed 
autoscaling is based on the MAPE loop to determine scaling decisions. 
The proposed hybrid model was trained and evaluated using NASA and 
World Cup 1998 datasets. The results of the experiments demonstrated 
the efficiency of the proposed model compared to single-model 
proactive autoscaling. Compared to single models, the hybrid model has 
a higher prediction time since the data is analyzed through two models.

The hybrid model for proactive autoscaling is far from trivial. As 
for future works, prediction time should be optimized. Implementing 
the MAPE loop in a more user-friendly way using Kubernetes agents 
or integrating it with the KEDA Project is a practical side of the 
exploration of this study. In this study horizontal scaling is focused on 
adding or removing pods. Still, proactive scaling can be  explored 
vertically (adding or eliminating CPU/memory to the container) or 
integrated alongside horizontal scaling.
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