
Frontiers in Computer Science 01 frontiersin.org

Time series forecasting-based
Kubernetes autoscaling using
Facebook Prophet and Long
Short-Term Memory
Pasan Bhanu Guruge 1* and Y.H.P.P. Priyadarshana 2

1 College of Design, Creative and Digital Industries, University of Westminster, London,
United Kingdom, 2 School of Computing, Informatics Institute of Technology, Colombo, Sri Lanka

The advancement of cloud computing technologies has led to increased usage
in application deployment in recent years. Kubernetes, a widely used container
orchestration platform for deploying applications on cloud systems, provides
benefits such as autoscaling to adapt to fluctuating workload while maintaining
quality of service and availability. In this research, we designed and evaluated a
proactive Kubernetes autoscaling using Facebook Prophet and Long Short-Term
Memory (LSTM) hybrid model to predict the HTTP requests and calculate required
pod counts based on the Monitor-Analyze-Plan-Execute loop. The proposed
model not only captures seasonal data patterns effectively but also proactively
predicts the pod requirements for timely and efficient resource allocation to
reduce resource wastage while enhancing cloud computing applications. The
proposed hybrid model was evaluated using real-world datasets from NASA
and the Federation Internationale de Football Association (FIFA) World Cup to
benchmark and compare with existing literature. Evaluation results indicate that
the proposed novel hybrid model outperforms single-model proactive autoscaling
by a maximum margin of 65–90% accuracy when compared to NASA and FIFA
World Cup datasets. This study contributes to the fields of cloud computing and
container orchestration by providing a refined proactive autoscaling mechanism
that enhances application availability, efficient resource usage, and reduced costs
and paves the way for further exploration in increased prediction speed, integrated
with vertical scaling and implementations using Kubernetes.

KEYWORDS

Kubernetes, proactive autoscaling, LSTM, time-series forecasting, Facebook Prophet,
Kubernetes autoscaling

1 Introduction

The advancement of cloud computing has fundamentally transformed the landscape of
application development and deployment (Al-Dhuraibi et al., 2018). One core component of
cloud computing is virtualization technology—often referred to as containerization and
Kubernetes. Virtualization provides an abstraction layer to application deployment without
coupling with underlying host devices, allowing application developers and infrastructure
engineers to use the most suitable technology for the designed application (Varghese and
Buyya, 2018).

The advancement of containerization technology allows for research and development
in application development, deployment, and container orchestration platforms.
Containerization enables developers to encapsulate the application and its dependencies
into a single package that operates in a decoupled manner with the host machine

OPEN ACCESS

EDITED BY

Kevin Lano,
King’s College London, United Kingdom

REVIEWED BY

Rizwan Raheem Ahmed,
Indus University, Pakistan
Ersin Aytaç,
Bülent Ecevit University, Türkiye
Alireza Rouhi,
Azarbaijan Shahid Madani University, Iran

*CORRESPONDENCE

Pasan Bhanu Guruge
 w1867877@my.westminster.ac.uk

RECEIVED 10 October 2024
ACCEPTED 29 January 2025
PUBLISHED 19 February 2025

CITATION

Guruge PB and Priyadarshana YHPP (2025)
Time series forecasting-based Kubernetes
autoscaling using Facebook Prophet and
Long Short-Term Memory.
Front. Comput. Sci. 7:1509165.
doi: 10.3389/fcomp.2025.1509165

COPYRIGHT

© 2025 Guruge and Priyadarshana. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 19 February 2025
DOI 10.3389/fcomp.2025.1509165

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1509165&domain=pdf&date_stamp=2025-02-19
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1509165/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1509165/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1509165/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1509165/full
mailto:w1867877@my.westminster.ac.uk
https://doi.org/10.3389/fcomp.2025.1509165
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1509165

Guruge and Priyadarshana 10.3389/fcomp.2025.1509165

Frontiers in Computer Science 02 frontiersin.org

(Hardikar et al., 2021). The introduction of microservice
architecture has significantly improved the ability to use
containerization and Kubernetes deployment in
cloud environments.

Initially developed as an open-source project, Kubernetes is a
technology that abstracts away the underlying infrastructure of the
deployment. The advancements in cloud computing allow engineers
to focus away from resources and move to application-centric
deployments and management. Kubernetes introduced the concepts
of state management and autoscaling, making the applications highly
available and reliable in large-scale deployments (Shah and Dubaria,
2019). Kubernetes allows the deployment of different workloads and
combines multiple deployment targets, making it an indispensable
part of modern cloud infrastructure (Megino et al., 2020).

Adopting the advanced forecasting models in Kubernetes
autoscaling leads to significantly reducing the wastage of resources
while improving the application availability and timely scaling actions
(Marie-Magdelaine and Ahmed, 2020). The application of
reinforcement learning for dynamic autoscaling allows systems to
learn and adapt to change the scaling conditions based on the feedback
(Garí et al., 2021). Using hybrid models combining two or more
machine learning methods also shows improved forecasting accuracy
compared to single model furcating (Podolskiy et al., 2018).

The integration of machine learning models into Kubernetes
autoscaling has made significant improvements, but current solutions
lack the ability to capture complex seasonal patterns and workload
fluctuations accurately. Current research has examined either
statistical methods or neural network-based approaches; however,
limited studies integrate both methodologies to exploit their
advantages in Kubernetes autoscaling. This raises a critical question:
How can a hybrid time series forecasting model that combines
statistical and neural network-based approaches enhance the accuracy
and efficiency of proactive autoscaling in Kubernetes compared to
single-model solutions and default Kubernetes HPA? This study aims
to develop and assess a hybrid model-based proactive Kubernetes
autoscaling framework that enhances cloud computing applications’
workload prediction and scaling accuracy for cloud
computing applications.

The proposed framework utilizes time-series analysis (TSA), a
mechanism that can be used in forecasting future trends and patterns
based on historical data to predict future resource requirements. TSA
has two significant implementations. Statistical methods such as
Autoregressive Integrated Moving Average (ARIMA) model, Seasonal
Autoregressive Integrated Moving Average (SARIMA) model,
Facebook Prophet (also known as Prophet), and neural network-
based methods such as Artificial Neural Networks (ANN), Recurrent
Neural Networks (RNN), Long Short-Term Memory (LSTM),
Bidirectional Long Short-Term Memory (Bi-LSTM). The practical
applications of TSA methods have been widely discussed in both
workload prediction and economics (Ahmed et al., 2021), weather,
healthcare, and logistics. The proposed framework uses a combination
of a statistical model, Prophet, and a neural network-based method,
LSTM, to build a hybrid forecasting model.

Significant contributions from this study are listed as follows:

 1 Using a hybrid model to increase the prediction accuracy of a
seasonal data series in TSA, highlighting the accuracy
compared to other TSA methods.

 2 Hybrid model-based proactive autoscaling architecture for
Kubernetes highlights higher accuracy in scaling decisions
than default Kubernetes HorizontalPodAutoscaler (HPA) and
single-model-based solutions.

The proposed algorithm was tested and benchmarked against
real-world datasets to compare with default HPA and single model-
based solutions. The proposed algorithm was compared against
different dataset types with complex seasonal patterns and different
hybrid model combinations to test efficiency and accuracy.

2 Related work

This section provides an overview of current research that has
examined the application of TSA techniques in cloud systems and
Kubernetes for autoscaling applications. TSA is utilized in various
fields, including weather forecasting, earthquake prediction, and
mathematical finance. The method uses past and present observed
data to predict future values. Table 1 shows a comprehensive overview
of significant autoscaling techniques employed in cloud and
Kubernetes applications.

2.1 Reactive autoscaling

HPA is the default scaling mechanism in Kubernetes. It employed
rule-based reactive scaling based on the pod’s CPU or memory
consumption (Kubernetes Documentation, 2024). HPA is effective in
many scenarios, but its reactive nature can lead to overprovision or
performance degradations due to the cold start time of the applications
(Pahl and Lee, 2015).

Zhang et al. (2009) presented a framework to optimize cost and
resources in hybrid clouds by distributing the workloads between
private and public clouds using ARIMA-based TSA. Al-Dhuraibi
et al. (2017) proposed an architecture called ELASTICDOCKER,
an autonomic vertical elasticity system for Kubernetes that
automatically adjusts the resources allocated to containers based
on workload demands. Even though vertical scaling comes with
default Kubernetes, the limitations of unavailability in Docker
deployments, human intervention, host machine capacity issues,
and performance degradations were addressed with
ELASTICDOCKER. ELASTICDOCKER framework improved
resource utilization, optimized cost and enhanced application
performance. Yan et al. (2021) developed the HANSEL framework,
which is focused on adaptive horizontal scaling for microservices.
It uses Bi-LSTM to capture complex patterns in workload data to
generate scaling decisions.

However, the reactive approaches have limits in scaling since the
system can only react after the actual workload change happens. In
contrast, the proactive approach studies past data and predicts
the demand.

2.2 Proactive autoscaling

Prachitmutita et al. (2018) present a cost-effective autoscaling
framework for an Infrastructure as a Service (IaaS) platform using

https://doi.org/10.3389/fcomp.2025.1509165
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Guruge and Priyadarshana 10.3389/fcomp.2025.1509165

Frontiers in Computer Science 03 frontiersin.org

ANN and RNN for the predictions and a resource scaling
optimization algorithm. It showed that the accuracy of the ARIMA
model became worse with more predicted steps ahead. Fang et al.
(2012) propose a novel Resource Prediction and Provisioning
Scheme (RPPS) for cloud data centers for hybrid clouds. RPPS uses
CPU utilization to predict future resource requirements through
ARMA, which achieves better results than default HPA. Borkowski
et al. (2016) used ANN to forecast task duration and resource
utilization. This approach focuses on task-based applications only.
Ciptaningtyas et al. (2017) proposed an ARIMA-based resource
elasticity controller for docker-based web applications. The proposal
is limited to predicting resource allocations only. Tang et al. (2018)
proposed a workload prediction model, “Fisher” for Docker-based
environments using Bi-LSTM. This study only discusses the
prediction part and lacks autoscaling.

Calheiros et al. (2015) proposed ARIMA-based workload
prediction, which can provision resources proactively based on
HTTP requests. The results show that the model provides 91%
accuracy with seasonal data. This proposed method lacks accuracy in
non-seasonal workloads and comparison with other approaches.
Messias et al. (2015) explore using genetic algorithms (GAs) to
combine time-series prediction models for autoscaling web
applications. However, this proposal lacks the Kubernetes integration.
Imdoukh et al. (2019) proposed an LSTM-based autoscaling
framework for Kubernetes pods. The authors concluded that the
proposed LSTM model has a slightly higher error than ARIMA in 1
step, but LSTM has a higher prediction speed. Toka et al. (2020)
proposed a proactive Kubernetes autoscaling using AI-based
forecasting. The proposed proactive auto scaler uses the best model
from Autoregressive (AR), Hierarchical Temporal Memory (HTM),
and LSTM in the given moment. This proposed method can

be considered integration-friendly despite lacking forecasting
accuracy and validation results against standard datasets.

Dang-Quang and Yoo (2021) also proposed a proactive Kubernetes
autoscaling model using Bi-LSTM. The authors discussed the
implementation in Kubernetes and validated the results using (Arlitt
and Jim, 1998) and (NASA-HTTP, 1995). The proposed implementation
was evaluated against an actual application that uses the Resource
Removal Strategy (RRS) to optimize resource usage and cost. Even
though this study did not discuss the seasonality component, results
show that the proposed model performs better than ARIMA and LSTM.

About published studies, the majority of the reactive approaches
use rule-based models to perform autoscaling. In the existing
implementations, reactive approaches are common and widely used
due to implementation simplicity, despite limitations such as correct
threshold determination problems and overprovisioning. In contrast,
proactive methods focus more on workload predictions based on
metrics, such as CPU usage, memory usage, or request rate. The
majority of related work focused on Dockized environments, which
are not widely used in enterprise-grade systems. Toka et al. (2020) and
Dang-Quang and Yoo (2021) published Kubernetes-related proactive
autoscaling approaches, which can be categorized as more relevant to
the current technology landscape. None of the studies discussed using
the hybrid model and seasonality capturing to improve the prediction
accuracy in proactive autoscaling.

Based on an analysis of the literature, there is a significant research
opportunity for Kubernetes in the field of proactive autoscaling.
Therefore, driven by the aforementioned issues, we suggest
implementing a proactive Kubernetes autoscaling that utilizes a hybrid
model combining Prophet and LSTM. This model aims to enhance
forecast accuracy by effectively capturing seasonality patterns and
conducting residual analysis.

TABLE 1 Overview of Kubernetes autoscaling with TSA.

Study/Resource Target Metric Method Technique

Kubernetes HPA Pod CPU, memory Reactive Rule based

Al-Dhuraibi et al. (2017) Pod CPU, memory Reactive Rule based

Zhang et al. (2009) Node Request rate Reactive ARIMA1

Yan et al. (2021) Pod CPU, memory Hybrid Bi-LSTM2

Prachitmutita et al. (2018) Pod Request rate Proactive ANN3, RNN4

Calheiros et al. (2015) Node Request rate Proactive ARIMA

Messias et al. (2015) - Request rate Proactive GA5

Borkowski et al. (2016) - Task Proactive ANN

Fang et al. (2012) Pod CPU Proactive ARMA6

Ciptaningtyas et al. (2017) Pod Request rate Proactive ARIMA

Imdoukh et al. (2019) Pod Request rate Proactive LSTM

Tang et al. (2018) Pod CPU Proactive Bi-LSTM

Toka et al. (2020) Pod Request rate Proactive AR7, HTM8, LSTM

Dang-Quang and Yoo (2021) Pod Request rate Proactive Bi-LSTM

1Autoregressive integrated moving average model.
2Bidirectional long short-term memory.
3Artificial neural networks.
4Recurrent neural networks.
5Genetic algorithm.
6Autoregressive moving average model.
7Autoregressive.
8Hierarchical temporal memory.

https://doi.org/10.3389/fcomp.2025.1509165
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Guruge and Priyadarshana 10.3389/fcomp.2025.1509165

Frontiers in Computer Science 04 frontiersin.org

3 System architecture

In this section, we discuss the system architecture of the proposed
hybrid model and proactive autoscaling, as shown in Figure 1.

3.1 Hybrid model

The proposed hybrid model integrates the Prophet and LSTM
models to increase the prediction accuracy needed for web
application scaling. The core idea is to leverage Prophet’s ability to
capture seasonality and combine the LSTM strength in residual
analysis. Even though Prophet is a statistical model, it is well-known
for its effectiveness in predicting time-series data with multiple
seasonality patterns. After data are processed through the Prophet
model, the complex, non-linear residual time series is predicted by
LSTM. Residuals in time series analysis are the differences between
observed and predicted values. They represent the portion of the data
that the model cannot explain and are essential for assessing the
model’s performance and validity. Without a deep learning model,
the error component is higher and unreliable for real-world use cases.

3.1.1 Metric selection for forecasting
The metric used by the proposed model is the request rate, which

translates to HTTP requests experienced by a pod at a fixed interval.
Unlike CPU and Memory usage, the HTTP request rate directly
reflects the demand on the application, which can be considered more
relevant in scaling decisions. Kubernetes default HPA does not
support request rate as a scaling parameter. Still, for reactive scaling,
the request rate can be used via the Kubernetes-based event-driven
autoscaling component (KEDA) Project, which supports external or
application-fed metrics via Prometheus (Bartelucci and Bellavista,
2023). For the proposed model, by focusing on the HTTP request rate,

the relevance of proactive scaling can be increased due to its direct
relation to demand on the application (Zhang et al., 2009).

3.1.2 Facebook prophet model
The Facebook Prophet model is capable of handling multiple

seasonality patterns. For the model evaluation, the daily and weekly
seasonality is only used, and the model is capable of supporting yearly
and custom seasonality. Also, the model supports configuring holidays
and growth patterns for the overall trend (Taylor and Letham, 2018).
Prophet can be considered as a nonlinear regression model in the
form of Equation 1.

 () () ()t ty g t s t h t ε= + + + (1)

where ()g t describes the growth trend, ()s t denotes seasonal
patterns, ()h t captures holiday effects and tε is the white noise error
term. The trend growth patterns are experimented with the
appropriate approach for testing datasets in the validation stages.

Facebook Prophet model was used effectively in various forecasting
applications such as export quantity forecasting (Aytaç, 2021),
cryptocurrency prices (Cheng et al., 2023), stock market predictions
(Annapoorna et al., 2024) and environmental studies (Bekkar et al., 2024).

3.1.3 Long short-term memory
LSTM is considered a member of the deep RNN family. Introduced

by Hochreiter and Schmidhuber (1996), it has a modified version of RNN
architecture. In contrast to conventional neural networks, RNNs use
previous and current steps to build the network. Even though RNNs are
simple and powerful models, the model has challenges in training and
experiencing exploding gradient issues. LSTM was proposed (Pascanu
et al., 2012) To address these issues. In the proposed hybrid model, the

FIGURE 1

System architecture.

https://doi.org/10.3389/fcomp.2025.1509165
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Guruge and Priyadarshana 10.3389/fcomp.2025.1509165

Frontiers in Computer Science 05 frontiersin.org

LSTM model is used for processing the residuals after seasonality removal.
The LSTM model is capable of learning from the temporal dependencies
within the residuals. The proposed model has two layers with 50 units and
one dense layer. Equations 2–4 can be used to express LSTM model.

 []1(,t i t t ii h x bσ ω −= + (2)

 []1(,t f t t ff h x bσ ω −= + (3)

 []1(,t o t t oo h x bσ ω −= + (4)

where ti represents input gate, tf represents forget gate, to
represents the output gate, σ represents the sigmoid function,

, ,andi f oω ω ω are weight for the neurons, and , ,andi f ob b b are the
bias of gates. 1th − is the output from the previous LSTM block and tx
is the input at the current timestamp.

LSTM can be seen in more diverse forecasting applications, such
as Kubernetes workload predictions (Imdoukh et al., 2019), wind
speed forecasting (Yang et al., 2024), stock market price predictions
(Kothari et al., 2024) and power generation related studies
(Abumohsen et al., 2024).

3.1.4 Time complexity analysis
Time complexity analysis of prediction models provides valuable

information on prediction latency and computational demand. The
time complexity of the Prophet model can be approximated as due to
its reliance on Fourier transformation and additive regression
modeling as follows in Equation 5.

 ()()·O T k m n+ +
 (5)

where k is the order of the Fourier series, m is the number of
change points and n is the iterations required for optimization.

The time complexity of the LSTM model can be expressed as
follows in Equation 6.

 ()· ·O T n m
 (6)

where T is the sequence length, n is the number of input features
and m is the number of hidden units.

The linear complexity with respect to T ensures scalability for large
datasets. Integrating the Prophet model with other forecasting
mechanisms, such as LSTM or ensemble models, can significantly
increase the computational demands of both prediction latency and
resource requirements (Wang and Gu, 2023).

3.2 Proactive autoscaling

The proposed proactive custom autoscaling architecture consists
of a Kubernetes cluster, HPA, Metric collector, and Custom autoscaling.
The proposed system follows the Monitor-Analyze-Plan-Execute
(MAPE) loop for scaling decisions, considering the accuracy and
effectiveness shown by Dang-Quang and Yoo (2021).

3.2.1 Kubernetes components
The components indicated in the architecture related to the

Kubernetes ecosystem are as follows:

 • Ingress exposes the HTTP and HTTPS routes from the internet
to the services in the cluster.

 • Service is a method for exposing a network application that runs
as one or multiple pods in the cluster. Services help to service
discovery inside the cluster without modifying the application.

 • ReplicaSet (RS) controls how many pods must be deployed in the
cluster. Autoscaling adjust the desired pod count in RS to execute
scale-up/down commands.

 • Pod is a workload or application running in the cluster. This is
the target of the autoscaling (Ibryam and Huß, 2023).

 • Kubernetes scheduler and Kubernetes API-server are Kubernetes
control plane components. The Kubernetes scheduler is designed
to assign the new pods to the most appropriate nodes.
Kubernetes API-server is exposed to Kubernetes API. These
APIs are used to collect and control the Kubernetes cluster
(Kubernetes Documentation, 2024).

Prometheus is used as the metric collector in the proposed
architecture. It is a robust, widely used open-source monitoring, time-
series database. It enables autoscaling to access each scaling target pod
required matric request rate (Chen et al., 2020).

3.2.2 Scaling loop
The proposed system architecture uses a MAPE loop to automate

the scaling decisions. The MAPE control loop, shown in Figure 2, is
not a sequential process but a structural arrangement of its
subprocesses (Ashraf et al., 2023).

Monitoring Phase: Prometheus metric collector, an application
monitoring service, shown in Figure 1 collects the incoming HTTP
request rate for the pods. After collection, the Prometheus server
aggregated and added the data to the built-in time-series database for
predictions and model training during the phase of the analysis.

Forecasting Phase: The developed Prophet and LSTM hybrid
model forecasts the predicted request rate by obtaining the latest
collected metric data through Prometheus’s APIs. The model will
predict the expected workload in the next 1t + min and be fed to the
planning phase for replica calculation.

Planning Phase: Based on the rated workload of the pod (request
rate), the algorithm will calculate the desired pod count needed for
the predicted workload from the analysis phase. This will indicate the
system to provision or de-provision replicas based on the forecasted
workload. Replica calculation utilizes the Adaptation Manager
Service algorithm proposed by Dang-Quang and Yoo (2021). Desired
pods are calculated as in Equation 7

1
1

t
t

pod

workloadpods
workload

+
+ =

(7)

Execution Phase: Based on the output of the replica calculation,
a request to scale commands is sent to Kubernetes API-server. The
Kubernetes scheduler executes the Equation 8 or Equation 9
command to achieve the desired replica count for the forecasted
period to handle the predicted workload.

https://doi.org/10.3389/fcomp.2025.1509165
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Guruge and Priyadarshana 10.3389/fcomp.2025.1509165

Frontiers in Computer Science 06 frontiersin.org

FIGURE 3

Preprocessed NASA dataset.

 ()1 t tif pods pods EXECUTE SCALE UP+ < →
 (8)

 ()1 t tif pods pods EXECUTE SCALE DOWN+ < →
 (9)

4 Experiments

This section presents the proposed hybrid model evaluation results
and then comparing them with LSTM, Bi-LSTM, and ARIMA models.

4.1 Datasets

4.1.1 NASA dataset
HTTP requests with timestamps collected by NASA Kennedy

Space Center over 2 months. The dataset has two subsets ranging from

1 July 1995 to 31 July 1995 and 1 August 1995 to 31 August 1995,
containing 3,461,612 requests. The dataset used by Messias et al.
(2015), Ye et al. (2017), Aslanpour et al. (2017), and Dang-Quang and
Yoo (2021) to evaluate autoscaling. The dataset was preprocessed to
aggregate same-minute logs to calculate the HTTP request rate per
minute, as shown in Figure 3.

4.1.2 FIFA world cup 1998 dataset
HTTP requests with timestamps collected during FIFA World

Cup 1998. The dataset ranges from 30 April 1998 to 26 July 1998,
containing 1,352,804,107 requests. The dataset used by Messias
et al. (2015), Imdoukh et al. (2019), Roy et al. (2011), and Dang-
Quang and Yoo (2021) to evaluate autoscaling. This distribution
demonstrates more significant anomalies than the NASA dataset, as
shown in Figure 4. The dataset was preprocessed to aggregate logs
within the same minute to calculate the HTTP request rate
per minute.

FIGURE 2

MAPE loop.

https://doi.org/10.3389/fcomp.2025.1509165
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Guruge and Priyadarshana 10.3389/fcomp.2025.1509165

Frontiers in Computer Science 07 frontiersin.org

4.2 Experimental settings

The proposed hybrid model was evaluated using NASA and
FIFA World Cup datasets, which took 70% for training and 30% for
evaluation while preserving the time order. The datasets were
preprocessed to replace missing data with zero and eliminate
duplicate timestamps. The FIFA World Cup dataset was normalized
to the 0–1 range to facilitate comparability with other published
studies, showcasing the effectiveness of multivariate approaches to
data analysis, as highlighted by Ahmed et al. (2024). The hybrid
model was then evaluated with Bi-LSTM, LSTM, and ARIMA
models. Other hybrid model combinations, such as Prophet with
Bi-LSTM and Prophet with GRU, were also assessed. Python
programming language and TensorFlow framework were used to
implement models.

4.2.1 Model configuration
The model configuration used for training, testing, and evaluation

is listed in Table 2. The final parameters were derived following
hyperparameter tuning. Other parameters in the model configuration
not listed in Table 2 utilized default settings.

A hyperparameter tuning was performed to determine the ideal
parameters for both Prophet and LSTM models. The parameters used
during the study, together with the tested ranges and values, are
presented in Table 3.

4.2.2 Evaluation metrics
The proposed hybrid model was evaluated using mean squared

error (MSE) (Equation 10), root mean squared error (RMSE)
(Equation 11), mean absolute error (MAE) (Equation 12), the
coefficient of determination (R2) (Equation 13), and total prediction

FIGURE 4

Preprocessed FIFA dataset.

TABLE 2 Model configuration.

Model Parameter Configured value

Prophet

Growth Linear

Changepoint prior scale 5.1

Yearly seasonality False

Weekly seasonality 20

Weekly seasonality 50

Seasonality prior scale 30

LSTM

Layers 2 LSTM, 1 dense

Hidden layers 50

Loss function MSE

Early stopping 5

Epochs 50

Batch size 16

Optimizer adam

Learning rate 0.001

GRU and Bi-LSTM models also use the same configuration with GRU and bidirectional layers.

https://doi.org/10.3389/fcomp.2025.1509165
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Guruge and Priyadarshana 10.3389/fcomp.2025.1509165

Frontiers in Computer Science 08 frontiersin.org

time (TPT) (Equation 14). MSE, RMSE, and MAE were used to
evaluate the model’s prediction error, where the smaller the value, the
greater the precision. R2 shows how well the dataset fits the model—
the higher, the better fit. TPT shows the prediction latency of the
model where lower TPT means faster results. Evaluation metrics can
be expressed as follows:

()2

1

1 n
i i

i
MSE a f

n =
= −∑

(10)

()2

1

1 n
i i

i
RMSE MSE a f

n =
= = −∑

(11)

 1

1 n
i i

i
MAE a f

n −
= −∑

(12)

()

()

2
2 1

2
1

1
n

i ii
n

i ii

a f
R

a f
=

=

−
= −

−

∑
∑

(13)

 TPT Prophet Prediction Time LSTM Prediction Time= + (14)

Where ia represents actual value, if represents forecasted value
and if represents the mean of if .

4.3 Results

4.3.1 NASA dataset
The proposed hybrid model is compared with ARIMA single and

multistep, Bi-LSTM single-step and multistep, hybrid model

combinations with Bi-LSTM and GRU. As indicated in Table 4, the
proposed model achieves more minor prediction errors on MSE,
RMSE, MAE, and R2. Since the model consists of two models, the
prediction latency is more significant than single models where
Bi-LSTM single-step records the smallest TPT. All the hybrid models
show higher R2, indicating a better fit for the dataset due to the
seasonality capturing since it was not present in single model tests.
Finally, the proposed Prophet–LSTM hybrid model overperforms
both single and hybrid models in predictions.

Figure 5 shows the trend captured by the Prophet model. The
residual input and the prediction from LSTM are shown in Figure 6
which denotes the LSTM model’s capability of capturing the residual
pattern. The final combined output is shown in Figure 7.

4.3.2 FIFA world cup 1998 dataset
Table 5 shows the experimental results obtained for the FIFA

World Cup 1998 dataset. The proposed hybrid model outperforms all
the compared models as ARIMA, LSTM, and Bi-LSTM in single-step
and multistep modes. The proposed hybrid model shows significant
improvement in MSE, RMSE, and MAE, but has higher TPT than all
the other models.

Figures 8–10 shows the results obtained for the FIFA World
Cup 1998 testing dataset. Considering the pattern of the dataset, trend
growth is neglected, and base seasonality detection from the Prophet
model is indicated in Figure 8. In the graphs, the difference between
the actual and predicted is negligible and can only be seen with the
three most significant spikes in the testing dataset.

5 Discussion

Based on the testing conducted, it was observed that hybrid
models outperform TSA of HTTP requests compared to ARIMA and
Bi-LSTM in both single and multistep. In comparison with hybrid
models shown in Table 4, Prophet with LSTM shows 6.1% higher
accuracy in prediction with Bi-LSTM and 15.7% with GRU in MSE
metric. The Prophet–LSTM model shows 65.2% higher accuracy in

TABLE 3 Hyperparameter tuning study summary.

Model Parameter Range/values used for tuning

Prophet

Growth Linear, flat

Changepoint prior scale 1–10 (steps of 1) and 5–6 (steps of 0.1)

Seasonality prior scale 5–50 (steps of 5)

LSTM
Hidden layers 32–512 (steps of 32)

Optimizer adam, rmsprop

TABLE 4 Experiment results on NASA dataset.

Model Prophet–
LSTM hybrid

model

Prophet–Bi-
LSTM hybrid

model

Prophet–GRU
hybrid model

ARIMA
1 step

Bi-LSTM
1 step

ARIMA
5 step

Bi-LSTM
5 step

Metric

MSE 63.836 67.995 75.74 196.288 183.642 237.604 207.313

RMSE 7.990 8.246 8.703 14.010 13.551 15.414 14.39

MAE 6.164 6.312 6.64 10.572 10.280 11.628 10.592

R2 0.900 0.894 0.882 0.692 0.712 0.628 0.675

TPT (ms) 3,492 4,647 4,124 2,300 4.3 2,488 45.1

*Bold values indicate the best results.

https://doi.org/10.3389/fcomp.2025.1509165
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Guruge and Priyadarshana 10.3389/fcomp.2025.1509165

Frontiers in Computer Science 09 frontiersin.org

FIGURE 5

Prophet model prediction output vs. original distribution.

FIGURE 6

Residual prediction from LSTM vs. actual residual distribution.

FIGURE 7

Combined prediction results from prophet and LSTM.

https://doi.org/10.3389/fcomp.2025.1509165
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Guruge and Priyadarshana 10.3389/fcomp.2025.1509165

Frontiers in Computer Science 10 frontiersin.org

FIGURE 9

Residual prediction from LSTM vs. actual residual distribution.

prediction with MSE metric compared to the best single model
Bi-LSTM 1 step.

All the hybrid models showed higher latency compared to single
models, as indicated in Tables 4, 5. Since the predictions are made
using two separate models, the total time for the final prediction given

by Equation 14 combines the sum of Prophet and LSTM prediction
times. As presented in section 3.1.4, hybrid models have higher
complexity and require more computational demand for the
prediction tasks. Using a single model can give computational
efficiency with reduced accuracy. Hence, the usage of an appropriate

TABLE 5 Experiment results on FIFA World Cup 1998 dataset.

Model Prophet—LSTM
Hybrid Model

ARIMA
1 step

LSTM
1 step

Bi-LSTM
1 step

ARIMA
5 step

Bi-LSTM
5 step

Metric

MSE 0.000011 0.000040 0.000043 0.000036 0.000172 0.000120

RMSE 0.003358 0.006350 0.006523 0.006015 0.0131 0.010

MAE 0.000675 0.003302 0.003958 0.003127 0.0049 0.00428

R2 0.998318 0.998496 0.998397 0.998637 0.9930 0.9954

TPT (ms) 3,971 37,00 5.1 5.8 4,076 51.2

*Bold values indicate the best results. *Results are normalized.

FIGURE 8

Prophet model prediction output vs. original distribution.

https://doi.org/10.3389/fcomp.2025.1509165
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Guruge and Priyadarshana 10.3389/fcomp.2025.1509165

Frontiers in Computer Science 11 frontiersin.org

prediction mechanism depends on the requirement of the scaling
strategy of the target system.

The exact configuration was used and tested in the World Cup 1998
dataset, which shows the same observations as with the NASA dataset,
as indicated in Table 5. Prophet–LSTM model shows 90.8% higher
accuracy than the best single model Bi-LSTM 5 steps. Prophet–LSTM
hybrid model shows higher latency than the fastest single model, LSTM.

The R2 in the hybrid model is higher in the NASA dataset with a
regular seasonality pattern. This higher R2 was achieved from the
seasonality capturing done by the Prophet model. In the World
Cup 1998 dataset, R2 is 0.032% lower compared to the Bi-LSTM
single-step model. This was caused by the dataset’s complex
seasonality patterns and abnormalities. This shows that hybrid
models can fit the model to the dataset better compared to single
models, but it can introduce errors if the dataset does not show a clear
pattern or has extensive abnormalities.

The lower R2 occurred due to seasonality capturing done by the
Prophet model. Seasonality capturing can introduce significant
variations to the prediction when the dataset contains more
abnormalities. NASA dataset, which has fewer abnormalities and
demonstrates clear seasonality throughout the period, shows the
efficient capture of seasonality patterns by Prophet as shown in
Figure 5. In contrast, the World Cup 1998 dataset has three large
HTTP request spikes and different HTTP request patterns in time
ranges 1998 July 01–05, 1998 July 06–10, 1998 July 10–15, and 1998
July 16–27, as indicated in Figure 4. The effect of the abnormalities
can be seen in Figure 8, where, starting July 14, the prediction is
higher than the actual and predicted data, not capturing spikes in the
prediction period. This caused the residual prediction to correct the
induced error, as shown in Figure 9 as spikes. In the NASA dataset,
this behavior cannot be seen in residual prediction (Figure 6) since
the Prophet model captured the dataset’s seasonality, which has fewer
abnormalities and a consistent seasonality pattern.

The original NASA dataset has a “No Data” period from 1995
July 28 to 1995 July 31 and from 1995 August 01 to 1995 August 03.
For the prediction studies conducted, this section was considered
as no traffic days and can be highlighted as an anomaly of the

workload. These days, less workload or no workload can
be commonly seen in production applications based on customer
behavior or external considerations. Even though this period can
be filled with dummy data to increase the accuracy of seasonality
capturing, we have not generated the dummy data to observe the
model behavior under abnormalities and increase the comparison
accuracy with existing literature.

The results demonstrate that the proposed model achieves
higher prediction accuracy than the existing scaling solutions. This
showcases its potential as a reliable approach for predictive scaling.
Even though Kubernetes integration of the model has been
hypothesized, direct application as a proactive autoscaling requires
further elaboration. The model utilizes the autoscaling framework
described in Section 3.2.2, which provides the necessary architecture
for seamless integration with Kubernetes. By expanding upon the
methodology suggested by Dang-Quang and Yoo (2021), the model
ensures compatibility with Kubernetes’ current scaling mechanisms
and highlights the advantages of real-time resource management.

Implementing the approach effectively as a proactive autoscaling
requires specific measures to be considered. This includes integrating
the proposed hybrid model into either Kubernetes HPA or custom
autoscaling, such as the KEDA Project, developing necessary APIs,
calibrating it to pod forecasting based on the system parameters, and
preemptively initiating scaling triggers. This procedure necessitates
comprehensive implementation guidelines, including API specifications,
input/output mapping between TSA predictions and Kubernetes API
calls, and latency and performance monitoring optimization.

The proposed model uses an HTTP request rate for the scaling,
considering it provides a more immediate and holistic view of demand
fluctuations (Zhang et al., 2009). Still, properly allocating CPU and
memory to the target pod is crucial for proper deployment. Although the
HTTP request rate may not precisely correspond to the CPU and memory
utilization due to the differing computational and memory requirements,
engineers should rate the pod for the maximum request rate allowed. This
metric is crucial in proactive autoscaling to calculate the necessary pod
counts in scaling up or down scenarios. Adding a fixed CPU and memory
allocation to the pod and the maximum replicas in a scaling environment

FIGURE 10

Combined prediction results from Prophet and LSTM.

https://doi.org/10.3389/fcomp.2025.1509165
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Guruge and Priyadarshana 10.3389/fcomp.2025.1509165

Frontiers in Computer Science 12 frontiersin.org

is essential and recommended to appropriately upscale to underline
infrastructure automatically to the upcoming resource demand. Proactive
autoscaling decisions can be executed without the Kubernetes server
running into resource limitations by ensuring proper CPU and memory
settings and maximum replicas.

6 Conclusion

Cloud computing is becoming increasingly popular among large-
scale cloud applications and Software as a Service (SaaS) applications,
considering its flexibility on elasticity. Kubernetes is one of the widely
employed deployment strategies that supports elasticity and adjusts the
computing power based on the dynamic workload. Autoscaling is a key
feature of Kubernetes, which gives resource elasticity to provision and
de-provision resources automatically. This mechanism helps the
deployers to maintain high service availability while reducing the cloud
cost. This study proposes a proactive autoscaling system to Kubernetes
based on Prophet and LSTM-based hybrid models. The proposed
autoscaling is based on the MAPE loop to determine scaling decisions.
The proposed hybrid model was trained and evaluated using NASA and
World Cup 1998 datasets. The results of the experiments demonstrated
the efficiency of the proposed model compared to single-model
proactive autoscaling. Compared to single models, the hybrid model has
a higher prediction time since the data is analyzed through two models.

The hybrid model for proactive autoscaling is far from trivial. As
for future works, prediction time should be optimized. Implementing
the MAPE loop in a more user-friendly way using Kubernetes agents
or integrating it with the KEDA Project is a practical side of the
exploration of this study. In this study horizontal scaling is focused on
adding or removing pods. Still, proactive scaling can be explored
vertically (adding or eliminating CPU/memory to the container) or
integrated alongside horizontal scaling.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material; further inquiries can be directed
to the corresponding author.

Author contributions

PG: Methodology, Software, Writing – original draft. YP:
Writing – review & editing, Supervision.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fcomp.2025.1509165/
full#supplementary-material

References

Abumohsen, M., Owda, A., Owda, M., and Abumihsan, A. (2024). Hybrid
machine learning model combining of CNN-LSTM-RF for time series forecasting
of solar power generation. e-Prime 9:100636:100636.

Ahmed, R. R., Streimikiene, D., Streimikis, J., and Siksnelyte-Butkiene, I. (2024). A
comparative analysis of multivariate approaches for data analysis in management
sciences. E+M Ekon. Manag. 27, 192–210. doi: 10.15240/tul/001/2024-5-001

Ahmed, R. R., Streimikiene, D., Ghauri, S. P., and Aqil, M. (2021). Forecasting
inflation by using the sub-groups of both CPI and WPI: evidence from auto regression
(AR) and ARIMA models. Roman. J. Econ. Forecast. 2, 144–161. doi: 10.1016/j.
prime.2024.100636

al-Dhuraibi, Y., Paraiso, F., Djarallah, N., and Merle, P. (2018). Elasticity in cloud
computing: state of the art and research challenges. IEEE Trans. Serv. Comput. 11,
430–447. doi: 10.1109/TSC.2017.2711009

Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., and Merle, P. (2017). “Autonomic vertical
elasticity of Docker containers with ELASTICDOCKER.” in 2017 IEEE 10th
International Conference on CLOUD computing (CLOUD). [Preprint].

Annapoorna, E., Sujil, S. V., Sreepriya, S., Abhishek, S., and Anjali, T. (2024).
“Revolutionizing stock Price prediction with automated Facebook prophet analysis.”

2022 International Conference on Inventive Computation Technologies (ICICT)
[Preprint].

Arlitt, M., and Jim, T. (1998). 1998 World Cup Web Site Access Logs. Available at:
http://www.acm.org/sigcomm/ITA/ (Accessed September 1, 2024).

Ashraf, Q. M., Tahir, M., Habaebi, M. H., and Isoaho, J. (2023). Toward autonomic
internet of things: recent advances, evaluation criteria, and future research directions.
IEEE Internet Things J. 10, 14725–14748. doi: 10.1109/JIOT.2023.3285359

Aslanpour, M. S., Ghobaei-Arani, M., and Toosi, A. N. (2017). Auto-scaling web
applications in clouds: a cost-aware approach. J. Netw. Comput. Appl. 95, 26–41. doi:
10.1016/j.jnca.2017.07.012

Aytaç, E. (2021). Forecasting Turkey’s hazelnut export quantities with Facebook’s
prophet algorithm and box-cox transformation. Adv. Distribut. Comp. Artif. Intellig. J.
10, 33–47. doi: 10.14201/adcaij20211013347

Bartelucci, N., and Bellavista, P. (2023). “A practical guide to autoscaling solutions for
next generation internet applications.” 2023 IEEE International Conference on
Metaverse Computing, Networking and Applications (MetaCom) [Preprint].

Bekkar, A., Hssina, B., Douzi, S., and Douzi, K. (2024). Forecasting ozone levels in
Morocco. A Comparative Study of SARIMA and FB Prophet Models. In: Adv. Environ.

https://doi.org/10.3389/fcomp.2025.1509165
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1509165/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1509165/full#supplementary-material
https://doi.org/10.15240/tul/001/2024-5-001
https://doi.org/10.1016/j.prime.2024.100636
https://doi.org/10.1016/j.prime.2024.100636
https://doi.org/10.1109/TSC.2017.2711009
http://www.acm.org/sigcomm/ITA/
https://doi.org/10.1109/JIOT.2023.3285359
https://doi.org/10.1016/j.jnca.2017.07.012
https://doi.org/10.14201/adcaij20211013347

Guruge and Priyadarshana 10.3389/fcomp.2025.1509165

Frontiers in Computer Science 13 frontiersin.org

Eng. Green Technol. Book Ser. eds. J. Mabrouki & M. Azrour. IGI Global Scientific
Publishing. 9–28. doi: 10.4018/979-8-3693-3807-0.ch002

Borkowski, M., Schulte, S., and Hochreiner, C. (2016). Predicting cloud resource
utilization, 9th international conference on utility and cloud computing (UCC ‘16).
New York, United States of America: Association for Computing Machinery, 37–42.

Calheiros, R. N., Masoumi, E., Ranjan, R., and Buyya, R. (2015). Workload prediction
using ARIMA model and its impact on cloud applications’ QOS. IEEE Trans. Cloud
Comp. 3, 449–458. doi: 10.1109/TCC.2014.2350475

Chen, L., Xian, M., and Liu, J. (2020). “Monitoring system of OpenStack cloud
platform based on Prometheus.” in 2020 International Conference on Computer Vision,
Image and Deep Learning (CVIDL) [Preprint].

Cheng, J., Tiwari, S., Khaled, D., Mahendru, M., and Shahzad, U. (2023). Forecasting
bitcoin prices using artificial intelligence: combination of ML, SARIMA, and Facebook
prophet models. Technol. Forecast. Soc. Chang. 198:122938. doi:
10.1016/j.techfore.2023.122938

Ciptaningtyas, H.T., Santoso, B.J., and Razi, M.F. (2017). “Resource elasticity controller
for docker-based web applications.” 2017 11th international conference on information
communication technology and system (ICTS). Surabaya, Indonesia, pp. 193–196.

Dang-Quang, N.-M., and Yoo, M. (2021). Deep learning-based autoscaling using
bidirectional long short-term memory for kubernetes. Appl. Sci. 11:3835. doi:
10.3390/app11093835

Fang, W., Lu, Z., Wu, J., and Cao, Z. (2012). “RPPS: A novel resource prediction and
provisioning scheme in cloud data center.” in 2012 IEEE ninth international conference
on services computing. Honolulu, United States of America. pp. 609–616.

Garí, Y., Monge, D. A., Pacini, E., Mateos, C., and García Garino, C. (2021).
Reinforcement learning-based application autoscaling in the cloud: a survey. Eng. Appl.
Artif. Intell. 102:104288. doi: 10.1016/j.engappai.2021.104288

Hardikar, S., Ahirwar, P., and Rajan, S. (2021). “Containerization: cloud computing
based inspiration Technology for Adoption through Docker and Kubernetes.” 2021
second international conference on electronics and sustainable communication systems
(ICESC) [Preprint].

Hochreiter, S., and Schmidhuber, J. (1996). LSTM can solve hard long time lag
problems. Neural Inform. Proc. Syst. 9, 473–479.

Ibryam, B., and Huß, R. (2023). Kubernetes patterns: Reusable elements for designing
cloud-native applications. California, USA: O’Reilly Media.

Imdoukh, M., Ahmad, I., and Alfailakawi, M. G. (2019). Machine learning-based
auto-scaling for containerized applications. Neural Comput. & Applic. 32, 9745–9760.
doi: 10.1007/s00521-019-04507-z

Kothari, A., Kulkarni, A., Kohade, T., and Pawar, C. (2024). Stock market prediction
using LSTM. Lect. Notes Networks Syst. 143–164. doi: 10.1007/978-981-97-1326-4_13

Kubernetes Documentation (2024). Available at: https://kubernetes.io/docs/home/
(Accessed August 28, 2024).

Marie-Magdelaine, N., and Ahmed, T. (2020). “Proactive autoscaling for cloud-native
applications using machine learning.” GLOBECOM 2020–2020 IEEE Global
Communications Conference [Preprint].

Megino, F. H. B., Albert, J. R., Berghaus, F., De, K., Lin, F., MacDonell, D., et al. (2020).
Using Kubernetes as an ATLAS computing site. EPJ Web Conf. 245:07025. doi:
10.1051/epjconf/202024507025

Messias, V. R., Estrella, J. C., Ehlers, R., Santana, M. J., Santana, R. C., and
Reiff-Marganiec, S. (2015). Combining time series prediction models using genetic

algorithm to autoscaling web applications hosted in the cloud infrastructure. Neural
Comput. & Applic. 27, 2383–2406. doi: 10.1007/s00521-015-2133-3

NASA-HTTP (1995). Available at: https://ita.ee.lbl.gov/html/contrib/NASA-HTTP.
html (Accessed September 1, 2024).

Pahl, C., and Lee, B. (2015). “Containers and clusters for edge cloud architectures -- a
technology review.” in 2015 3rd International Conference on Future Internet of Things
and Cloud [Preprint].

Pascanu, R., Mikolov, T., and Bengio, Y. (2012). On the difficulty of training recurrent
neural networks. arXiv (Cornell University) [preprint].

Podolskiy, V., Jindal, A., Gerndt, M., and Oleynik, Y. (2018). Forecasting models for
self-adaptive cloud applications: A comparative study: in 2018 IEEE 12th International
Conference on Self-Adaptive and Self-Organizing Systems [Preprint].

Prachitmutita, I., Aittinonmongkol, W., Pojjanasuksakul, N., Supattatham, M., and
Padungweang, P. (2018). “Auto-scaling microservices on IAAS under SLA with cost-
effective framework.” 2018 Tenth International Conference on Advanced Computational
Intelligence (ICACI) [Preprint].

Roy, N., Dubey, A., and Gokhale, A. (2011). “Efficient autoscaling in the cloud using
predictive models for workload forecasting.” in 2011 IEEE 4th International Conference
on Cloud Computing [Preprint].

Shah, J., and Dubaria, D. (2019). “Building modern clouds: Using Docker, Kubernetes
& Google Cloud Platform.” in 2019 IEEE 9th Annual Computing and Communication
Workshop and Conference (CCWC) [Preprint].

Tang, X., Liu, Q., Dong, Y., Han, J., and Zhang, Z. (2018). “Fisher: an efficient container
load prediction model with deep neural network in clouds.” in 2018 IEEE Intl Conf on
parallel Distributed processing with applications, ubiquitous Comput- ing
communications, big data cloud computing, social computing networking, sustainable
computing communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom).
Melbourne, Australia, pp. 199–206.

Taylor, S. J., and Letham, B. (2018). Forecasting at scale. Am. Stat. 72, 37–45. doi:
10.1080/00031305.2017.1380080

Toka, L., Dobreff, G., Fodor, B., and Sonkoly, B.. (2020). “Adaptive AI-based auto-
scaling for Kubernetes.” in 2020 20th IEEE/ACM international symposium on cluster,
Cloud and Internet Computing (CCGRID). pp. 599–608.

Varghese, B., and Buyya, R. (2018). Next generation cloud computing: new trends and
research directions. Futur. Gener. Comput. Syst. 79, 849–861. doi:
10.1016/j.future.2017.09.020

Wang, Z., and Gu, X. (2023). “A time series prediction algorithm based on BiLSTM
and prophet hybrid model.” in 2023 4th International Conference on Computer
Engineering and Application (ICCEA). pp. 128–132.

Yan, M., Liang, X. M., Lu, Z. H., Wu, J., and Zhang, W. (2021). HANSEL: adaptive
horizontal scaling of microservices using bi-LSTM. Appl. Soft Comput. 105:107216. doi:
10.1016/j.asoc.2021.107216

Yang, D., Li, M., Guo, J. E., and du, P. (2024). An attention-based multi-input LSTM
with sliding window-based two-stage decomposition for wind speed forecasting. Appl.
Energy 375:124057. doi: 10.1016/j.apenergy.2024.124057

Ye, T., Guangtao, X., Shiyou, Q., and Minglu, L. (2017). “An auto-scaling framework
for containerized elastic applications.” in N Proceedings of the 2017 3rd International
Conference on Big Data Computing and Communications (BIGCOM), pp. 422–430.

Zhang, H., Jiang, G., Yoshihira, K., Chen, H., and Saxena, A. (2009). “Intelligent
workload factoring for a hybrid cloud computing model.” in 2009 Congress on Services -
I[Preprint].

https://doi.org/10.3389/fcomp.2025.1509165
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://doi.org/10.4018/979-8-3693-3807-0.ch002
https://doi.org/10.1109/TCC.2014.2350475
https://doi.org/10.1016/j.techfore.2023.122938
https://doi.org/10.3390/app11093835
https://doi.org/10.1016/j.engappai.2021.104288
https://doi.org/10.1007/s00521-019-04507-z
https://doi.org/10.1007/978-981-97-1326-4_13
https://kubernetes.io/docs/home/
https://doi.org/10.1051/epjconf/202024507025
https://doi.org/10.1007/s00521-015-2133-3
https://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
https://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
https://doi.org/10.1080/00031305.2017.1380080
https://doi.org/10.1016/j.future.2017.09.020
https://doi.org/10.1016/j.asoc.2021.107216
https://doi.org/10.1016/j.apenergy.2024.124057

	Time series forecasting-based Kubernetes autoscaling using Facebook Prophet and Long Short-Term Memory
	1 Introduction
	2 Related work
	2.1 Reactive autoscaling
	2.2 Proactive autoscaling

	3 System architecture
	3.1 Hybrid model
	3.1.1 Metric selection for forecasting
	3.1.2 Facebook prophet model
	3.1.3 Long short-term memory
	3.1.4 Time complexity analysis
	3.2 Proactive autoscaling
	3.2.1 Kubernetes components
	3.2.2 Scaling loop

	4 Experiments
	4.1 Datasets
	4.1.1 NASA dataset
	4.1.2 FIFA world cup 1998 dataset
	4.2 Experimental settings
	4.2.1 Model configuration
	4.2.2 Evaluation metrics
	4.3 Results
	4.3.1 NASA dataset
	4.3.2 FIFA world cup 1998 dataset

	5 Discussion
	6 Conclusion

	References

