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Quantum Natural Language Processing (QNLP) is a relatively new subfield of 
research that extends the application of principles of natural language processing 
and quantum computing that has enabled the processing of complex biological 
information to unprecedented levels. The present comprehensive review analyses 
the potential of QNLP in influencing many branches of bioinformatics such as 
genomic sequence analysis, protein structure prediction, and drug discovery and 
design. To establish a correct background of QNLP techniques, this article is going to 
explore the basics of quantum computing including qubits, quantum entanglement, 
and quantum algorithms. The next section is devoted to the application of QNLP 
in the extraction of material and valuable information and knowledge related 
to drug discovery and development, prediction and assessment of drug-target 
interactions. In addition, the paper also explains the application of QNLP in protein 
structural prediction by quantum embedding, quantum simulation, and quantum 
optimization for exploring the sequence-structure relationship. However, this study 
also acknowledges the future of QNLP in bioinformatics in the discussion of the 
challenges and weaknesses of quantum hardware, data representation, encoding, 
and the construction and enhancement of the algorithms. This looks into real-life 
problems solved from industry applications, benchmarking and assessment criteria, 
and a comparison with other traditional NLP methods. Therefore, the review 
enunciates the research and application perspectives, as well as the developmental 
and implementation blueprint for QNLP in bioinformatics. The plan is as follows: 
its function is to achieve the objectives of precision medicine, new protein design, 
multi-omics, and green chemistry.
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1 Introduction

Natural language processing (NLP) is a field of computer science and a subfield of artificial 
intelligence that aims to make computers understand human language. NLP uses 
computational linguistics, which is the study of how language works, and various models based 
on statistics, machine learning, and deep learning. Quantum Natural Language Processing 
(QNLP) is an integrative approach that encompasses natural language processing and physical 
theories taken from quantum mechanics to speed up the process of analyzing human language 
(Karamlou et al., 2022). By doing so, it can transform how humans engage with 
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language-based data by proposing new and unique enhancements for 
a range of purposes such as Text Processing and Preprocessing; 
semantic analysis; text classification, sentiment analysis; information 
retrieval; and language translation. Because of principles as 
superposition and entanglement, QNLP can process enormous 
amounts of linguistic information simultaneously, which in turn 
entails a more efficient and comprehensive analysis of language than 
in classical NLP (Widdows et al., 2024). Besides, it is believed that 
QNLP should be more efficient and precise than conventional NLP 
due to the peculiarities of quantum computing as the solution to the 
problems associated with context-dependent and 
linguistic information.

Quantum systems, on which QNLP is based, are divided into two 
types: closed and open. Isolated quantum systems evolve under 
unitary time evolution, that is, by the Schrödinger equation. These 
systems are best used in theoretical work and form the basis of 
QNLP. On the other hand, the open quantum system has contact with 
other surroundings, the evolution is non-unitary due to dissipation 
and decoherence(Weidner et al., 2024). As a start for the exploration 
of QNLP techniques, this paper initially concentrates on closed 
quantum systems, although recognizing that open systems affected by 
Markovian and non-Markovian processes are essential in quantum 
computation. This work could be  extended in future research by 
incorporating open quantum system models to expand the areas to 
which QNLP can be applied.

1.1 Background and motivation

In the past, ever since the development of modern computing, 
the application of algorithms and mathematical models in biological 
studies has expanded tremendously (Ofer et  al., 2021). Natural 
language processing is now an indispensable method of data mining 
in bioinformatics to enable fast and efficient extraction of 
knowledge from bulk data. However, classical NLP techniques have 
problems with the organization of complexity, heterogeneity, and 
scale, typical for biological data, including scientific articles, 
databases, and experimental outcomes (Khurana et al., 2023). These 
limitations call for a change in the approach to 
computational strategies.

QNLP alleviates this problem by using quantum computing’s 
strengths of handling big data most efficiently. Quantum circuits and 
compositional vector-based semantics used in language tasks improve 
the simulation of biological processes such as interactions between 
molecules and genomics data analysis. For example, QNLP methods 
could bring a drastic improvement in such tasks as protein folding 
prediction, ligand binding constant estimation, and genome-wide 
sequence comparison. Since there is no currently implementable 
quantum hardware, the current quantum algorithms, simulators, and 
prototype quantum systems allow for research into QNLP in 
bioinformatics (Havlíček et al., 2019).

1.2 Biological challenges, scope, and 
contribution

Bioinformatics has a significant scope and potential contribution 
to Quantum Natural Language Processing (QNLP). The knowledge 

that can be  utilized to enhance QNLP models is extracted from 
biological data using bioinformatics approaches, including text 
mining and natural language processing. An example of the advanced 
analytical skills that bioinformatics can contribute to QNLP (Huang 
et al., 2015) is the utilization of NLP approaches for the detection of 
noncoding RNA and the prediction of protein structure and function. 
Particularly in light of the quantum advantage in processing massive 
amounts of data (Kumar et al., 2024), the computational models and 
algorithms utilized in bioinformatics to manage huge datasets may 
be  advantageous for QNLP. Furthermore, novel approaches to 
language processing in QNLP may be presented by the incorporation 
of bio-inspired models into computing, as elaborated in reference 
(Jiménez López, 2022).

At the time of biological data processing, however, 
conventional NLP methodologies confront several obstacles: The 
dualistic nature and uncertainty in achieving accurate reading and 
decoding of sentences in biology using typical natural language 
processing (NLP) models is sometimes difficult due to the 
terminology’s complexity, which often includes acronyms and 
multiple meanings (Locke et al., 2021). Integration and analysis of 
biological data are complicated by the heterogeneity of the data 
(Hilton et  al., 2020). On the contrary, biological data sources 
include scientific articles, databases, experimental results, and 
scientific papers; each possesses its distinct organization, format, 
and nomenclature. Given the rapid expansion of biological data, 
traditional natural language processing (NLP) methods may face 
challenges in efficient processing and analyzing enormous 
datasets, leading to limitations in scalability and performance (Liu 
et  al., 2024). In contrast to classical computers, quantum 
computers can revolutionize algorithm efficiency through the 
execution of operations that classical machines are incapable of. 
This can result in significant accelerations through the avoidance 
of superfluous computations. The quantum computers can execute 
intricate computations within days, which would require classical 
supercomputers an eternity to finish. Despite the lack of fully 
operational quantum hardware, efforts have continued to create 
and investigate quantum algorithms for natural language 
processing (NLP). Recent advancements in prototype 
construction, coupled with mathematical analysis and the 
introduction of high-performance quantum computer simulators, 
have facilitated the investigation of quantum algorithms for a wide 
range of biological applications (Ohno-Machado et al., 2013).

Although these difficulties highlight the need for novel 
computational techniques, QNLP presents encouraging paths to fill 
these gaps. This paper outlines a comprehensive approach to explore 
these possibilities, bridging theoretical and practical aspects of QNLP 
in bioinformatics.

1.3 Contribution and organization of the 
paper

The theoretical underpinnings and practical applications of 
quantum computing and QNLP in the domain of bioinformatics are 
encompassed within the scope of this article. In addition to outlining 
forthcoming opportunities and problems, it offers a complete 
assessment of the existing status of research in this location. The 
structure of the paper is as follows:
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This research employs a systematic research methodology in 
Section 2 which outlines, detailing the search strategy, inclusion 
and exclusion criteria, and quality assessment process used for the 
review of QNLP in bioinformatics. The foundational principles of 
quantum computing and an assortment of QNLP approaches are 
presented in Section 3. Potential QNLP applications in various 
bioinformatics disciplines, including drug discovery and design, 
protein structure prediction, genomic sequence analysis, and 
biomedical literature mining, are examined in Section 4. The 
problems and limitations of QNLP in bioinformatics are examined 
in Section 5. These encompass constraints imposed by quantum 
hardware, concerns related to data representation and encoding, 
as well as the development and optimization of algorithms. 
Performance evaluation and comparative analysis are the subjects 
of Section 6. Evaluation metrics and a comparison of traditional 
NLP approaches versus QNLP methods are all covered. Section 7 
provides a critical examination of the findings in relation to the 
research questions. In conclusion, Section 8 delves into 
prospective research avenues Future Research Directions, 
and Roadmap.

2 Research methodology

We examine Quantum Natural Language Processing (QNLP) and 
its bioinformatics applications in this exhaustive review. Our primary 
objective is to define the fundamental concepts of quantum computing 
and QNLP methodologies, with an emphasis on their potential 
advantages over conventional NLP approaches. Then, we examine the 
myriad bioinformatics applications of QNLP, which include 
biomedical literature mining, drug discovery and design, protein 
structure prediction, and genomic sequence analysis. Furthermore, 
we endeavor to recognize and investigate the barriers and restrictions 
that plague quantum natural language processing in the field of 
bioinformatics. These include limitations imposed by quantum 
hardware, complications related to data representation and encoding, 
as well as difficulties in developing and optimizing algorithms. To 
assess the practical implications and efficacy of QNLP, a comparative 
study is undertaken with traditional NLP methodologies. This analysis 
is substantiated by benchmarking outcomes and empirical case studies.

2.1 Research questions

Research Question 1:  Investigate the application of quantum 
computing concepts and methodologies to 
natural language processing (QNLP).

Research Question 2:  In what ways could QNLP be utilized to 
automate and enhance the drug discovery 
and design process, namely in literature 
mining, drug-target interaction prediction, 
and virtual screening?

Research Question 3:  What is the performance of QNLP 
algorithms about traditional NLP 
techniques, as evaluated using 
benchmarking and criteria metrics?

Research Question 4:  What are the current limitations and future 
opportunities for QNLP in bioinformatics?

Our objective is to furnish a comprehensive synopsis of the 
present state of QNLP in bioinformatics, expose areas where further 
research is warranted, and establish a framework for the advancement 
and adoption of QNLP in this field.

2.2 Search strategy

A comprehensive search was performed for this study, covering 
the period from 2013 to 2024. The search encompassed several 
reputable databases, such as PubMed, Scopus, IEEE Xplore, ACM 
Digital Library, and Web of Science. The extensive inquiry was 
motivated by the particular emphasis on the utilization of quantum-
based techniques in addressing bioinformatics obstacles, such as drug 
development, Protein structure prediction, and genetic analysis, 
among others. With deliberate intention, we expanded our search 
beyond medical databases such as PubMed and Medline, which 
predominantly cover health informatics and biomedical subjects. 
Conversely, we investigated numerous databases about the domain of 
computer science (CS). The papers were identified by the utilization 
of several screening tasks and quantum computing-related keywords 
‘Quantum Search Strategy,’ ‘Quantum Embeddings’, ‘Quantum 
Mapping’, ‘Quantum Superposition and Quantum Entanglement’, 
‘Prediction’ and incorporating NLP keywords like ‘Relation Extraction’, 
‘Name entity Recognition’, ‘Semantic Analysis, Sentiment Analysis’, 
‘Knowledge discovery’, ‘Machine learning in NLP’.

2.3 Selection criteria

The criteria for including articles in this selection were as follows:

 a. Articles must be written in English;
 b. Publication date must be 2013 or later;
 c. Articles must make initial and significant contributions to 

the field.
 d. Articles must be  published as original journal articles or 

conference proceedings.

This review did not include if:

 a. The research was published in the form of a summary, research 
report, conference abstract, news article, internet-based 
material, or workshop report, or as a research protocol.

 b. The study was identified as duplicates using a systematic 
approach which includes automatic detection through Zotero 
followed by manual verification.

 c. Articles focused on research involving animals or 
non-human samples.

 d. Articles did not address any of the research questions.

Quality Assessment Criteria (QAC) were created to guarantee the 
dependability and methodological soundness of the included studies. 
These standards assess the research based on its contributions to the 
area, methodological transparency, and relevancy. In addition to 
ensuring consistency in evaluating the caliber of research, the QACs 
aid in standardizing the inclusion process.
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QAC Assessment criteria

QAC 1 Does the study utilize quantum natural language processing 

(QNLP) techniques?

QAC 2 Is the study relevant to bioinformatics tasks?

QAC 3 Is there a clear motivation for the research?

QAC 4 Does the study confirm the experimental findings with adequate 

evaluation metrics?

QAC 5 Is there a clear motivation for the research that aligns with solving 

specific challenges in bioinformatics?

QAC 6 Are the experimental setups, including experimental environments 

and dataset details, described in detail?

QAC 7 Does the key contributions and limitations of the study.

Each study has been evaluated using the QAC scoring system:

Score Criteria

0 If does not meet mentioned QAC

1 Partially met the QAC

2 Completely met QAC

As shown in Figure 1, the initial search yielded a total of 1,417 
records from the specified databases. After eliminating 450 duplicate 
articles, 967 records remained for screening. Subsequently, based on 
the pre-established inclusion criteria, 737 articles were excluded, 
leaving us with 230 articles for consideration in the second round of 
the selection process. Following a thorough examination of the full-
text articles, a total of 184 papers were included in this systematic 
review. The next section begins with the review of the foundational 
principles of quantum computing and an assortment of 
QNLP approaches.

3 Quantum computing concepts and 
QNLP techniques

Quantum Natural Language Processing (QNLP) is an academic 
discipline that is founded upon the ideas and concepts of quantum 
computing, which are inherently distinct from the paradigms of 
classical computing. To comprehend the potential of QNLP and its 
bioinformatics applications, it is essential first to grasp quantum 
computing’s fundamentals. This section presents a comprehensive 
outline of the foundational principles, establishing the preparatory 
stage for the following discourse on QNLP methodologies and their 
ramifications within the realm of bioinformatics.

3.1 Fundamental quantum computing 
concepts

In contrast, quantum computers unlock an entirely new realm of 
potentialities. The initial obstacle in describing quantum computing 
is elucidating its information management system. Data is usually 
maintained in quantum bits, or qubits, which is a quantum version of 
classical computer bits present in a quantum processor. Integrating 

quantum computers in artificial intelligence (AI) has implications 
(Portugal, 2022). AI algorithms, which can be based on traditional 
computation techniques, could give by quantum processors the ability 
to gain vast processing capabilities. Defined by specific features such 
as superposition, interference, entanglement, DE coherence, gates, 
and circuits. For altering the way how AI deals with data, quantum 
computing opens the grounds for progressively complex and swift AI 
operations and the emergence of new quantum algorithms given these 
phenomena (Piattini et al., 2020).

3.1.1 Qubit
Quantum bits are actual physical systems of a photon with a 

specific polarization or an ion trapped in a magnetic field. a qubit is 
described as the basic information unit of a quantum computer. A 
qubit is different from a classical computer bit which can be either 0 
or 1 at any one time but a qubit can be 0 and 1 simultaneously. Observe 
Figure  2 where the behavior of the coin shows the classical and 
quantum physics stating the key difference between the deterministic 
and probabilistic systems which introduces the quantum superposition 
and entanglement. In classical the coin has two possible states Head 
or Tail when it is spinning it lands on either head or tail so it has a 
chance of 50% for both head and tail. In quantum, the coin blends in 
both head and tail calculating the probability of the states and giving 
the state that has a high probability value. This is called superposition 
which can make quantum computers solve many problems altogether 
hence making them so efficient for specific tasks.

Qubits are basics units of quantum computer systems and are 
physically implemented through certain entities such as ions subjected 
to magnetic fields. A qubit can be in any state other than 0 and 1 as 
Schrodinger’s cat is alive and dead state at the same time (Black et al., 
2002). A qubit exhibits one of the following collapse states when 
observed? Interactions with a single qubit can affect the entire state, 
as groups of qubits can correlate. Qubits, which are denoted by the 
complex coefficients α and β, exist in a superposition of the states 0 
and 1, whereas bits are the fundamental units of traditional computing.

In Figure 3 watching a qubit changing its state, these coefficients 
pertain to physical measurements. In the domain of quantum 
information, the qubit, represented by the Dirac notation |0⟩ and 
consisting of two states, serves as the comparable entity. |1⟩, where |•⟩ 
denotes a quantum state. The main difference between quantum and 
classical information is that, as Equation 1 illustrates, a qubit can exist 
in any superposition of the states |0⟩ and |1⟩.

 
0 1α βΨ = +

 (1)

 
2 2Where , 1Cα β α β∈ + =  (2)

The frequencies of the distinct states in quantum computing are 
denoted by the complex coefficients α and β. As a fundamental 
principle of quantum physics, these amplitudes are highly susceptible 
to the impact of physical measurement. A qubit’s state will be altered 
during the measurement process, by the principles of quantum 
mechanics (Dejpasand and Sasani Ghamsari, 2023), if it is in a 
superposition of potential measurement outcomes. As a qubit 
collapses into its measured state, its amplitudes lose all information. 
Complex language patterns and relationships in biological data can 
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FIGURE 1

PRISMA diagram.

FIGURE 2

Classical bit vs. quantum bit.

https://doi.org/10.3389/fcomp.2025.1464122
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Pallavi and Prasanna Kumar 10.3389/fcomp.2025.1464122

Frontiers in Computer Science 06 frontiersin.org

be represented by qubits, which are capable of existing in superposition 
states. Simultaneously including numerous linguistic aspects or 
representations, QNLP models provide a more comprehensive 
analysis of biological texts, analogous to how a qubit can exist in a 
superposition of states.

3.1.2 Quantum entanglement
In addition, entanglement is a quantum phenomenon that qubits 

are capable of manifesting, in which the states of two qubits become 
coupled irrespective of their separation. It is easier to imagine two 
qubits as two magic dice. In classical the flipping of two dice results is 
independent of each other. As shown in Figure 4, in quantum they are 
“entangled,” then flipping one die immediately reveals the outcome of 
the other no matter where the two are located across the room, across 
the country, across the universe! Their results are perfectly correlated, 
even though the outcomes are random and unpredictable. This 
magical connection does not work the way we  observe other 
connections that are usual to us but is a natural component of 
quantum mechanics.

The experimental data show that any quantum calculation that 
does not require entanglement can be carried out at a slightly slower 
pace on a classical computer. When computing is associated with 
systems, which involve many qubits that are susceptible to quantum 
entanglement, one fully understands the meaning of computing. 
Entanglement is defined as any process that takes place on a single 
qubit influences the total state of the whole set of qubits.

Figure 5 represents system consists of two qubits, with each qubit 
capable of existing in a superposition of the states |0⟩, |1⟩, the 
combined system can also exist in any superposition of the states |00⟩, 
|01⟩, |10⟩, |11⟩, and so forth (or any of the 2^N binary strings from 
|0…0.0⟩ to |1…0.1⟩ in the case of an N-qubit system). The so-called 
Bell states, which are significant in the context of quantum 

entanglement (Wong, 2019), are among these superpositions. This is 
illustrated by Equation 2.

 

1 ( 10 01 )
2

Ψ = +
 

(3)

The underlying assumption is based on the potential of the 
quantum computer to work at data-intensive large volumes. In 
order to understand this, let us consider a quantum system of N 
qubits at our disposal. If the state of the system is not entangled, 
the number of amplitudes in a state of this system is equal to 2^N, 
where amplitudes of states of each qubit in the system are summed. 
When the system becomes entangled, however, these amplitudes 
all become independent and the qubit register as a whole transform 
into a 2 N-dimensional vector (Tao, 2024). By modeling and 
analyzing interrelated links between biological things or concepts 
represented in textual data, the concept of quantum entanglement 
is utilized. Similar to how quantum entanglement enables the 
correlation of qubits, QNLP represents and comprehends the 
intricate interrelationships among proteins, illnesses, genes, and 
other biological components by employing this idea.

3.1.3 Quantum interference
Quantum interference is employed in the computation of 

quantum computers with the help of Equation 3, which is helpful. 
However, acknowledging the fact that quantum computers are 
inherently noisy and do not always provide accurate results and 
decisions, they always utilize probability to provide the best guess or 
most likely occurrence anticipated. Besides locations, quantum 
computers use the energy level of qubits or spin to do computations 
(Simmons, 2024). This can be expressed using the Born rule, which 

FIGURE 3

Qubit representation along with superposition.
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states that the probability of measuring a particular outcome x given 
a quantum state represented by a density matrix ρ is given by:

 total 1 1 2 2c cψ ψ + ψ=
 (4)

The weight of each state in the superposition is determined by the 
complex probability amplitudes, denoted as c1 and c2, which are 
represented by Equation 4. The interference of various states may 
result in interference effects in the final state ∣ψtotal⟩, which can 
manifest as observable phenomena like interference patterns in 
experiments involving interference, such as the double-slit experiment.

The interference element (c1c2*) in the superposition formula has 
the potential to induce either constructive or destructive interference, 
contingent upon the relative phases of 𝑐1 and 𝑐2. The interference 
behavior described here is an essential component of quantum physics 
and has far-reaching implications for quantum communication, 
computation, and other technologies.

The processing and analysis of textual data may be improved with 
the application of quantum interference (Torlai and Melko, 2020). 

Utilizing interference effects, QNLP models are capable of conducting 
more complex and context-aware analyses by modeling language 
elements and relationships as quantum states (Pseiner et al., 2024). 
Language modeling, sentiment analysis, and information extraction 
from biological texts are a few examples of the tasks in which this may 
result in enhanced precision.

3.1.4 Quantum gates
Quantum information can be manipulated by performing quantum 

gates wherein physical operations are utilized by using laser pulse for the 
ion qubits and optical elements for the photonic qubits. Unlike their 
more often than not conceptual definitions, quantum gates have to 
be described as unitary matrices by strict quantum mechanical demands. 
When a quantum gate is performed on at least two entangled qubits, 
then a 2 N × 2 N matrix is multiplied by a 2 N entity. The fact that 
quantum computers can register and manipulate roughly 2 N quantities 
of information using a number of operations equal to N forms the basis 
of a possible exponential quantum edge over classical computers.

For quantum gates to be used in the normalizing of quantum states, 
they have to be unit and linear, or act on superposition (Klimov et al., 

FIGURE 4

Entangled dices.

FIGURE 5

Quantum entanglement.
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2024). But, unlike classical computing that involves only one nontrivial 
gate, namely the NOT gate per bit, quantum computing can perform an 
infinite number of one-qubit quantum gates. It has been established that 
any quantum gate can be approximated from a basis set of gates which 
only includes the single qubit gate and the two qubit controlled NOT 
gate. The exponential number of gates may hinder the application of 
good approximations should the need arise in the future. Language 
properties and relationships can be transformed by quantum gates and 
therefore, more complex tasks can be performed (Van Vu et al., 2024).

The development of quantum algorithms that are well suited to AI 
tasks such as data analysis, optimization, and machine learning has 
elicited a lot of attention from academic and industrial pioneers 
(Preskill, 2018). These algorithms exploit the specific features of 
quantum computers and, thus, perform calculations, which makes 
artificial intelligence operations more complex and faster compared 
to their counterparts based on classical computers (Patel et al., 2023). 
The properties of classical and quantum computing that distinguish 
their respective methods of operation are compared in Table 1.

Having discussed the fundamental principles of quantum 
computing, the next section focuses on how these principles are 
adapted and implemented in QNLP methodologies, particularly in 
bioinformatics applications.

3.2 Quantum natural language processing 
techniques

Quantum natural language processing (QNLP) improves natural 
language processing tasks through the utilization of quantum 
computing and parameterized quantum circuits to compute word 
embeddings. Drawing inspiration from categorical quantum 
mechanics, the DisCoCat framework, this approach transitions from 
grammatical structure to quantum processes via string diagrams. By 
employing the DisCoCat framework and Grover’s algorithm, the 
initial QNLP algorithm showcased a quadratic quantum acceleration 
in the domain of text categorization and the quantum language 
models which generates the text using the quantum algorithms by 
improving the model efficiency.

3.2.1 Quantum embedding
While we  have the classical embeddings like Word2Vec or 

Glove, which map words in the high-dimensional vector space 
where quantum embedding maps words or phrases as quantum 

states as observed in Figure 6. This could lead to improved levels 
of comparison between text analysis and semantic similarity 
assessments of texts. In few of the research, the advantages of 
quantum embedding in NLP tasks were highlighted. One of the 
works suggested a quantum embedding model based on quantum 
circuits. By mapping words or phrases into quantum states through 
quantum gates, our paradigm allows more accurate and effective 
control and description of linguistic features compared to 
traditional methods (Nam and Nguyen., 2024). A unique approach 
inspired by quantum mechanics is presented in this study, which 
utilizes embeddings to facilitate biomedical text-mining tasks 
including entity detection and relation extraction. By exploiting 
quantum computing principles, this approach transforms high-
dimensional quantum states into biological concepts and 
relationships (Samanta et al., 2016; Baiardi et al., 2023).

One approach is to use amplitude encoding, where each word is 
encoded as a quantum state is represented in Equation 5:

 iW iiα=∑  (5)

where, |i⟩ represents the basis states, and α_i are the complex 
amplitudes corresponding to the word w. An innovative methodology 
utilizes the principles of quantum computing to encode relationships 
and concepts in biomedicine into high-dimensional quantum states.

3.2.2 Discocat framework
Quantum Natural Language Processing (QNLP) is a recent and 

fascinating application of quantum computing that seeks to represent the 
meaning of sentences as vectors encoded into quantum computers 
(Abbaszade et al., 2021). It achieves this by extending the distributional 
meaning of words to encompass the compositional meaning of sentences, 
a concept known as the DisCoCat model (Martinez and Leroy-Meline, 
2022). This model employs an algorithm based on tensor products to 
compose the vectors representing the meanings of words through the 
syntactic structure of the sentence. One striking aspect of this approach 
is that while the algorithm is inefficient on classical computers, it exhibits 
promising scalability when executed using quantum circuits.

One of the fundamental ideas underlying the convergence of 
quantum theory and natural language processing is the establishment 
of a direct link between linguistic features, such as syntactic structures 
and semantic meanings, and quantum states (Surov et al., 2021). As 
illustrated in Figure 5 (Yeung and Kartsaklis, 2021), the DisCoCat 

TABLE 1 Comparison of classical and quantum computing properties.

Property Classical Computing Quantum Computing Ref

Information Unit Bit (0 or 1) Qubit (0, 1, or superposition of 0 and 1) Black et al. (2002)

Parallelism Limited parallel processing Quantum parallelism Preskill (2018)

Information Processing Deterministic Probabilistic Farahmand et al. (2014)

Complexity Theory Bounded by polynomial time Can solve certain problems in polynomial time Shor (1999)

Computing Model Turing Machine Quantum Circuit Model Preskill (2018)

Energy Efficiency High energy consumption Potentially energy-efficient Gyongyosi and Imre (2019)

Error Correction Classical error-correcting codes Quantum error-correction codes Ramette et al. (2024)

Computational Speedup Limited speedup for certain problems Exponential speedup for certain problems Shor (1999)

Memory Storage Classical memory (RAM, hard drives) Quantum memory (quantum registers) Heshami et al. (2016)
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framework serves as a network-like language for accomplishing this 
relationship through the use of string diagrams as given in Figure 7. 
This approach is an integral part of the longstanding tradition of 
computational linguistics, which has sought efficient methods for 
describing language structures and meanings in machine-accessible 
formats (Tsujii, 2021). The distributional approach relies on statistical 
analysis of word contexts based on the distributional hypothesis. In 
contrast, the symbolic approach focuses on individual word meanings 
and the compositionality of sentences. The symbolic approach, rooted 
in theoretical linguistics, posits that the meaning of a sentence depends 
on the meanings of its constituent words and the grammar used to 
arrange them (Ganguly et al., 2022). One of paper shows how DisCoCat 
allows QNLP to classify biomedical abstracts by building sentence 
embeddings that retain structural and content-based characteristics. 
By mapping the syntactic dependencies of sentences to quantum states, 
the framework improves the identification of functional/contextual 
similarities in biology articles (Steedman and Baldridge, 2011). 
However, this approach has seen limited success in natural language 
processing applications, where the distributional paradigm, based on 
statistical analysis, currently dominates (Liu et al., 2024).

3.2.3 Quantum language models
Quantum language models (QLM) is a kind of quantum-

inspired neural network model that defines language units, such 
as words and phrases, as quantum states in Hilbert space and 
create text using quantum algorithms, which may result in 
exponential speedups compared to classical models. Complex 
patterns in language data can be  efficiently learned by the 
Quantum Boltzmann Machine (QBM), allowing for more precise 
language production and modeling (Wiebe et  al., 2019). The 
present study introduces a novel quantum circuit-based QLM 

architecture and showcases its efficacy in various domains, 
including text classification, sentiment analysis, and language 
modeling (Shuyue et  al., 2023). The existing body of research 
primarily represents word sequences as a classical mixture of word 
states, which fails to adequately utilize the capabilities of a 
probabilistic quantum description (Campbell et al., 2024). As of 
yet, a comprehensive quantum model that explicitly captures the 
non-classical correlations inside word sequences has not been 
created (Yu et al., 2020). A neural network architecture has been 
suggested, using an innovative Entanglement Embedding (EE) 
component, to convert word sequences into entangled pure states 
of many-body quantum systems. The word sequences exhibit 
robust quantum entanglement, a fundamental principle of 
quantum information and a sign of parallelized correlations 
among the words (Chen et al., 2023; Figure 8).

Equation 6 represents the quantum circuit to estimate the 
probability distribution over words, given a context as follows:

 
P(w|c) (c) ( )ˆ cwU  = ψ ψ

 (6)

Where, |ψ(c)⟩ is the quantum state representing the context, U_w 
is a unitary operator corresponding to the word w, and ⟨ψ(c)|U_
w|ψ(c)⟩ is the probability amplitude of observing w given c.

In the field of bioinformatics, QLMs predict the probability of a 
word in a context so that functions such as sequence alignment have 
been accomplished (Liang et  al., 2023). Linguistic features are 
processed in quantum circuits which enhances the accuracy of 
sentiment to be  derived from research abstracts or clinical data 
(D'Aloisio et  al., 2024). Potential advantages of this quantum 

FIGURE 6

Quantum embedding.

FIGURE 7

DiscoCat model.
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approach to estimating the probability distribution across words 
over classical methods include a more effective capacity to capture 
complex dependencies and context information (Jayanth et al., 2023).

These techniques not only capture complex linguistic relationships 
but also lay the foundation for addressing bioinformatics where 
semantic precision is critical. In the following section, we explore how 
Quantum techniques are used in the QNLP tasks.

3.3 Quantum techniques for QNLP

Quantum natural language processing extends the recent 
advances of classical machine learning and quantum machine 
learning to process language. Traditional deep learning methods 
like embeddings, neural networks, and transformers have paved 
the way for NLP progress by allowing functions such as text 
categorization, sentiment analysis, and translation. The above 
approaches are expanded on by QNLP but with the use of QML for 
scalability and efficiency. Two methods, Quantum Circuit Learning 
(QCL) and Quantum Kernel Learning (QKL), introduced in the 
paper, are designed to contribute to QNLP tasks as QNLP tasks 
involve encoding linguistic data into quantum states and pattern 
matching. Hybrid quantum-classical methods even extend the 
capacity of QNLP due to integration of quantum advantage with 
classical flexibility. For the first time, QNLP applies quantum 
optimization and quantum embeddings, thus connecting 
traditional NLP with quantum calculations and offering effective 
approaches to context-sensitive language processing, entity 
identification, and semantic search. It is in this regard that this 
relationship demonstrates how QNLP applies ML and QML 
frameworks to reinvent NLP in bioinformatics and more broadly.

3.3.1 Quantum machine learning in 
bioinformatics

Machine learning (ML) is a branch of Artificial intelligence that 
enables systems to learn patterns from data and make predictions. 
NLP focuses on equipping computers to comprehend, interpret, and 
generate human language and ML uses that data to generate 
predictions, decisions, and classifications. This ML integration in NLP 
is observed in Figure 9.

Quantum Machine Learning (QML) combines quantum 
computing with machine learning to enhance data processing by 
leveraging quantum properties like superposition and entanglement, 
offering exponential speedups and richer data representations (Das 
Sarma et  al., 2019). Within QML, Quantum Natural Language 

Processing (QNLP) specializes in applying quantum principles to 
linguistic tasks, encoding text as quantum states and enabling 
efficient processing of language structures. Like sentiment analysis, 
semantic parsing, and relation extraction to scale efficiently while 
uncovering deeper patterns in language using quantum-enhanced 
embeddings and kernels. As Bioinformatics involves analyzing and 
interpreting large volumes of biological data, such as genomic 
sequences, protein structures, and gene expression data. QNLP 
benefits from QML’s advanced computation, many problems in this 
field can be  formulated as machine learning tasks, such as 
classification, clustering, and pattern recognition (Repetto et  al., 
2024; Ghoabdi and Afsaneh, 2023).

Quantum machine learning (QML) has emerged as a promising 
approach to tackle these challenges, leveraging the principles of 
quantum mechanics to potentially enhance the computational 
capabilities of classical machine learning algorithms. The following 
concepts are provided for further enhancement of QML techniques.

3.3.1.1 Quantum circuit learning for bioinformatics
QML in bioinformatics is quantum circuit learning, which is the 

process of training parameterized quantum circuits to perform certain 
kinds of machine learning. These circuits can be  represented as 

FIGURE 8

QLM model.

FIGURE 9

Machine learning.

https://doi.org/10.3389/fcomp.2025.1464122
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Pallavi and Prasanna Kumar 10.3389/fcomp.2025.1464122

Frontiers in Computer Science 11 frontiersin.org

unitary operators U(θ), where θ is the set of trainable parameters. It is 
to find the best parameter θ* that may minimize a cost function C(θ) 
suitable for the bioinformatics problem in question. Mathematically, 
the optimization problem can be formulated as Equation 7:

 ( )argmin C∗θ = θ
 (7)

The cost function C(θ) is then calculated through using the 
quantum circuit U(θ) on the input states that are equivalent to the 
biological data and measuring the output states. The derivatives of 
the cost function with respect to the parameters can be estimated by 
methods such as the parameter shift rules or analytical derivatives, 
and thus optimisation can be performed by gradient-based methods. 
Some of the works in the field of quantum circuit learning include 
protein structure prediction (Madsen et al., 2023), gene expression 
analysis (Navneet and Pokhrel, 2024), and genomic sequence 
classification (Zarei and Elaheh, 2024). Robert et  al. (2021) 
developed a new method for the prediction of the secondary 
structure of proteins by using Quantum Circuit Learning (QCL). 
Their model employs a parameterized quantum circuit that takes an 
amino acid sequence of a protein as the input where QNLP could 
extract the secondary structure information from text-based 
annotations where further when coupled with quantum circuit 
learning to predict components like alpha helices or beta sheets, 
gives better precision and lesser time than other traditional 
methods. By adjusting the parameters of the quantum circuit with 
gradient information of the cost function, the model reduces the 
error between the predicted and actual secondary structures.

3.3.1.2 Quantum kernel methods for bioinformatics
Another subfield of QML in bioinformatics is the so-called quantum 

kernel methods, which apply quantum features to improve the efficiency 
of kernel-based machine learning techniques, including SVMs and 

Kernel methods. Quantum kernel methods are a very suitable addition 
to QNLP techniques since they provide a method of computing quantum 
similarity between quantum-encoded linguistic features. This approach 
may be applied to bioinformatics tasks for semantic classification, such 
as analyzing connections between drugs and diseases in biological texts.

In quantum kernel methods, the traditional kernel is 
substituted by a quantum kernel which is determined by the inner 
product of the quantum states corresponding to biological data. 
Mathematically, the quantum kernel between two data points x and 
y can be expressed as:

 
2K(x,y)=| (x) (y) |Ψ Ψ

 (8)

Where, in Equation 8 |ψ(x)⟩ and |ψ(y)⟩ are the quantum states of 
the data points x and y, respectively. Indeed, quantum kernel methods 
have been applied in other bioinformatics applications, including 
quantum machine learning for genomics data (Abbas, 2024), quantum 
kernel clustering for protein sequences (Sarkar, 2018), and quantum 
support vector machines for gene expression analysis (Ghosh et al., 
2024). Ng et al. (2023) considered Quantum Kernel Support Vector 
Machines (QK-SVM) for classifying gene expression data derived 
from microarray experiments. Instead of using classical kernels such 
as linear or radial basis function (RBF), they suggested a quantum 
kernel that measures the similarity between the gene expression 
patterns with the help of their quantum state representations using 
QNLP. The developed QK-SVM algorithm uses this quantum kernel 
to classify gene expression datasets (Kang et al., 2019). The results of 
this study indicated that the proposed QK-SVM had a better 
performance of the classification than the classical SVM with 
traditional kernels on gene expression data sets.

3.3.1.3 Hybrid quantum-classical approaches
In addition to purely quantum approaches, hybrid quantum-

classical algorithms have also been explored in bioinformatics. By 

FIGURE 10

Hybrid quantum-classical approach.
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utilizing classical models for extensive biomedical text analysis, hybrid 
approaches allow quantum circuits to encode context-sensitive 
language properties. Figure 10 shows both classical and quantum 
computing resources to solve complex problems more efficiently.

Figure 11 shows the high-level structure of the Hybrid quantum 
classical approach, there is a quantum circuit with quantum gates θ1, 
θ2, θ3, and θ4 acting on the input gates. The quantum circuit yields an 
output which becomes the input for the classical circuit. This approach 
combines both quantum and classical computing to determine 
parameters that minimize the loss function which can be any cost 
function or objective function depending on the use.

Multiple sequence Alignment (MSA) is a basic problem in 
computational biology that involves comparing biological sequences 
such as DNA, RNA, or protein sequences; Madsen et  al. (2023) 
proposed a new hybrid quantum-classical algorithm for solving this 
problem. This algorithm utilizes quantum and classical hardware to 
solve the MSA problem more effectively. The quantum part uses 
quantum parallelism and superposition to investigate the massive 
solution space of potential alignments. The application of QML may 
be vital for solving challenging bioinformatics issues and improving 
the study of biological processes. Other research works by Cincio et al. 
(2020) and Hatakeyama-Sato et al. (2022) have investigated ways of 
reducing noise and errors in quantum machine learning to guide more 
efficient and useful applications in bioinformatics.

3.3.2 Quantum simulation
Quantum simulation involves using quantum computers to solve 

and model quantum systems which cannot even be approximated by 
classical computers due to the exponential resource requirement. It 
opens the chance to model complicated dependencies in the structures 
of language which is in concordance with the outlook of 
QNLP. Conducting new studies in this field has been made to explore 
many approaches to quantum simulation that can offer explanations 
of numerous quantum phenomena in various fields. A quantum 
circuit model which encodes the quantum system into a sequence of 
quantum gates acting on an initial state. As proposed in a recent study 

(Durán et  al., 2023), the dynamics of a quantum system can be 
simulated using Equation 9:

 
(t) (t) ( )ˆ 0UΨ = Ψ

 (9)

Where |Ψ(0)⟩ is the initial state, U(t) is the time-evolution 
operator implemented as a quantum circuit, and |Ψ(t)⟩ is the final 
simulated state after time t. The study demonstrated an efficient 
simulation of quantum problems using this approach. Another study 
(Miranda et al., 2022) explored quantum annealing for simulating 
quantum systems, encoding the system into an energy landscape 
described by a quantum Hamiltonian. The quantum annealing process 
finds the ground state of the Hamiltonian, corresponding to the 
simulated system state.

Optimising new quantum algorithms and approximations of 
quantum circuits for large scale problems. In a recent work by 
Edward et al. (2024), the authors presented a quantum simulation 
strategy to simulate biomolecular events including protein folding 
changes using near-term quantum computers. They explained the 
basic ideas of the simulation of protein model and showed that 
quantum computers could be  used for investigations of 
biomolecular systems. For this, they created a quantum algorithm 
that would be able to efficiently simulate quantum dynamics of the 
biomolecular system, using quantum characteristics such as 
superposition and entanglement. Magann et al. (2021) studied the 
application of quantum simulation in protein–ligand interactions 
because these interactions play a vital role in the discovery of drugs 
and engineering of proteins. They proposed a quantum algorithm 
for the quantum dynamics of a protein-ligand system and pondered 
over the benefits of applying quantum computing over the classical 
approach to this sphere. Cao et  al. (2018) discussed the use of 
quantum simulation to study the Protein-DNA binding, which is 
critical in gene control and drug development. They designed a 
quantum algorithm for seeking an optimal binding of a protein to 
a DNA sequence. They debated the significance of such findings for 

FIGURE 11

Quantum gate representation.

https://doi.org/10.3389/fcomp.2025.1464122
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Pallavi and Prasanna Kumar 10.3389/fcomp.2025.1464122

Frontiers in Computer Science 13 frontiersin.org

future studies of gene regulation and the development of treatments 
that modify protein-DNA interactions.

3.3.3 Quantum optimization
The major issues in bioinformatics can be  addressed using 

mathematical programming, which involves identifying the solution 
that provides the minimum or maximum value to a specified objective 
function. Such problems occur when the search space is large; 
therefore, it is computationally expensive when solved using 
conventional algorithms (Reali et al., 2017). The objective function is 
in turn mapped to a Quantum Hamiltonian which describes a wave 
operator for a quantum system. The goal is to find an optimal solution 
of the optimization problem which is the ground state energy value of 
the Hamiltonian.

Let us consider a general optimization problem:
Minimize f(x) Subject to x ∈ S where f(x) is the objective function, 

and S is the set of feasible solutions. In quantum optimization, this 
problem can be mapped to a quantum Hamiltonian, H, such that the 
ground state of H corresponds to the optimal solution(s) of the problem. 
Equation 10 expresses the quantum Hamiltonian mathematically by:

 
  O pH H H= + γ

 (10)

Where: 𝐻o represents the initial Hamiltonian, 𝐻𝑝 is the problem 
Hamiltonian encoding the objective function and constraints, and 𝛾 
is a parameter controlling the weight of 𝐻𝑝 in the overall Hamiltonian.

The goal is to find the ground state of the Hamiltonian H, 
which can be achieved using quantum algorithms such as quantum 
annealing or the quantum approximate optimization algorithm 
(QAOA; Perdomo-Ortiz et  al., 2012). Quantum annealing is a 
process where the quantum system is initialized in the ground state 
of H_0 and then slowly evolves towards the ground state of H by 
gradually increasing the value of γ. This process exploits quantum 
phenomena like superposition and tunneling to explore the vast 
solution space more efficiently than classical algorithms.

The QAOA is an iterative algorithm that alternates between 
applying a mixer operator and a phase operator to an initial quantum 
state. The mixer operator introduces quantum entanglement, while 
the phase operator encodes the objective function and constraints. The 
parameters of these operators are optimized to find an approximate 
solution to the optimization problem.

Mathematically, Equation 11 represents the QAOA as follows:

 
.. 1 1

ˆ ˆ ˆ ˆ
0( , ) p B p C p B p Ci H i H i H i He e e e………− β − γ − β − γΨ β γ = ψ

 (11)

Where ∣ψ(γ,β) is the quantum state prepared by the circuit, 
parameterized by vectors 𝛾 and 𝛽,𝐻𝐵 and HC are the mixing and cost 
Hamiltonians respectively, representing the classical and quantum 
parts of the optimization problem,𝛽𝑝,𝛾𝑝 are the parameters controlling 
the evolution of the quantum state,∣𝜓0⟩ is an initial state, The circuit 
prepares a state that is expected to encode the optimal solution to the 
optimization problem and the parameters 𝛾 and 𝛽 are chosen to 
optimize the objective function.

These techniques optimize parameters in quantum linguistic 
embeddings, enabling tasks like accurate biomedical 

question-answering and semantic search. Quantum optimization 
has shown promise in multiple sequence alignment (MSA), which 
is a fundamental problem in bioinformatics. The objective of MSA 
is to discern areas of similarity across numerous biological 
sequences, hence offering valuable insights into functional 
conservation and evolutionary connections. Utilizing the quantum 
features of superposition and tunneling, a recent work (Benedetti 
et al., 2017) developed a quantum annealing methodology for MSA 
that more effectively explores the huge solution space than classical 
methods. Protein structure prediction is yet another bioinformatics 
use of quantum optimization. The optimization issue of deducing 
the three-dimensional structure of a protein from its amino acid 
sequence is extremely difficult and involves a large number of local 
minima. Scholars have investigated the application of quantum 
annealing and other techniques for quantum optimization to 
resolve this issue (Patti et  al., 2022). Additionally, quantum 
optimization has been implemented to address the issue of inferring 
gene regulatory networks. The aforementioned networks symbolize 
the intricate interplay between genes and their regulatory factors. 
Deducing these networks from experimental data necessitates the 
resolution of extensive optimization challenges. A recent study 
(Mokhtari et al., 2024) introduced a method for deducing gene 
regulatory networks using quantum annealing, capitalizing on the 
quantum computer’s enhanced efficiency in traversing the extensive 
solution space. In addition, additional bioinformatics issues, 
including drug discovery (Onodera et al., 2023), phylogenetic tree 
reconstruction (Bach et al., 2024), and genomic sequence assembly 
(Boev et  al., 2021), have demonstrated the potential of 
quantum optimization.

While these theoretical advances demonstrate the potential of 
QNLP, their true impact becomes evident in addressing practical 
challenges in bioinformatics. The following sections explore how these 
QNLP techniques are applied to bioinformatics problems, such as 
drug discovery, protein structure prediction, and genomic 
sequence analysis.

4 QNLP and its applications in 
bioinformatics

Exploring the application of quantum mechanics principles to 
the analysis of biological systems, quantum bioinformatics is an 
emerging field. The nature of computing operations, the platform 
type, and the type of biological data are the three key determinants 
upon which a comprehensive categorization system for quantum 
bioinformatics can be constructed, according to Marchetti et  al. 
(2022). Calculations and tools for data mining activities, and the 
design, modeling, or creation of computational tools or 
optimization, are the two primary categories into which 
computational operations can be classified, according to this study. 
Furthermore, it is possible to categorize the platform under 
consideration as either classical or quantum computers and to 
differentiate between quantum biological data and classical 
biological data within the realm of biological information. The 
transformative potential of quantum computing algorithms in the 
field of computational biology has been recognized by numerous 
studies. These algorithms possess the capacity to solve, expedite, or 
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improve the examination of a wide range of computational obstacles. 
The capacity to efficiently map multi-scale biological systems and 
genetic analysis onto quantum architectures is one example of the 
potential advantages that quantum computing algorithms may 
provide over their traditional counterparts, according to a paper by 
Sathan et al. (Sathan and Baichoo, 2024).

4.1 Applications of QNLP in bioinformatics

QNLP works with biological information of sequences such as 
DNA using quantum computing methods. Quantum scientists have 
developed large-scale QNLP models that can classify sequences: DNA 
included. By employing tensor networks, these models are ‘syntax 
aware’—they are concerned with structure and syntax from the outset. 
Thus, the models are more comprehensible and it takes fewer gate 
operations to work with them in order to gain an understanding of 
them. Incorporation of tensor networks and quantum theory in QNLP 
models allows the scientists to study the synergy of AI and quantum 
informatics in the sphere of bioinformatics. Due to such optimal 
functionalities like mid-circuit measurement and qubit reuse, 
quantum processors allow for the execution of circuits larger than 
what can be done on the quantum hardware (Nałęcz-Charkiewicz 
et al., 2024). This feature makes available QNLP models for the down 
and dirty bioinformatics applications featured in the 
subsequent sections.

4.2 Literature mining and knowledge 
extraction

The most common application of the Quantum Natural 
Language Processing methodologies in the pharmaceutical study is 
the knowledge mining and extraction from the biomedical 
literature. This is due to the exponential increase of data in the 
biomedical field and unstructured scientific literature that remains 
a challenge in the application of typical NLP methods as depicted 
in Figure 12.

In this regard, scholars have analyzed the potential of QML 
models and algorithms to search for information in biological text 
data as fast and accurately as possible. Other applications of QNLP 
include integration of QNLP with other quantum computing 
paradigms including quantum simulation and quantum machine 
learning techniques for Biomedical literature mining. They gathered 
knowledge graphs from biomedical literature using QNLP and used 

quantum graph neural networks to identify patterns, associations, and 
related entities in those knowledge graphs. The approach revealed 
relatively good effectiveness in the search for complex relations, such 
as higher-order patterns and nested relationships, which are critical 
for understanding the pathogenesis of diseases and identifying 
potential drug targets.

4.3 Drug discovery and design

Analyzing huge quantities of biomedical literature and data is 
crucial to the drug discovery and design process to identify prospective 
therapeutic targets, develop lead compounds, and comprehend drug-
target interactions. Figure 13 shows the procedure how Quantum 
Natural Language Processing (QNLP) methods, enable the extraction 
of knowledge from unstructured text input in a more precise and 
efficient manner.

4.3.1 Virtual screening and Lead compound 
identification

The process of drug discovery means virtual screening and 
identification of lead compounds as the major stages. These procedures 
estimate the affinities and selectivity of potential drugs to the target 
biomolecules. In this context, studies have been conducted to enhance 
the accuracy and efficiency of the procedures of QNLP, alongside 
machine learning and quantum computing models. In this approach, 
QNLP tools are used to search biomedical literature for information 
about potential drug candidates and their structures and targets 
(Gorgulla et  al., 2022). This information is then employed and 
incorporated to commence quantum simulations of these drug 
candidates and the target biomolecules at the quantum level. QNLP 
can extract and incorporate useful knowledge from large volumes of 
text data more effectively than conventional approaches; quantum 
simulations allow for realistic modelling of the interaction of 
molecules and their properties.

4.3.2 Drug-target interaction prediction and 
analysis

Previous studies have revealed that QNLP methods are very useful 
in predicting and analyzing the drug-target interactions that are so 
important in the drug discovery phase. Some studies have investigated 
how quantum-based machine learning algorithms, using big databases 
of known drug–target associations and molecular conformations, can 
be used to predict new interactions and the underlying processes 
(Ginex et  al., 2024). This approach shows the possibility of using 

FIGURE 12

QNLP literature mining and knowledge extraction.
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QNLP in conjunction with other quantum computing methods for a 
comprehensive analysis of the interactions between drugs and targets 
for their use in drug discovery and development.

These techniques as a group demonstrate the usefulness of QNLP 
in understanding the drug discovery process. As we  shall see, by 
utilizing properties of quantum computing that are intrinsically 
superior to classical computing, such as quantum parallelism and 
entanglement, one can hope for QNLP techniques to surpass classical 
models in terms of their ability to identify novel interactions and 
intricate patterns and structures within the data.

4.4 Protein structure prediction

Protein Structure Prediction (PSP) is an essential 
sub-discipline of computational biology, which involves predicting 
a protein’s tertiary structure and its secondary structures, such as 
helices and sheets from its amino acid sequence. Primary structure 
prediction mainly concerns with the local structures while the 
secondary structure predicts the local conformation and the 
tertiary structure concerns with over all three dimensional 
conformations. New opportunities for further PSP have opened 
due to the advances in quantum computing and quantum natural 
language processing, a process of identifying the three-
dimensional conformation of the protein based on the amino 
acid sequence.

Accurate identification of PSP is essential in elucidating protein 
function and the mode of interaction in structural bioinformatics and 
for designing therapeutic strategies. Although, recent progress in 
computational techniques such as Alphafold and the availability of 
experimental structures, the protein folding problem remains 
challenging. This is a problem that has recently attracted the interest 
of the scientific community to be solved using a novel approach called 
Quantum Natural Language Processing (QNLP) that incorporates 
quantum computing. It uses quantum mechanism principles that 
facilitate better feature extraction and optimization of feature search 
space concerning sequence structure relationship.

Figure  14 shows the workflow for the prediction of protein 
structure using QNLP techniques. The process includes data 
pre-processing where protein sequences are retrieved from databases 
such as PDB and converted into quantum states and includes QNLP 
techniques such as quantum language models for sequence analysis, 
quantum kernel methods for structural similarities, model training 
using experimental datasets such as cryo-EM and X-ray 
crystallography results in predicted protein structure as the output. 
Despite the current limited development of QNLP for protein 
structure prediction, some investigations have been made to examine 
its advantages. These quantum models showed that by leveraging 

quantum phenomena such as superposition and entanglement, signal 
features could be represented with higher complexity and long range 
dependency could also be captured much better than with classical 
models. AlphaFold 2, a groundbreaking tool, combines evolutionary 
coupling with deep learning techniques to predict secondary 
structures alongside tertiary configurations. Predicting the tertiary 
structure of a protein, where the protein’s entire three-dimensional 
conformation is predicted, is still a computationally expensive task 
(Doga et al., 2024). QNLP compared to classical methods quantum 
embeddings can capture intricate sequence dependencies, knowledge 
integration where the unified representation of sequences, structure 
and experimental data. QNLP presents a promising avenue for 
enhancing protein structure prediction by enabling more efficient 
feature engineering, knowledge integration, and the development of 
quantum algorithms and simulations tailored for this challenging 
problem. The potential of QNLP to push the boundaries of 
computational protein structure prediction is evident in the growing 
body of literature in this field.

4.5 Genomic sequence analysis

Sequence comparison is one of the most basic tasks in 
bioinformatics and comprises sequence alignment, search for 
conserved motifs and patterns. They are important in characterizing 
biological systems, diagnosing diseases, and promoting development 
of individualized medication. These tasks have been traditionally 
solved by using well-known computational tools, namely the Smith-
Waterman and Needleman-Wunsch ones. However, they are usually 
constrained in terms of the computational costs and time required 
when analyzing large scale genomic data. The development of 
quantum computing over the past few years including Quantum 
Natural Language Processing (QNLP) has brought new solutions to 
these problems.

Figure 15 shows the hybrid approach combines classical NLP 
methods with quantum computing capabilities to potentially 
improve natural language processing tasks by leveraging quantum 
parallelism, quantum embedding spaces, or quantum algorithms for 
sequence alignment, a critical task in bioinformatics. It involves 
finding the optimal alignment between two or more biological 
sequences, such as DNA, RNA, or protein sequences. Homology 
search methods, such as Smith-Waterman and Needleman-Wunsch 
are based on dynamic programming of classical sequence 
alignment. Although they are quite efficient, their application 
degrades as the size of the data or the high dimensionality of the 
genomic data increases. Current complexity theory type item 
difficulties are addressable by quantum algorithms which depend 
on quantum superposition and entanglement.

FIGURE 13

QNLP drug discovery and design.
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Motif identification, the process of identifying recurring patterns 
or sequence motifs in genomic data, is another area where quantum 
algorithms have shown promise. Pattern recognition in genomic data 
is critical for identifying biological relationships and predicting 
disease markers. Classical methods rely heavily on statistical modeling 
and machine learning, but QNLP offers a transformative approach. By 
encoding genomic sequences into quantum states, QNLP leverages 
quantum embeddings and tensor-based models to capture complex 
relationships between data points.

Some of these works have been done in other genomic sequence 
analysis tasks that include gene prediction (Sun et  al., 2012), 
phylogenetic tree reconstruction (Abdellah et al., 2023) and genome 
assembly (Kösoglu-Kind et al., 2023). Quantum simulation techniques 
are also being used for the study of gene interactions and for 
determining the impact of mutations at scales that have not been 
previously possible. These innovations illustrate how QNLP can 
be  used to confront issues in genomic analysis, including multi-
dimensional integration and noise immunity. The potential of QNLP 
in genomic sequence analysis is in the inherent optimization of the 
tools with high-throughput sequencing and other applications. More 
development in the QNLP field and in the next-generation quantum 
hardware, as well as in quantum algorithms, is essential to achieve the 
full potential of QNLP for genomics.

The discussed applications of QNLP in bioinformatics strengthen 
the efficiency in handling complex biological data using quantum 
approaches. The next section provides the case studies and how QNLP 
methodologies have been applied to solve complex challenges in 
bioinformatics, such as drug discovery, protein structure prediction, 
and genomic sequence analysis.

5 Case studies and real-world 
applications

5.1 Biomedical literature mining

The biomedical field produces a large amount of articles every 
year, and therefore, it is difficult to find necessary information quickly. 
Prior NLP techniques are unable to process the biomedical text well 
because it is unstructured and the relationships between the terms are 
complex. This case study is concerned with the application of 
Quantum Natural Language Processing (QNLP) in biomedical text 
mining especially for named entity recognition (NER) and relation 
extraction. Another remarkable work has been done by Leurs (2022), 
which described how QLM can be  used for mining biomedical 
literature. By employing quantum parallelism and entanglement, the 
authors employed a big number of biomedical articles to train a 
quantum language model. This model was then used to perform 
complex text processing tasks such as event extraction, named entity 
recognition and relation extraction. In the speed and accuracy of their 
approach to identify relevant information concerning new targets for 
therapy, existing drugs, and their interactions, the authors noted that 
the performance of their method outcompeted traditional approaches 
to NLP. Soame (2023) proposed an extension of the aforementioned 
works, which is a hybrid quantum-classical model for Knowledge 
Extraction and Biomedical literature mining. Thus, they were able to 
incorporate informative been using a combination of classical 
machine learning models and QNLP techniques from domain 
knowledge bases, experimental data, and scholarly literature. The 
following table summarizes the performance and applications of 

FIGURE 14

QNLP for protein structure prediction.

FIGURE 15

QNLP for genomic sequence analysis.
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quantum approaches in these domains, showcasing the enhancements 
over classical methods.

In Table 2, quantum approaches show a general improvement in 
performance over literature mining and knowledge extraction 
problems in comparison to classical approaches. Quantum Language 
Models (QLMs) and embeddings improve the performance of 
sentiment analysis and the identification of semantic relations and 
Quantum Graph Neural Networks (QGNNs) help identify high-order 
patterns for knowledge graphs. The hybrid quantum-classical 
framework continues the integration process by adopting quantum 
optimization for knowledge extraction tasks. These results further 
emphasize that quantum computing offers an increasing role in 
revamping the traditional NLP process.

5.2 Quantum drug discovery

Drug development is one of the most significant real-world uses 
of QNLP in bioinformatics. Biogen and IonQ, a leading provider of 
quantum computing, partnered in 2021 to find prospective therapeutic 
targets and analyze biological data (IonQ, 2021). The alliance 
endeavors to speed the drug development process by utilizing the 
computing prowess of quantum computers, however, the precise 
particulars of their strategy remain undisclosed. Additionally, the 
biotechnology business Resilience has been actively investigating drug 
development solutions based on quantum computing. In a recent case 
study, they illustrated the utilization of quantum techniques, such as 
Grover’s algorithm and quantum annealing, for virtual screening and 
lead optimization (Salloum et al., 2024).

5.2.1 Quantum virtual screening and lead 
compound identification

Quantum machine learning models and quantum simulations have 
been shown in several recent works to be capable of predicting binding 
affinities and interactions between potential drugs and a target 
biomolecule, often a protein or nucleic acid. Mensa et al. presented a 
quantum machine learning model for virtual screening that utilized 
quantum features of the problem to incorporate quantum-mechanical 
effects inherent in molecular interactions (Mensa et al., 2022). Their 
approach demonstrated enhanced precision in the prediction of binding 
affinities from the traditional computational techniques. Arguing the 
same idea, Mohammed et al. (2017) have established a hybrid quantum 

mechanical/molecular mechanics model of virtual screening and 
identification of lead compounds. To this end, their model used both 
quantum simulations and machine learning algorithms to predict the 
binding affinities and interactions of the potential drugs with the target 
biomolecules. The authors showed that due to the application of 
quantum effects, the precision of predictions made with the help of the 
proposed model exceeded classical approaches, which indicates the 
applicability of quantum computing in this field. Thus, it has been 
suggested that for virtual screening and identification of lead compounds, 
it is possible to use hybrid quantum–classical methods based on the 
advantages of QNLP and quantum simulations. Ting and Caflisch (2010) 
described a pipeline that combines QNLP for mining chemical/
biological information from text sources with quantum calculations for 
estimating the interactions of potential drugs with target biomolecules.

5.2.2 Drug-target interaction prediction and 
analysis

In a study by Sathan and Baichoo (2024) the authors proposed a 
quantum machine learning model for drug-target interaction 
prediction, demonstrating its potential to outperform classical models. 
Their approach involved training a quantum neural network on a large 
dataset of known drug-target interactions and molecular structures, 
leveraging the unique capabilities of quantum computing to capture 
the complex patterns and relationships within the data. Similarly, 
Veleiro et  al. (2023) Combined Transformer and Graph Neural 
Networks, these architectures, models capture both global and local 
structural information of drugs and sequence features of targets, 
improving precision and recall in DTI predictions (Khurana 
et al., 2023).

A notable study by Mohammed et al. (2017) further highlighted 
the potential of quantum machine learning models in this domain. 
The authors trained a hybrid quantum-classical neural network on a 
large dataset of drug-target interactions and molecular structures, 
demonstrating its ability to outperform state-of-the-art classical 
models in predicting novel interactions. Their work also explored the 
interpretability of the quantum model, providing insights into the 
underlying mechanisms of drug-target interactions. Xiong et  al. 
(2023) proposed a framework called “Q-Drug” that aims to bring drug 
design into the quantum space using deep learning techniques. This 
framework incorporates QNLP for literature mining, quantum 
simulations for modeling molecular interactions, and quantum graph 
neural networks for predicting drug-target interactions. The 

TABLE 2 QNLP in biomedical literature mining.

Domain Quantum 
Approach

Dataset Metrics Performance QNLP Task

Literature Mining (Leurs, 

2022)

Quantum Language Model 

(QLM)

Stanford Sentiment 

Treebank

Accuracy 0.82 Sentiment Analysis

Literature Mining (Soame, 

2023)

Quantum Embedding Integration Dataset Semantic Similarity 0.74 Capture Multidimensional 

Relationship

Literature Mining (Ganguly 

et al., 2024)

Quantum Embeddings + 

QLM

Swiss-Prot Accuracy 0.72 Relationship Extraction

Knowledge Extraction 

(Varmantchaonala et al., 2024)

Quantum Graph Neural 

Networks

PubMed Recall, F1 Score 0.75 / 0.68 High-Order Pattern 

Detection

Knowledge Extraction (De 

Angelis et al., 2023)

Hybrid Quantum Classical 

Framework

Clinical Trials Accuracy, F1 Score 0.79 Knowledge Extraction from 

Text Corpus
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integration of these components aims to provide a comprehensive and 
efficient computational framework for drug discovery and design. 
Similarly, a recent study by Sathan and Baichoo (2024) proposed a 
quantum graph neural network for drug-target interaction prediction, 
which utilizes QNLP for extracting relevant information from 
biomedical literature and integrates it with protein structure data and 
quantum simulations of molecular interactions. The Table 3 below 
provides details of quantum approaches applied to various drug 
discovery tasks, highlighting their datasets, performance metrics, and 
specific QNLP tasks.

The Table  3 presents different QNLP approaches, including 
quantum language models, quantum machine learning models (e.g., 
quantum neural networks, quantum transformers, quantum graph 
neural networks), quantum kernel methods, quantum generative 
adversarial networks, and quantum attention models. Various 
computational models in these tasks showcase their comparative 
analysis over classical NLP and QNLP methods. The research 
emphasized the capability of QNLP methods to efficiently investigate 
the extensive chemical space and detect prospective medication 
candidates. Nevertheless, these practical implementations also 
unveiled many obstacles. Prominent challenges that need to 
be addressed include the encoding and representation of data, the 
optimization of algorithms, and the restricted scalability of existing 
quantum technology (Selig et  al., 2021). Furthermore, the 
implementation of QNLP methodologies in conjunction with 
pre-existing drug discovery pipelines and the analysis of quantum-
derived outcomes presented pragmatic obstacles.

5.3 Protein structure prediction (PSP)

More recently, a work from researchers (Cherrat et  al., 2024) 
proposed the Harvey et al., present complex-valued tensor network 
models where PT employs parameterised quantum circuits, thereby 
employing Hilbert space as the feature space for the sequence 
processing task. The models are connected to archive data in a tree like 
structure maximizing data correlation and compositional structure 
enhancing interpretability and the permanence of resource 

compression. The experimental results have established the use of the 
models in binary classification tasks using realistic datasets, proving 
the long-range correlation the models can tackle. This work can 
be considered as a major advancement in utilizing quantum machine 
learning for protein structure predictions that could further improve 
human health and welfare.

In a recent study, Drori et  al. (2019) have investigated the 
possibility of using QNLP for secondary structure predictability 
classical methods like PSIPRED and SPIDER3, make use of the 
machine learning algorithms, such as the quantum embeddings and 
the quantum neural networks to model the sequence-structure map 
for proteins. Compared with the classical models, these quantum 
models showed that the utilization of quantum phenomena 
superposition and entanglement yielded better feature representation 
and long-range dependency capture (Boulebnane et  al., 2022). In 
quantum computing, there are promising models known as Quantum 
Circuit Learning (QCL). Hatakeyama-Sato et  al. (2022) has put 
forward a QCL model for protein sequences in which quantum 
embedding is used to improve the accuracy of the model by including 
secondary structure information in the quantum representation. 
Likewise, the quantum kernel methods like Quantum Kernel Support 
Vector Machines (QK-SVM) have shown better classification 
efficiency in identifying the secondary structures elements. Quantum 
computing takes it a step further Quantum computing takes it a step 
further. In this area, AlphaFold 2 has come a long way and gets to the 
experimental accuracy of many proteins using spatial graph networks. 
For example, in the work by Webber et al. (2022), the authors wanted 
to know if the quantum annealing technique can allow for the effective 
sampling of the conformational space of protein folding, which is a 
problem for standard molecular dynamics simulations. Edward et al. 
(2024) used quantum circuits to simulate the Protein folding dynamics 
to show the ability of quantum computers in processing larger and 
complex protein structures with better precision. Later suggested that 
QNLP should be combined with quantum annealing to probe the 
conformational landscape of the protein folding phenomenon. 
Through their work, they were able to show that folding dynamics 
could be approximated with better energy efficiency than those of 
classical molecular dynamics simulation. A recently published paper 

TABLE 3 QNLP in drug discovery.

Domain Quantum 
Approach

Dataset Performance Metrics Used QNLP task

Virtual Screening and Lead Compound 

Identification (Mensa et al., 2022)

Quantum Machine 

Learning Model

ADME-Tox 0.84 Accuracy, Predictive Screening

Drug-Target Interaction Prediction 

(Mohammed et al., 2017)

Hybrid Quantum-

Classical Neural Network

ChEMBL 0.81 Precision, Recall Map drug target relation

Drug Discovery Framework (Cao et al., 2019) Integrated Quantum 

Computing Approach

- 3.2 Computational 

Efficiency

Comprehensive 

Modeling

Drug-Target Interaction Prediction (Li et al., 

2022)

Quantum Transformer 

Model

BindingDB 0.88 Accuracy Extract drug binding 

relationship

Literature-Based Drug Repurposing (Shuyue 

et al., 2023)

Quantum Language 

Model

PubMed 0.62 Semantic Similarity Semantic Analysis

Virtual Screening and Lead Optimization 

(Nałęcz-Charkiewicz et al., 2024)

Quantum Generative 

Adversarial Network

ZINC 

Database

0.67 MSE Identify new lead 

compounds

Drug-Target Binding Site Prediction (Madsen 

et al., 2023)

Quantum Approximate 

Optimization Algorithm

PDB 0.81 Accuracy Structural Analysis
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by Harvey et  al. (2023) pointed out that the existing quantum 
hardware have several problems, such as noise, qubit error, and 
scalability, which would affect the application of quantum algorithms 
and simulations to large-scale protein structure prediction.

Table 4 specifically focuses on protein-related tasks, that detail 
advancements in protein structure prediction, folding, or interaction 
analysis and also requiring further innovations and hybrid approaches. 
This integrated representation can potentially capture complex 
patterns and relationships that are difficult to extract using classical 
methods, leading to improved structure prediction accuracy.

5.4 Genomic data analysis)

This research has shown that QNLP has a lot of promise for the 
analysis of genetic information. A few researchers from the 
University of Chicago have recently studied the possibility of using 
QAM to search and process genetic sequences (Wang et al., 2024). 
In their case study, the researchers came up with a QRAM 
framework that proved most effective in storing and accessing 
genetic data. In large scale genomic databases, the QRAM enabled 
fast search and pattern matching through conversion of genomic 
sequences into quantum states, thus outperforming other methods. 
While the QRAM was found to show promising results in controlled 
trials, the creators of the method encountered difficulties in trying 
to extend the method to handle the massive amounts of real genetic 
data that the world produces. In order to make the solutions 
practically usable, certain critical challenges need to be addressed 
including data encoding, the number of qubits needed and error 
mitigation (Guarasci et al., 2022).

One of the study, Daskin et al. (2014) applied Grover’s algorithm 
to sequence alignment, where quadratic time savings compared with 
the classical procedures are needed. Similarly, Khan et  al. (2023) 
proposed a quantum algorithm for the pairwise sequence alignment 

of biological macromolecules and showed that the performance of 
the quantum algorithm is much higher than that of Smith-
Waterman algorithm.

There are other domains as well, where quantum algorithms are 
useful are Motif identification is the process of finding sequence 
motifs that appear in genomic data. Go, First, Plans (2023) 
envisaged a quantum algorithm for motif identification that is 
superior to classical algorithms for certain circumstances. Sarkar 
et al. (2019) followed this up by providing a quantum algorithm for 
approximate motif discovery in DNA sequences, which can explore 
a solution space exponentially larger in polynomial time thanks to 
quantum parallelism. All of these show significant possibilities for 
thinking about regulatory components in DNA and RNA sequences. 
The Table  5 below provide key details, highlighting datasets, 
performance metrics,and specific QNLP tasks.

Data pattern recognition is especially essential in determining 
the existing or expected biological association and disease 
predictors in genomic data. While classical methods are statistical 
modeling and machine learning, QNLP brings a revolutionizing 
perspective. QNLP uses quantum embeddings and tensor based 
models to represent genomic sequences in terms of quantum 
states and to analyze relationships between the data points. Sarkar 
(2018) used quantum machine learning models for pattern 
recognition, and showed that these models perform better in 
terms of scalability and computational complexity. More 
development in the QNLP field and in the next-generation 
quantum hardware, as well as in quantum algorithms, is essential 
to achieve the full potential of QNLP for genomics. In light of the 
classical computational methods for genomic sequence analysis, 
the application of QNLP techniques presents an opportunity to 
tackle the limitations of these classical approaches, particularly in 
terms of computational complexity and scalability. 
Supplementary Figure 1 presents a comparison between classical 
NLP and QNLP for various applications where the X-axis 

TABLE 4 QNLP in protein analysis.

Domain Quantum 
Approach

Dataset Metrics Performance QNP Task

PSP (Drori et al., 2019) Quantum Embeddings and 

Quantum Neural Networks

PDB RMSD 4.2 Å, 0.65 Quantum Embedding

Protein-Ligand Binding (Chandarana 

et al., 2023)

Quantum Chemistry 

Simulations

BindingDB Binding Affinity −7.2 kcal/mol Probabilistic Modeling

Protein Sequence-Structure 

Relationships (Bhuvaneswari et al., 2023)

Quantum Associative 

Memory

UniProt Accuracy 0.82, 0.75 Sequence-Structure 

Mapping

Protein Contact Map Prediction 

(Chapman et al., 2017)

Quantum Circuit Born 

Machine

SCOP Precision, Recall, F1 0.61, 0.58, 0.59 Probabilistic Modeling

Protein Secondary Structure Prediction 

(Hong et al., 2021)

Quantum Convolutional 

Neural Networks

DSSP Q3 Accuracy 0.78 Pattern Analysis

Protein Folding Energy Landscapes 

(Perdomo-Ortiz et al., 2012)

Quantum Annealing Rosetta Database Energy Minimization −20.1 kcal/mol Energy Landscape 

Exploration

Protein Interaction Networks (Wong and 

Chang, 2021)

Quantum Graph Neural 

Networks

STRING Database Accuracy 0.84 Network Mapping

Protein Structure Scoring (Pecina et al., 

2020)

Quantum Kernel Methods AlphaFold 

Database

Accuracy 0.89 Structural Scoring 

Techniques

Protein Structure Alignment (Soni and 

Rasool, 2021)

Quantum Pattern Matching 

Algorithms

RCSB PDB Accuracy 0.82 Pattern Matching
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represents the different NLP tasks and the y-axis represents 
performance metric scores ranging from 0 to 1.

For each task, it has two bars blue represents the performance 
score of classical NLP and orange represents the performance score of 
QNLP methods. As quantum models have given improvement in 
several bioinformatics domains such as drug discovery, protein 
folding, and genomic sequence analysis.

The following Table  6 synthesizes the main strengths and 
weaknesses of the main quantum approaches, as well as their 
applicability to certain tasks.

Despite the fact that QNLP has been identified as a relatively 
young subfield of bioinformatics, several research institutes and 
companies have started exploring its potential applications and 
realistic use cases. Such activities provide a vast amount of 
understanding about the potential and the limitations of the QNLP 
approaches as well as the challenges that surround their 
implementation and deployment.

The use of QNLP in bioinformatics and its application in Table 6 
provide an understanding of the prospects and challenges in the field. 
Among the most important lessons acquired are:

 a. The two constraints of encoding and representation of data are 
critical in determining the potential of quantum computing in 
handling of large data particularly in biological systems.

 b. Algorithm optimization and efficient mapping on quantum 
processors both constitute core aspects of realizing quantifiable 
improvements compared to classical approaches.

 c. Shortly, it might be crucial to utilize hybrid quantum-classical 
approaches to overcome the limitations of current quantum 
hardware and exploit the unique benefits of quantum 
computing and classical computing, respectively.

 d. The collaboration of hardware engineers, domain specialists, 
and quantum algorithm researchers is of the utmost 
importance in the development of effective and functional 
QNLP solutions for the field of bioinformatics.

 e. Interpretability and integration with current bioinformatics 
workflows are crucial considerations when putting QNLP 
techniques into practice.

With the continuous advancement of quantum computing 
technology and the accessibility of more potent quantum hardware, 
it is anticipated that the potential of QNLP in the field of 
bioinformatics will expand. To unlock the full potential of this 
growing industry, however, it will be crucial to address the obstacles 
mentioned in these studies.

The Case studies and applications of QNLP in bioinformatics 
highlight its transformative potential, but they also reveal key 
challenges, particularly with quantum hardware and algorithm 

TABLE 5 QNLP in genome analysis.

Doamin Quantum 
algorithm

Dataset Metrics Performance QNLP

Motif Identification (Sarkar et al., 

2019)

Quantum Associative 

Memory
NCBI GenBank

Accuracy, F1 score
0.78, 0.82 Pattern Matching

Pattern Recognition

(Prousalis and Konofaos, 2019)

Quantum Convolutional 

Neural Network

Multi-omics DataGEO 

(Gene Expression 

Omnibus)

Accuracy, AUC

0.85, 0.81 Feature Extraction

Pairwise Sequence Alignment (Khan 

et al., 2023)

Quantum Approximate 

Optimization Algorithm
UniProt

Alignment score
0.72 Kernel Optimization

Approximate Motif Finding (Sarkar, 

2018)

Quantum Counting 

Algorithm
Ensembl Biomart

Hamming distance
0.65 Probabilistic Search

Gene Prediction (Prousalis and 

Konofaos, 2019)

Quantum Support Vector 

Machine
Genomic Annotations

Accuracy, F1 score
0.79, 0.81 Classification

Genome Assembly (Sun et al., 2012) Quantum Annealing
NCBI Sequence Read 

Archive (SRA)

Accuracy, F1 score
0.68

Combinatorial 

Optimization

Sequence Clustering (Kösoglu-Kind 

et al., 2023)
Quantum K-means FASTA

Silhouette Score
0.76 Classification

Protein Structure Prediction 

(Webber et al., 2022)

Quantum Boltzmann 

Machine
PDB

RMSD, TM-score
0.71, 0.62 Energy Minimization

Promoter Identification (de Paula 

Neto et al., 2019)

Quantum Associative 

Memory
JASPER

Accuracy, F1 score
0.79, 0.81 Pattern Recognition

Splice Site Detection (Vincentius 

et al., 2019)

Quantum Support Vector 

Machine
SpliceAid

Accuracy, F1 score
0.82, 0.84 Classification

Transcription Factor Binding Site 

Prediction(Li et al., 2018)

Quantum Associative 

Memory
JASPAR

Accuracy, F1 score
0.77, 0.79 Probabilistic Mapping

Genome-Wide Association Studies 

(Karetla et al., 2023)
Quantum Annealing

Genome Aggregation 

Database

AUC
0.81 Sequence mapping
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scalability, which are explored in the following section on hardware 
limitations and future directions.

6 Challenges and limitations

6.1 Quantum hardware constraints

Noise and Qubit Decoherence: The practical implementation of 
QNLP algorithms in bioinformatics is currently constrained by the 
limitations of existing quantum hardware. One of the major challenges 
is the presence of noise and qubit errors, which can significantly 
impact the reliability and accuracy of quantum computations (Preskill, 
2018; Daimon and Matsushita, 2024). Quantum systems are highly 
susceptible to environmental disturbances, such as electromagnetic 
fields, temperature fluctuations, and cosmic radiation, which can 
cause decoherence and errors in the qubit states. This shortens the 
time available for computations, particularly in tasks like large-scale 
genomic sequence analysis or protein folding prediction.

Quantum Error Correction: Robust quantum error correction is 
still under development. Mitigating these errors is crucial for the 
successful execution of quantum algorithms. Several error correction 
techniques have been proposed, including quantum error-correcting 

codes (Gowda et al., 2024) and fault-tolerant quantum computing 
(Wang and Liu, 2024). Error-prone calculations limit the scalability of 
QNLP for bioinformatics tasks where precision is critical, such as drug 
discovery or structural bioinformatics.

Limited Qubit Connectivity: Scalability is another significant 
challenge for quantum hardware. Current quantum computers have a 
limited number of qubits, typically in the range of tens or hundreds, 
which restricts the size and complexity of problems that can 
be addressed (Grover, 1996). Many bioinformatics applications, such 
as genome assembly, protein structure prediction, and large-scale 
sequence analysis, require processing vast amounts of data, 
necessitating quantum computers with thousands or millions of qubits 
that exceed the current hardware capabilities. Low gate fidelities and 
restricted qubit connectivity in current quantum systems affect the 
accuracy and efficiency of QNLP models.

Researchers are actively exploring various approaches to address 
these hardware constraints. One promising solution is the development 
of topological quantum computers, which leverage the principles of 
topological quantum field theory to achieve fault tolerance and scalability 
(Aïmeur et al., 2007). Additionally, quantum error mitigation techniques, 
such as zero-noise extrapolation (Cross et al., 2019) and probabilistic 
error cancellation (Zhou et  al., 2020), aim to reduce the impact of 
hardware errors without the need for full-scale quantum error correction.

TABLE 6 Comparative analysis of quantum approaches.

Quantum Model Application Merit Demerit References

Quantum Language Models 

(QLMs)

Drug Discovery
Handle corpus data like 

PubMed.
Noisy quantum gates

Gorgulla et al. (2022); Ginex et al. 

(2024); Mensa et al. (2022)

Literature Mining
Relation Extraction, 

Knowledge graph
Scalability for large data

Nałęcz-Charkiewicz et al. (2024); 

Leurs (2022); Yan et al. (2021)

Gene Regulatory Networks Accurate Gene interactions 

as language-like structures.

Interpretation Abdellah et al. (2023); Veleiro 

et al. (2023)

Quantum Embedding Models 

(QEMs)

Drug Discovery Maps molecules into 

quantum spaces.

Encoding into quantum states Ng et al. (2023); Madsen et al. 

(2023)

Protein Folding Encodes protein structures 

in quantum states.

Scalability Cincio et al. (2020); Edward et al. 

(2024)

Genomic Sequence Analysis Represents high-dimensional 

genomic features compactly.

Qubit limitation Sarkar (2018); Abdellah et al. 

(2023)

Quantum Kernel Methods 

(QKMs)

Drug Discovery Enhanced feature space Scalability Ng et al. (2023); Mohammed 

et al. (2017)

Protein Folding Improved Prediction Noise in qubits Miranda et al. (2022); Cao et al. 

(2019)

Genomic Sequence Analysis Accelerates alignment of 

genomic sequences.

Encoding large data Ghosh et al. (2024); Sun et al. 

(2012)

Literature Mining Improves clustering and 

semantic similarity in 

biomedical texts.

High computational cost. Leurs (2022); Soame (2023); Cao 

et al. (2019)

Quantum Hybrid Models Drug Discovery Improved acceleration Optimization techniques 

needed.

Mensa et al. (2022); Mohammed 

et al. (2017); Veleiro et al. (2023)

Protein Folding Feature extraction. Hardware compatibility Madsen et al. (2023); Edward 

et al. (2024)

Gene Regulatory Networks Optimizes regulatory 

network inference using 

quantum methods.

Limited hybrid models Abdellah et al. (2023); Nam and 

Nguyen. (2024)
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6.2 Data representation and encoding

Efficient data representation and encoding are critical for leveraging 
the potential of QNLP in bioinformatics applications. Biological data, 
such as genomic sequences, protein structures, and molecular 
interactions, often exhibit complex patterns and high-dimensional 
structures, which can be  challenging to represent and process on 
quantum computers. One common approach for encoding biological 
data on quantum systems is the use of qubit representations, where each 
qubit or a set of qubits encodes specific aspects of the data (Quetschlich 
et al., 2022). In the case of DNA sequences, each nucleotide (A, T, C, G) 
can be mapped to a specific qubit state or a combination of qubit states. 
However, as the size of the biological data increases, the number of 
qubits required for encoding grows exponentially, leading to scalability 
issues. To address this challenge, researchers have explored various 
quantum data embedding techniques, such as amplitude encoding 
(Ibtehaz and Kihara, 2023) and quantum feature mapping (Kim et al., 
2021). These methods aim to represent high-dimensional data in lower-
dimensional quantum states, potentially reducing the number of qubits 
required and improving the efficiency of QNLP algorithms.

Another approach is the use of quantum machine learning models, 
which can learn efficient representations of biological data directly from 
quantum states (Nathans and Sterling, 2016). These models can leverage 
the principles of quantum mechanics, such as superposition and 
entanglement, to capture complex patterns and relationships in the data.

6.3 Algorithm development and 
optimization

In the following section we outline the challenges that have to 
be  met for the development and optimization of quantum 
algorithms for QNLP particularly in bioinformatics. One of the 
significant issues is the lack of numerous realistic quantum 
algorithms for bioinformatics applications that provide effective 
solutions to particular real-world problems. As for quantum 
algorithms, there are some theoretical ones, like Grover’s 
algorithm (Grealey et al., 2022) and Shor’s algorithm (Shor, 1999), 
that provide more efficient solutions for some problems than 
classical ones, however, there can be found rather fewer works on 
how to use them for bioinformatics tasks with practical 
quantum computers.

As a result of this challenge, researchers have sought to employ 
integrated quantum-classical algorithms and data pre-processing, 
with quantum kernels. This approach will seek to take advantage 
of the two types of computing with a view of avoiding the current 
drawbacks of quantum computing. For data preparation and 
cleaning in genomic sequence analysis, classical methods can 
be applied, and for some particular computation, that requires 
heavy calculation, quantum method can be used, for example, 
pattern matching or sequence alignment. Another challenge 
experienced in algorithm development and optimization is the 
lack of benchmark and performance metrics. This is particularly 
important as the development of quantum algorithms and their 
use in bioinformatics continues particularly as it applies to the 
assessment of the efficiency of quantum computers as well as the 
comparison of quantum algorithms to their classical counterparts. 
This involves assessing aspects like runtime, precision, 

extensibility, and hardware consumption like the number of 
qubits, circuit depth.

Additionally, quantum algorithms themselves are not 
comprehensively optimized because their creation is based on the 
compromise between several parameters, including computation time, 
memory, and error. Thus, in the case of genomic sequence analysis, 
faster performing algorithms may have lower accuracy or may need 
more qubits which in turn causes more hardware limitations. The 
trade-offs between precision and speed are especially important to 
Algorithm designers and developers in the context of bioinformatics 
applications and they have to choose between these two factors based 
on their particular case.

Thirdly, the improvement of quantum algorithms is also important 
for practical applications at the same time. This may include circuit 
optimization (Zhou et  al., 2020), quantum compiler optimization 
(Quetschlich et al., 2022), and quantum error mitigation techniques 
(Kim et al., 2021; Nathans and Sterling, 2016). These optimizations 
may enhance the general performance, decrease the demands on 
resources, and enhance the precision and stability of quantum 
computation for bioinformatics purposes.

6.4 Environmental sustainability and 
carbon footprint

Bioinformatics studies are more and more based on high-
performance computing and big data processing, which generate high 
amounts of energy consumption and CO2 emissions. Solving this 
problem is necessary to achieve global sustainability objectives and 
decrease the impact of scientific computing on the environment. Some 
papers have compared the costs of different bioinformatics approaches 
to the environment and have given suggestions on how to reduce 
these costs.

A recent study by Nathans and Sterling (2016) compared the 
carbon footprint of typical bioinformatics tools and analyses 
based on RNA sequencing, GWAS, genome assembly, phylogenetic 
trees, metagenome, and molecular dynamics. The researchers 
used the Green Algorithms calculator to come up with the carbon 
emissions in kilograms of CO2 equivalent units (kgCO2e). They 
also identified the carbon cost of GWAS at the scale of a biobank, 
pointing out that the application of efficient codes and the use of 
low-carbon data centers are critical to the reduction of carbon 
footprint. In addition, (Grealey et  al., 2022) also explored the 
effects of parallelization, the use of Central Processing Units and 
Graphics Processing Units, cloud and local computational 
resources, and geographical location on carbon footprint. The 
outcomes showed that applying more efficient parallelization 
strategies along with simple software updates could cut the carbon 
footprint of bioinformatics computations by half.

To address these challenges, a new field called environmentally 
sustainable computational science (ESCS) has developed and 
offers significant potential for enhancement. To support continued 
and sustainable growth in computational science, a more planned 
approach to awareness raising, the improvement of transparency, 
the better estimation of environmental costs, and the broader 
reporting of these costs are required (Stodden and Miguez, 2014). 
In support of this effort, the “GREENER” set of principles and best 
practices guidance has been developed to guide sustainable 
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software development and deployment (Lannelongue et al., 2023). 
These environmental sustainability issues in bioinformatics are 
not only important for the sustainability context to meet the 
global sustainability objectives but also for the bioinformatics 
sustainability to be feasible (Selladurai et al., 2024) and sustainable 
in the future and large-scale uses. Efficiency improvement of the 
resource usage, energy-saving computing solutions, and 
cooperation between domain specialists, developers, and 
sustainability scholars are the key actions on the way to decreasing 
the carbon impact of the bioinformatics analyses. Furthermore, 
there has been suggestions that utilization of quantum computing 
in bioinformatics could help solve the problems by decreasing the 
carbon footprint of computationally rigorous tasks (Shaun et al., 
2021). Specifically, quantum algorithms and simulations can lead 
to more efficient analysis in protein folding, genomic sequence 
alignments, molecular modeling, and others, thus decreasing 
resource usage and emissions (Wong and Chang, 2022).

Supplementary Figure  2 shows various challenges and 
limitations faced in the field of Quantum Computing and QNLP, 
ranging from hardware constraints to data representation, 
algorithm development, and environmental sustainability  
concerns.

Table  7 provides differences between computational 
characteristics, software ecosystems, and real-world applications. 
of Classical NLP and QNLP.

7 Performance evaluation and 
component analysis

7.1 Evaluation metrics

When it comes to the appropriate performance evaluation of 
QNLP algorithms in bioinformatics, a proper metric needs to be set 
up. This not only allows for making accurate and strict comparisons 
with classical NLP methods but also defines the direction of 
constructing and fine-tuning QNLP algorithms for particular tasks. 
The selection of performance indicators varies depending on the 
bioinformatics application area and its goals. When assessing the 
quality of protein modeling for example in protein structure 
prediction, the predicted models can be rated for accuracy by the root-
mean-square deviation (RMSD) from the native structure or the 
Global Distance Test (GDT) scores (Kryshtafovych and Fidelis, 2009). 
Depending on task, in genomic sequence analysis one can use 
measures such as sensitivity, specificity, F1-score for the pattern 
recognition or alignment quality measures like Q-score (Yang et al., 
2013). Besides, problem-specific objective functions, which are 
calculated based on the results of the algorithm, there are more 
universal criteria based on the evaluation of the number of 
computational operations, necessary memory space, and quantum 
resource usage, such as numbers of qubits, and the depth of 
the circuits.

7.1.1 Root-mean-square deviation
It is a fundamental metric in structural bioinformatics and 

computational chemistry for evaluating the accuracy of predicted 
protein structures. RMSD measures the average distance between the 
atoms of a predicted protein structure and the corresponding atoms 

in the experimentally determined native structure, providing a 
quantitative assessment of the structural similarity between the two 
structures (Olechnovič et  al., 2019). The formula for calculating 
RMSD between two sets of coordinates, each containing n atoms, is 
given in Equation 12:

 
( )2
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1 N
i i

i
RMSD p r

N =
= −∑

 
(12)

Here, ip and ir represent the coordinates of the 𝑖th atom in the 
predicted and native structures, respectively. The term i ip r−  
denotes the Euclidean distance between the corresponding atoms in 
the two structures. In structural bioinformatics, RMSD is a key 
metric for assessing the quality of protein structure prediction 
algorithms and molecular docking simulations (Neveu et al., 2018). 
Low RMSD values indicate a high degree of similarity between the 
predicted and native structures, suggesting that the model accurately 
captures the protein’s folding pattern (Jumper et  al., 2021). 
Researchers often use RMSD in conjunction with other metrics, such 
as Ramachandran plots and GDT (Global Distance Test), to provide 
a comprehensive evaluation of protein structure predictions and 
refine computational models for drug discovery and molecular 
biology applications.

7.1.2 Global distance test
It is another important metric used in structural bioinformatics 

to assess the quality of predicted protein structures. GDT measures 
the similarity between a predicted protein structure and the 
experimentally determined native structure by considering the 
distance between equivalent residues in the two structures (Poleksic, 
2015). The GDT score is calculated as the percentage of residues in the 
predicted structure that are within a specified distance threshold of 
the corresponding residues in the native structure. The GDT score is 
typically calculated at different distance thresholds like 1 Å, 2 Å, 4 Å, 
and 8 Å to provide a comprehensive assessment of the 
structural similarity.

Mathematically, in Equation 13 the GDT score at a given distance 
threshold is calculated as follows:

 1

1GDT i
D

i
score GDT

D =
= ∑

 
(13)

D is the total number of residues (atoms) in the protein. GDTi is 
the fraction of residues for atom 𝑖 that fall within the 
distance thresholds.

The GDT score is expressed as a percentage, with higher scores 
indicating a greater degree of structural similarity between the 
predicted and native structures. A GDT score of 100% indicates 
perfect structural similarity, meaning that all residues in the predicted 
structure are within the specified distance threshold of the 
corresponding residues in the native structure. GDT provides a 
quantitative measure of the structural similarity between predicted 
and native structures. It complements other metrics such as RMSD 
and Ramachandran plots, offering researchers a comprehensive 
assessment of the accuracy of computational models in protein 
structure prediction.
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7.1.3 F1-score
Equations 14–16 is important to assess the overall performance of 

a binary classification model. It is particularly useful when the class 
distribution is imbalanced (Nunn et al., 2021).

For calculating F1-score:

 
1 2 Precision X RecallF X

Precision Recall
=

+  
(14)

Where:
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(15)

 

True Positives
True Positives False Negatives
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(16)

The F1 score ranges from 0 to 1, where a higher score indicates 
better model performance. It provides a balance between precision 
and recall, making it a useful metric for evaluating models, especially 
when there is an imbalance between the two classes. It is important to 
assess the overall performance of a binary classification model.

7.1.4 Quantum resource utilization
It is a metric that evaluates how efficiently a quantum algorithm 

utilizes quantum resources such as qubits, gates, and circuit depth. It 
is often used to compare the efficiency of different quantum algorithms 

in terms of resource consumption. The exact formula for calculating 
quantum resource utilization can vary depending on the specific 
context and the factors considered (Hansen et al., 2023). However, a 
general formula could be constructed as follows:

 

( )Quantum Resource Utilization QRU
Number of Qubits Circuit Depth

Number of Logical Qubits
×

=
 

(17)

Where, the total number of physical qubits required for quantum 
computation, the depth of the quantum circuit represents the number 
of sequential gates that need to be applied, and the number of logical 
qubits required to represent the problem being implemented. 
Equation 17 provides a measure of how efficiently quantum resources 
(such as qubits and gates) are being utilized to solve a particular 
problem or implement an algorithm. A lower QRU indicates more 
efficient resource utilization, while a higher QRU indicates that more 
resources are required for the computation (Lubinski et al., 2023). 
Table 8 provide the overview of evaluation metrics and its significance.

QNLP is a captivating domain within the field of bioinformatics, 
presenting prospective benefits in terms of computational economy, 
precision, and performance when compared to traditional approaches. 
Although benchmarking studies have shown competitive outcomes 
for tasks such as genomic sequence analysis (Shiny Duela et al., 2023) 
and protein structure prediction (Chow, 2024), the current limitations 
in error correction overhead and quantum hardware scalability 
prevent the practical implementation of the theoretical speedups 

TABLE 7 Comparative analysis with classical NLP and quantum NLP components.

Component Classical NLP QNLP Ref.

Computational Complexity
Polynomial time complexity for most 

algorithms

Potential for exponential speedups due to quantum 

parallelism and entanglement

Biamonte et al. (2017)

Data Encoding
Well-established techniques for 

encoding text data

Challenges in efficiently encoding biological data 

into quantum states

Outeiral et al. (2021)

Algorithm Maturity
Decades of research and development, 

well-established algorithms

An emerging field, a limited number of practical 

algorithms developed.

Dunjko and Briegel (2018)

Hardware Scalability
Scalable on classical hardware, limited 

by memory and processing power

Currently limited by the number of available qubits 

and noise in quantum hardware

Salem et al. (2023)

Training Data Availability
Large datasets and pre-trained models 

available for many tasks

Limited availability of large-scale quantum datasets 

for training

Kundu et al. (2024)

Interpretability
Interpretability challenges with deep 

learning models

Potential for improved interpretability due to the 

mathematical nature of quantum algorithms

Perrier et al. (2022)

Error Handling
Robust error-handling techniques 

developed for classical models

Error correction and mitigation techniques are still 

in development for quantum computing

Temme et al. (2017)

Software Ecosystem
Mature software libraries and 

frameworks

Limited software tools and frameworks for QNLP, 

mainly research-oriented

Cao et al. (2018)

Trade-offs Performance vs. interpretability Speed vs. reliability Maheshwari et al. (2022)

Real-world Applications
Widely deployed in various 

bioinformatics applications

Limited practical applications, mostly proof-of-

concept studies

Pudenz and Lidar (2013)

Hybrid Approaches
Classical methods can benefit from 

quantum computing accelerators

Hybrid quantum-classical approaches leverage the 

strengths of both paradigms

Herrmann et al. (2023)

Tools
NLTK, spaCy, Gensim, Stanford 

CoreNLP
Qiskit, Cirq, PennyLane, Q#

Chow (2024)
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offered by QNLP (Saggi et  al., 2024). To address these obstacles, 
hybrid quantum-classical methodologies have surfaced, which involve 
the strategic delegation of computationally demanding duties to 
quantum processors while making use of classical resources to 
preprocess and post-process data (Zhou et al., 2024).

Nevertheless, QNLP techniques encounter intrinsic drawbacks, 
such as the complexity of encoding data, challenges in optimizing 
algorithms, and the relative youth of quantum hardware in comparison 
to the firmly established classical NLP environment. Adoption of 
QNLP in bioinformatics will ultimately depend on continuing 
algorithm development, progress in quantum computing, and a 
prudent comparison of the capabilities of classical and hybrid 
techniques to application-specific performance, accuracy, and 
scalability needs. However, addressing these obstacles through 
collaborative research and technological advancements will not only 
overcome existing limitations but also set the stage for groundbreaking 
developments in bioinformatics. As we  transition into discussing 
future directions, we focus on the transformative possibilities that lie 
ahead for QNLPFuture Research Directions and Roadmap.

7.2 Potential avenues and future prospects

With the ongoing progress in quantum computer technology, the 
domain of Quantum Natural Language Processing (QNLP) possesses 
tremendous potential to revolutionize bioinformatics and expand the 
frontiers of biological investigation and revelation. A multitude of 
burgeoning trends and prospects are positioned to influence the 
forthcoming implementations of QNLP within this field 
(Supplementary Figure 3).

7.2.1 Personalized medicine and precision 
therapeutics

A highly auspicious domain for QNLP to be  implemented is 
customized medicine and precision treatments. QNLP techniques 
could facilitate a more precise and effective examination of individual 
genomic data by harnessing the computational capabilities of quantum 
computing. This, in turn, could pave the way for the creation of 
customized treatments and personalized pharmacological regimens 

(Chow, 2024). Equipped with extensive multi-omics and clinical data, 
quantum machine learning models can discern intricate patterns and 
correlations, hence enabling the identification of previously 
undiscovered biomarkers and therapeutic targets.

7.2.2 De novo protein design
De novo protein design and protein engineering are indispensable 

for the creation of novel biomaterials, enzymes, and medicines. When 
combined with quantum simulations and molecular modeling, QNLP 
methods have the potential to greatly revolutionize this field by 
enabling more accurate predictions of protein folding kinetics, 
structures, and functions (Shiny Duela et al., 2023). The application of 
quantum algorithms for the fast conformational sampling of proteins 
might help to develop new enzymes, designer proteins, and engineered 
biomaterials by defining sequences and structures that provide 
specific functions.

7.2.3 Multi-omics data integration
Using multiple omics data, including genomes, transcriptome, 

proteome, and metabolome, is crucial to develop systems-level models 
that capture complex cellular functions. Technique of QNLP can have 
a tremendous effect on this field as they can support the integration of 
data, patterns’ recognition, and knowledge search across different and 
diverse data (Saggi et al., 2024). It could be hypothesized that the 
existing relationships and interactions between multi-omics data sets 
could be  learned by quantum machine learning and algorithms, 
providing new and previously unknown information about gene 
regulation networks, metabolic pathways, and disease etiology.

7.2.4 Quantum molecular simulations and drug 
design

The combination of QNLP methods with molecular quantum 
simulations and quantum chemistry calculations may open a new era 
in drug discovery. Thanks to quantum computer computing capacities, 
the scientists were able to create detailed models of what happens with 
proteins and ligands, biochemical reactions, and other complex 
biomolecular interactions with superior accuracy and efficiency (Zhou 
et al., 2024). The use of these simulations may result in profound 
understanding of the molecular interactions of drugs, which in turn 

TABLE 8 Evaluation metrics for QNLP.

Metric Definition Applications Prominence

Accuracy Proportion of correct predictions Drug-target interaction Sequence alignment Measures overall model performance

Precision True positives over predicted positives Literature mining Drug discovery Evaluates relevance of predictions

Recall (Sensitivity) True positives over actual positives Motif detection Protein folding Assesses ability to identify true cases

F1 Score
Harmonic mean of precision and 

recall
Protein structure prediction, RNA analysis

Balances precision and recall in imbalanced 

datasets

RMSD
Average deviation in predicted vs. true 

structure
Protein folding prediction Measures structural prediction

Global Distance Test (GDT)
Structural similarity between 

predicted and true models
Protein structure comparison Assesses structural bioinformatics results

Quantum Resource Utilization 

(QRU)
Qubit and gate usage efficiency All QNLP tasks Measures efficiency of quantum algorithm

Execution Time Time taken for computation Sequence alignment Virtual screening Critical for assessing scalability
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may help in the rational design of novel therapeutic agents and 
optimizing their selectivity, pharmacokinetic profile and affinity.

7.2.5 Sustainable Bio-economies
QNLP methods can be beneficial for the development of new 

sustainable bioeconomies and the conservation of biological diversity. 
By applying QNLP, it is possible to analyze large biological data sets, 
which include ecological data, environmental monitoring data, and 
genomics data to improve the efficiency of sustainable practices in 
agriculture, forestry and ecosystem management (Pal et al., 2024). If, 
for instance, unstructured data from environmental reports and 
scientific research was subjected to QNLP methods, then there would 
be knowledge and information that is relevant to the development of 
sustainable bioeconomies and conservation of biotic diversity. QNLP 
is expected to have further potential in bioinformatics and related 
fields and the development of quantum computing technology will 
extend basic biological research and development. To achieve these 
prospective uses, however, will require collective endeavours to 
overcome the challenges that arise from the scale of quantum 
technology, the algorithms, the data encoding and the application.

7.2.6 Biodiversity conservation
There is a potential for QNLP techniques to contribute to 

sustainable bioeconomies and support of initiatives related to the 
conservation of biological diversity. QNLP could help promote the 
development of sustainable practices in different industries 
including agriculture and forestry (Kirubakaran and 
Midhunchakkaravarthy, 2024) because QNLP can process big 
biological data which include genomic data, ecological data and 
environmental data. From genomic data of crop species QNLP 
algorithms can identify the right crop cultivars for resistance and 
climatic adaptability by feature extraction (Prasad et al., 2024). For 
the enhancement of the conservation approaches and ecosystem 
management, it could also allow the integration of the data on 
biological diversity from different sources such as field surveys, 
eDNA, and remote sensing (Di Sipio et al., 2021). In addition, the 
knowledge acquisition and insight generation techniques applicable 
to sustainable economies and biodiverse conservation (Sood and 
Chauhan, 2024) could be used with QNLP techniques to extract 
information from such unstructured text data as environmental 
reports and research articles. It is also possible that some of the 
sustainable practices in industries such as agriculture, forestry, 
fishery, and biotechnology might be supported by QNLP through 
the improvement of efficient knowledge search and decision-
making. The opportunity to change the approach to the management 
of natural systems, as well as the development of bio-economies, 
and the protection of the biological wealth of the planet for future 
generations, is in the use of QNLP for environmental sustainability 
and the conservation of biological diversity.

The potential applications of QNLP provides its capacity to 
improve in various domains, from personalized medicine to 
sustainable bio-economies and biodiversity conservation. These 
advancements underscore the transformative potential of QNLP in 
addressing some of the most challenges in bioinformatics and beyond. 
However, it helps in realizing these opportunities will require progress 
in quantum hardware, algorithm development, and data integration 
techniques. The following section delves into the roadmap for 
overcoming these challenges, outlining actionable strategies and 

collaborative efforts needed to fully harness the power of QNLP in 
future research and applications.

7.3 Roadmap and recommendations

To fully harness the capabilities of QNLP in the field of 
bioinformatics and effectively tackle the obstacles associated with 
environmental sustainability, it is imperative to establish a thorough 
roadmap and a set of suggestions is mentioned in 
Supplementary Figure 4. Collaboration among diverse stakeholders 
including university researchers, makers of hardware and software for 
quantum computing, experts in bioinformatics and sustainability, and 
industry partners is important for the formulation of this plan.

7.3.1 Quantum hardware development
The direction for the development of energy-saving quantum 

hardware technologies must be  granted high importance. These 
include the analysis of new forms of qubit, such as quantum dots. 
Semiconductor nanostructures used in these qubits may allow them 
to operate at higher temperatures, thus rendering large-scale cooling 
unnecessary (Nayak et al., 2008). However, topological qubits, due to 
their grounding in the principles of topological matter, these qubits 
have an intrinsic immunity to external noise and dephasing. As a 
consequence, they might require less amount of energy to correct the 
errors and other expenses associated with the process. To achieve 
efficient quantum hardware, material scientists, specialists in energy 
efficiency, and engineers in quantum hardware will need to work 
together. To obtain reliable QNLP applications, it will be necessary to 
design quantum systems that are immune to errors. It is strongly 
believed that the performance of QNLP algorithms can be enhanced 
by the advancements in fault-tolerant architectures and quantum 
error-correcting codes. Further study of the more extensive quantum 
processors with more qubit numbers and longer coherence times is 
necessary. This would make it possible to apply more complicated 
QNLP models for tasks such as genome-wide association analysis and 
protein-ligand interaction analysis. Introducing louder architectures 
for quantum devices might reduce the impact of environmental 
decoherence and expand the usability of QNLP in actual problems 
of bioinformatics.

7.3.2 Algorithm research
In tandem with developments in hardware, the development and 

optimization of quantum algorithms for sustainable bioinformatics 
applications should be  another top priority. This implies the 
examination of quantum algorithms that have been developed to 
tackle specific problems, and these are some of the problems that may 
be solved by quantum computing; sustainable agriculture, protection 
of biodiversity, and development of environmentally friendly drugs 
(Andersson et al., 2022). It is anticipated that QNLP together with 
future generations of quantum computers will revolutionize predictive 
bioinformatics. They may make the realistic quantum computer 
modelling of different biomolecular processes, for instance protein 
folding and gene regulation, feasible on FTQC. With better qubit 
coherence and coherence times and with the deployment of scalable 
architectures in the future quantum systems, the solution to the 
computational challenges of the emulation of sophisticated biological 
structures will be realized and quantum advancements in biological 
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fields will be  made. For example, the incorporation of hybrid 
quantum-classical systems to preprocess the data classically before 
going to quantum circuits for sequence alignment task could optimise 
it. Subsequent studies should focus on improving data encoding, 
quantum embeddings, and quantum-classical combinations in order 
to minimize the computational load and energy costs associated with 
them. (Nammouchi et al., 2023).

7.3.3 Sustainable software engineering
Prescribing and following the best practicable procedures for 

eco-friendly computational research and sustainable software 
engineering is vital to reducing the carbon impact of QNLP in 
bioinformatics. Applying ideas like the “GREENER” approach which 
aims at developing principles and recommendations for the 
sustainable software development, maximization of resource 
utilization efficiency such as memory, storage space, data transfer, as 
well as the incorporation of energy-efficient computing solutions are 
parts of this process (Lannelongue et al., 2023).

7.3.4 Environmental impact assessment
To provide impartial and consistent assessments of the ecological 

consequences of QNLP algorithms and approaches, it is imperative to 
establish standardized benchmarking frameworks and processes for 
environmental impact evaluation (Strubell et al., 2020). Measuring the 
energy usage of quantum and classical computational resources 
Assessing the carbon footprint associated with the deployment and 
operation of QNLP solutions Evaluating the efficient use of hardware 
resources, such as qubits, memory, and storage should be incorporated 
into these frameworks to enable comparisons with traditional 
methodologies and to direct the optimization of sustainable QNLP 
solutions (Liu et al., 2021).

7.3.5 Interdisciplinary collaboration
Establishing strong partnerships among quantum computing 

researchers, bioinformaticians, sustainability scientists, and industry 
stakeholders is imperative to effectively apply QNLP findings 
practically and sustainably. The establishment of interdisciplinary 
research institutes, collaborative initiatives, and platforms for 
knowledge exchange can expedite the development of sustainable 
QNLP solutions for bioinformatics and encourage the cross-
pollination of ideas (Awschalom et al., 2021).

By executing this strategic blueprint and attending to these critical 
domains, the bioinformatics community can effectively utilize the 
paradigm-shifting capabilities of QNLP in a manner that is consistent 
with worldwide sustainability objectives and reduces the ecological 
repercussions of computational procedures. Creating libraries and tools 
for QNLP applications tailored to bioinformatics needs could accelerate 
the development and testing of novel algorithms on emerging quantum 
devices. Nevertheless, it is imperative to recognize that the achievement 
of sustainable QNLP in bioinformatics necessitates significant financial 
expenditures, enduring dedication, and interdisciplinary cooperation 
among many stakeholders (Quantum Technology and Application 
Consortium – QUTAC et al., 2021).

While the limitations of current quantum hardware present 
significant challenges, the future directions outlined suggest a 
promising trajectory for QNLP in bioinformatics. The discussion and 
conclusion section synthesizes the insights and their broader 
implications for the field.

8 Discussion

Research questions of this study were answered with theoretical 
and practical applications of quantum natural language processing in 
advancing bioinformatics. In the analysis of Research Question 1, 
we showed how QNLP applies basic tenets of quantum computing such 
as superposition, entanglement, and parallelism to analyze linguistic 
data. Such methods as quantum embeddings and the DisCoCat 
framework extend the capabilities of text analysis and allow for 
representation and recognizing patterns beyond the scope of classical 
NLP. To answer Research Question 2, we  found out that QNLP 
algorithms outperform traditional methods of NLP especially when it 
comes to data scale. Grover’s algorithm speeds up the search by 
keywords, while quantum embeddings improve the language modeling 
tasks. Of these, the areas that best illustrate the growth of these 
principles are Bioinformatics, where scaling factors and precision are 
paramount. To answer Research Question 3, we presented the primary 
areas of application of QNLP in bioinformatics, such as drug discovery, 
protein folding, and genomic sequence analysis. In drug discovery, 
QNLP enhances the rate of literature review and virtual screening, as 
well as enhancing the identification of the interaction between drugs 
and targets. Likewise, in protein structure prediction, QNLP helps in 
understanding of large data sets and with that gives a ground for 
quantum computational simulations. These cases illustrate how QNLP 
is likely to bring about workflow optimization in bioinformatics and 
enhance the feasibility of several important processes. Last for Research 
Question 4, we looked at the current challenge and future prospect of 
QNLP in bioinformatics. The main issues are the limitations of 
quantum hardware like noise, qubit coherence, quantum hardware 
scaling and the problem of mapping biological data into quantum. 
Future opportunities lies in hybrid quantum-classical frameworks, 
noise-resilient algorithms, and advancements in quantum processors. 
As these limitations are addressed, QNLP is poised to become a 
powerful tool in personalized medicine, multi-omics integration, and 
environmental bioinformatics. This discussion ties the findings to the 
research questions, showing how QNLP can address pressing 
challenges in bioinformatics while outlining pathways for future 
exploration. By focusing on interdisciplinary collaboration and 
technological innovation, QNLP offers a promising avenue for 
advancing bioinformatics and related fields.

9 Conclusion

Quantum natural language processing (QNLP) is a new concept that 
represents a radical departure from the standard approach to 
bioinformatics through the application of quantum computing to 
transform the way biological information is analyzed and understood. 
The current comprehensive review has also discussed the theory and 
application, challenges and opportunities of QNLP in various areas such 
as genomics sequence analysis, protein structures prediction, and drug 
discovery. From the existing body of work and current industrial 
applications, it is obvious that QNLP has the potential to be  more 
computationally efficient, accurate, and scalable than conventional NLP 
techniques despite being a relatively young field of study. By 
incorporating quantum characteristics such as entanglement, 
superposition, and parallelism, QNLP algorithms have shown promising 
results in several applications including sequence alignment, literature 
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analysis, virtual library search, and protein folding. However, there are 
still some challenges that slow down the implementation of QNLP in the 
bioinformatics domain. These include limitations on the quantum 
hardware, and the challenge posed by data encoding, and the need for 
algorithm design and validation. To tackle these obstacles, it will 
be necessary for bioinformaticians, industry stakeholders, and quantum 
computing researchers to collaborate. Additionally, substantial 
investments will be needed in the development of sustainable software 
engineering practices, interdisciplinary education, and workforce 
development. QNLP can revolutionize fields like medicine and 
genomics. It could speed up the discovery of life-saving drugs, help 
doctors create personalized treatments based on a patient’s genetic code, 
and provide insights into diseases at a molecular level.

With great promise for revolutionary applications in personalized 
medicine, de novo protein design, multi-omics data integration, 
sustainable bioeconomics, and environmental sustainability, QNLP in 
bioinformatics has a bright future. Through the utilization of quantum 
computer computational capabilities and the integration of QNLP 
methodologies with molecular modeling and quantum simulations, 
scholars have the potential to unveil hitherto unexplored 
understandings of biological mechanisms, expedite the process of 
discovering new drugs, and establish environmentally sound 
approaches to ecosystem management and biodiversity preservation. 
With the ongoing advancements in quantum computing technology, 
the feasibility of incorporating QNLP into bioinformatics will grow 
substantially. This will facilitate the exploration of novel insights, the 
efficient analysis of data, and the creation of inventive resolutions for 
worldwide issues on healthcare, biotechnology, and environmental 
sustainability. By wholeheartedly adopting this burgeoning domain 
and following the strategic path delineated in this evaluation, the 
bioinformatics community can effectively utilize QNLP to its complete 
capacity, thereby propelling scientific advancement and making a 
positive and sustainable contribution to the future.
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