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Research shows that the e�ectiveness of human-agent teams depends

heavily on human team members’ prior experiences, whether from direct

teaming activities or relevant domain knowledge. While researchers have

proposed various mechanisms to explain this relationship, we present a simpler

alternative explanation: experience serves primarily as an indicator of a person’s

fundamental willingness to engage in teaming tasks. We introduce a measure

called “willingness to work" that quantifies this underlying disposition. Our

empirical analysis demonstrates that this straightforwardmetric robustly predicts

human-agent team performance. Beyond its practical value as a predictive

tool, this reconceptualization of the experience-performance relationship

necessitates a fresh examination of existing findings in the field. The results

suggest that a team member’s basic willingness to invest e�ort may be more

fundamental to success than previously recognized mechanisms.
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1 Introduction

Extensive research tests the hypothesis that a person’s experience in a task domain

influences the success of a new human-agent team (HAT) (Huang and Bashir, 2017;

Demir et al., 2018; McNeese et al., 2018; O’Neill et al., 2022). Empirical evidence suggests

that this effect holds for experience that comes from simple domain-relevant settings

(Chen et al., 2011) to past teaming with AI-agents (Hafızoğlu and Sen, 2018; Gurney

et al., 2023c). Researchers have devoted considerable efforts to explaining the mechanisms

through which experience improves these teaming outcomes. Prominent examples of this

are the widely studied (and debated) tandem hypotheses that experience can impact trust

in automation and trust in automation predicts teaming outcomes (Lee and See, 2004;

Hancock et al., 2011; Hoff and Bashir, 2015; Huang and Bashir, 2017; Lewis et al., 2018).

Although these relationships undoubtedly explain some variance in teaming outcomes

(see Huang and Bashir, 2017 for a study of how interaction dynamics impact trust), they

likely do not explain all of the variance, because like all measures, experience alone has its

shortcomings. For example, what constitutes relevant experience might differ significantly

across domains—experience as a pilot in a human-autonomy flying team is markedly

different than experience in a gaming environment (Demir et al., 2018; Pynadath et al.,

2023). Moreover, experience alone does not equate to willingness, or motivation, to do

a task. Work to untangle how experience and motivation are related abound in the

management literature, with one prominent model arguing that considering the valence

of an experience (whether it is positive or negative) is crucial to predicting its impact
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on motivation (Seo et al., 2004). In applied settings, however, it is

not always feasible to dissect and measure a worker’s motivations

nor is it necessary. All that is needed is a simple measure of how

willing the worker is to work. Although experience is important,

and undeniably linked to this willingness, it does not entirely

capture it.

We propose a simple alternative explanation of why experience

is frequently predictive of teaming outcomes: experience serves

as a proxy for an individual’s willingness to do the task, i.e.,

their willingness to work (WTW). If a person has experience in a

domain and is returning to the same for more work, then there

is some validation of their willingness to do that specific task

(work). People unwilling to do a given task will not return for

more (outside of coercion). Of the people that do return, however,

one can expect natural variation in their WTW. Based on this

idea, we hypothesized that for a given population of experienced

workers, the variation in their WTW, as measured by previous

effort, will predict the amount of future effort they are willing

to invest.

Extensive research explores an individual’s willingness to

work (or interact) with AI [e.g., robots (You and Robert, 2018;

Paluch et al., 2021; Verma and Singh, 2022), intelligent virtual

agents (Sycara and Lewis, 2004; Cafaro et al., 2016; Boukaram

et al., 2021), etc.] and the impact that such willingness has

on teaming success. Here we consider the simpler hypothesis

that an individual’s basic WTW drives many such results. We

demonstrate the viability of this hypothesis using data from a

study of human heuristics and biases during complex choices

when teaming with an AI. Critically, the experiment includes

a solo-effort baseline in which participants completed two

versions of the task before teaming with the AI helper. We

find that including a person’s effort from their solo work as an

independent variable in teaming models significantly improves

their accuracy and predictive abilities. This simple and often

costless metric was positively correlated with human-AI team

performance. Moreover, when such data are available, an agent

can readily model this relationship and use the model to improve

teaming outcomes.

Definition: Willingness to Work (WTW) is a person’s fundamental quality

or state of being disposed to engage in an effortful task. This fundamental

state is primordial to higher-order concerns such as morals, individualism,

gratification, compensation etc. Although a person who is industrious or has

good work ethic will likely have a high WTW, the opposite is not necessarily

true. That is, a person high in WTW will not necessarily be recognized as

industrious or of good work ethic. All else being equal, a person higher in

WTW will be more likely to invest effort in a given task than a person who is

lower in WTW.

Our approach is fundamentally different from prior approaches

in that we view WTW as a fundamental state of an individual

that predicts other outcomes. Prior work has focused on the

accompaniment aspect of HATs—that is, how working in a team

with an AI agent impacts a person’s effort or other measurable

outcome. Our measure reverses the hypothesis and posits that for a

given task, each individual has some basic WTW that impacts the

outcome, regardless of the HAT setting.

2 Materials and methods

We analyze data from an experimental study of HATs

completing a dial-tuning task that manipulated the presence of

overt anchors (informing the human team members of the best

possible outcome in a given task) and whether the HAT was in a

loss or gain frame (attempting to not lose points vs. attempting

to gain points). Both anchoring (Tversky and Kahneman, 1974;

Chapman and Johnson, 1999; Epley and Gilovich, 2006) and

framing (Tversky and Kahneman, 1974, 1985; Kahneman, 2011)

are correlated with dramatic impacts on human judgment and

decision making. Anchoring is simply the tendency to use salient

information as a reference in decision making. Framing describes

how casting a decision in a positive vs. negative way can alter

decision outcomes. Complete descriptions of the task, experiment,

and results are reported in the papers from which we drew the data

(Gurney et al., 2022a, 2023a,b). Each participant completed the task

four times: twice on their own and then twice with the help of an

AI agent, in which case they ceded control of one of the dials to

the agent. Performance was incentivized with bonus payments for

uncovering better dial settings in each task. Participants were free

to break off the search whenever they chose.

2.1 Task summary

Participants used two on-screen dials to search an unseen

landscape for its highest location (see Figure 1). Conceptually,

these dials moved participants in perpendicular directions in the

landscape (one left-right and the other up-down). Each landscape

was a unique, algorithmically drawn, constrained environment

containing 576 locations that ranged in elevation on the interval

[0, 32]. The locations were arranged on a 24 × 24 grid that was

continuous over the edges, meaning that moving off of the left

(top) edge of the map led to the right (bottom) edge of the map

and vice versa. Participants were unaware of the landscape-search

aspect of the task. Instead, they were only asked to optimize the

dial settings and find what they believed to be the highest value.

For both the solo and HAT landscapes, participants completed, in

a random order, a simple (single-peaked) and a complex (four-

peaked) landscape. The peaks in the landscapes always took a value

of 32 units; the other three peaks in the complex landscape were

randomly selected without replacement from the interval [26, 31].

Importantly, the dials were interdependent and the landscapes were

nonlinear.

Team search was a turn-taking endeavor: participants first

adjusted the dial that they controlled and submitted it for

evaluation, then the AI agent took that information and decided

whether or not to adjust its dial. A stochastic model based on

a simulated annealing algorithm guided the AI helper’s decision

making. Although checking every possible setting would take a

participant more than 20 min, the AI could do it in fractions of

a second. To facilitate richer interactions, the AI was limited to

deciding whether to look near or far from its current location,

after which a setting was randomly selected and either accepted or

rejected given the output from the simulated annealing algorithm.

Participants then received feedback on what the AI decided and the

value of the new setting.

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1405436
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Gurney et al. 10.3389/fcomp.2025.1405436

FIGURE 1

A screenshot of the experimental interface. In this example, the

participant is in a loss frame (note the negative points; –65 is better

than –68) and there is not an anchor value (if it were available, it

would be indicated above the dials). Adjusting the dials entails

clicking and dragging the orange handle around the turquoise ring.

Clicking the Evaluate Dial Settings button retrieves the associated

landscape elevation. These are tracked in the setting history box.

When the participant believes that they have found the best (or a

good enough) dial setting, clicking the Finalize Choice button

advances them to the next task.

2.2 Experiment summary

The experiment crossed an explicit anchoring treatment

(participants were informed of the best they could do on a given

landscape vs. not) with a framing treatment (the incentivized

goal was to avoid losing as few points vs. gain as many points

as possible) resulting in a 2 × 2 design. To control for scaling

effects, the landscape values were randomly perturbed such that

the loss frame values were in the [−100, 0] interval and the

gain frame values were in the [0, 100] interval. This meant that

participants in the no-anchor conditions had to discover what

was a “good” landscape value for each task, i.e. a prior effort was

not informative of a current effort. The solo efforts were always

completed before the team effort and the order of the simple

and complex landscapes was randomized in both instances. After

completing the tasks, participants answered a set of questions about

their own performance, the performance of the AI, and their related

opinions.We briefly summarize the experimental results below; full

results are available in Gurney et al. (2023a,b).

2.3 Dial tuning experimental results
summary

Participants’ solo effort outcomes are available in Gurney et al.

(2023a). The experiments were designed such that simple linear

approaches (regression, ANOVA, etc.) could readily model the

outcome measures of interest (e.g., highest discovered location).

398 participants from Prolific Academic completed the experiment,

172 participants identified as male, 218 as female, and eight as

other. The average participant age was 32 years. Two hundred three

participants indicated that they were college graduates with a four-

year degree or higher. We considered one participant as an outlier:

they evaluated 607 settings for one of their solo tasks and 581 for

one of their HAT tasks, more than the complete set of combinations

(576). This participant achieved a perfect solo score and a near

perfect HAT score. They did not find the global maximum for the

one peaked landscape in theHAT, although they submitted 96 fewer

dial settings in the HAT than when they worked alone on the one

peaked landscape (18 vs. 114). They also submitted This was also

three times the effort of the next most ambitious participant. Given

that this behavior would have an outsized impact on any analysis,

we decided to remove this participant from the data set, leaving

397 observations.

Participants did better, as expected, on the single-peaked

than the four-peak landscapes during the solo effort. Moreover,

doing the single-peak landscape first was correlated with better

outcomes on the subsequent four-peak landscape, but not vice-

versa. Anchoring and framing yielded main effects, but not

interaction effects: being in a loss frame was correlated with

a longer average search duration (measured as the number of

dial submissions), and having the explicit anchor was correlated

with a shorter average search duration, all else being equal. Also,

participants in the loss frame committed more effort to fine-tuning

the dial settings than participants in the gain frame. Lastly, the

anchoring treatment did not meaningfully alter the participants’

search strategies.

The HATs’ outcomes are available in Gurney et al. (2023b).

On average, HAT scores were worse than solo effort scores, a

result driven, primarily, by significantly shorter search duration

from the loss framing participants. HATs also spent more time

exploring distal locations in the landscape than fine-tuning the

dials to uncover local topographies, i.e. exploiting local knowledge.

Nevertheless, HATs in the loss frame conditions fared significantly

better than those in the gain frame. No matter the treatment

condition, the HATs did worse on the four-peak than on single-

peak landscapes. Interestingly, participants exerted less effort in

each successive task, however, the only significant decrease in effort

between any two tasks happened when they joined a HAT. Again,

participants in the loss frame made the largest adjustments and

suffered the biggest setbacks for it.

Critically, participants’ effort, as measured by the number of

submissions made, in the solo tasks was correlated with their effort

during the team tasks. This insight sparked our hypothesis and

serves as the foundation for our WTWmodels.

3 Willingness to work models

We define three WTW metrics: willingness to work solo

(WTWs), willingness to work in a human-agent team (WTWt),

and a measure of a person’s willingness to work in a HAT relative

to alone (WTWr). WTWs is the total number of dial settings

submitted by a participant across their solo tasks. WTWt is the
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number of dial settings a participant submitted during their first

HAT task. WTWr is WTWs minus the number of dial settings

submitted by the HAT divided by the total of submissions. In other

words, WTWr is a person’s willingness to work in the team in

relation or proportion to their general willingness to work. We use

WTWs and WTWr to predict the total team score of a HAT and

WTWt to predict the second team score. The score on a given task

is simply the highest elevation uncovered. The maximum available

points in a given task was always 32 (the highest elevation), and the

scores are simply the fraction of points earned. The total team score

and the second team score are percentage values. For example, if a

hypothetical team earned 20 points on the first HAT task and 28

on the second, then their total team score would be 20+28
32×2 = 0.75,

or 75%, and their second team score 28
32 = 0.875, or 87.5%. Our

models also include control variables for the treatment conditions.

The findings reported in Gurney et al. (2023a,b) support main

effects for the treatment conditions, but not an interaction, thus we

do not include an interaction term for the treatment conditions in

our models.

We rely on two classes of models, which we chose for

their ability to capture the theorized effects without introducing

unnecessary complexity. The first models are ordinary least squares

(OLS or multiple linear) regression models in which the score of

interest (total team score or second team score) is predicted by the

appropriate WTW measure and the treatment condition variables.

The basic model is:

Si = β0 + β1Wi + β2Ai + β3Fi + ǫi (1)

Where S represents the relevant score measure,W the relevant

WTW measure, A the anchoring condition of a participant, and F

the framing condition of a participant. β0 is the constant (intercept)

value, which does not have much meaning for this study since

continuous independent variables are anchored at zero for ordinary

least squares regression models and because participants had to

submit at least one dial setting per task. The β1 values in theWTWs

andWTWt models indicate the expected change in a score for each

additional dial setting submitted. Since there are no interactions

in these models, the effect of a given WTWs or WTWt value is

computed by simply multiplying it by the appropriate β1.

The observed range of the dependent variables is censored

for the linear models (scores could only range from 0 to 100%).

This feature creates the possibility of over or underfitting and

violating normality assumptions. One solution for this is to fit a

more complicated censored regression model, commonly known

as a tobit, which we did and include in the Supplementary material.

These models suggest the same interpretation of the data, although

result in larger coefficient values. Since we are not interested

in exact point estimates, we decided to rely on the more

parsimonious models.

The relative willingness to work measure allows us to

understand whether a participant’s general WTW interacts with

their WTW in the HAT. The model we report for WTWr differs

from the basic paradigm of Equation 1 in that it interacts WTWs

and WTWr. Here, we anticipate WTWs to have an effect when

WTWr is zero, which occurred when a participant exerted the

same effort on their own as in the HAT. WTWr, however, should

not be significant, as it would represent a case when WTWs

was zero, which was not possible. Significant results for WTWs

and the interaction term WTWs × WTWr will suggest that (1)

a participant’s raw willingness to work and willingness to work

in the HAT are predictive of HAT success and (2) they share

some correlation.

The second class of models includes ordinal logistic regressions,

for which we sort the total and second scores into three classes by

splitting the distribution into terciles for low, medium, and high

achievement. Terciles were selected based on the amount of data

available: more cuts would undermine the statistical power of the

models, which bifurcating the distribution provided less insight

into the phenomenon. These models serve an illustrative purpose,

as it is often more convenient to categorize outcomes than make

exact point estimates. Recall that for such models, Y is an ordinal

outcome with J categories. P(Y ≤ j) is the cumulative probability

of Y less than or equal to a given category j = 1, ..., J − 1. The

log odds, or logit, is simply the log of the cumulative probability

divided by the P(Y > j). Since P(Y > j) is 0, the log odds reduce to

logit(P(Y ≤ j)) and our basic model of the terciles is:

logit(P(Si ≤ j)) = β0 − η1Wi −

η2Ai − η3Fi − ǫi
(2)

S,W,A, andF serve the same abbreviation function as in

Equation 1. β in these models indexes the intercept values while

η indexes the coefficient values. The former coefficients simply

indicate where the team score variables were cut to make the

terciles and are generally not used in the interpretation of ordinal

model results, thus we omit them from the results. The range of

the submission counts for the terciles for the total team score of

Equation 2 are [4, 143], [144, 198], and [199, 337], and for the

second team score of Equation 2 they are [2, 53], [54, 88], and [89,

124]. The cuts for scores were 53 and 77% for theWTWsmodel and

78 and 90% for the WTWt model. These cuts fit with the analyses

in Gurney et al. (2023b) which suggest that the HATs did better on

their second than first tasks. Since the ordinal models serve only an

illustrative purpose and are not part of our hypothesis testing, we

forgo reporting the WTWr model for brevity’s sake.

4 Empirical strategy

We first fit the above models using the complete data set. We

compare the OLS models to a control model using F-tests and the

ordinal logistic models to a control model using χ2-tests. In these

tests, the control model is the null hypothesis against which the

alternative is tested. A significant result for either the F or χ2-

test means that adding the WTW measures is justified based on

the amount of variance in the data that the richer model explains

relative to the control model.

To gain further insight into the predictive value of WTW,

i.e., when it might perform poorly, we conducted five-fold cross-

validation for the WTWs model depicted in Equation 1 using the

caret package in R (Kuhn, 2008). We bootstrapped this process

(n = 1, 000) to get an expected prediction value for every

observation in the data set and stored the predicted values for

each test case. We then computed the difference between the true

values and the bootstrapped predictions by simply subtracting the
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latter from the former. The true values are left-skewed (participants

tended to find locations better than the average task value), a

feature that the new statistic will reflect. Because of this, z-scores

are not meaningful. As an alternative, we simply analyze the 5%

of observations on either side of the distribution, i.e., outliers with

extreme predictions. The same in-depth look at the predictive

abilities of WTWt is possible, but largely redundant, as is a similar

effort of cross-validation for the categorical models. We forgo these

for brevity.

5 Results

5.1 WTWs and WTWt multiple linear
regression models

The outcomes measures, the total score as a percentage

achieved by the HAT across both tasks [HAT Task 1 +

2, column (1) of Table 1] and for the second task [HAT

Task 2, column (2) of Table 1], lend themselves to linear

modeling. Our models predict these values using either a

participant’s total submissions during their solo effort (willingness

to work solo, WTWs) or from the first HAT task plus

controls for the treatment conditions (willingness to work team,

WTWt), respectively.

The overall WTWs linear regression model showed statistical

significance [R2 = 0.256, F(3,393) = 45.043, p < 0.001]

and WTWs significantly predicted the total HAT score (β =

0.002, p < 0.001). In other words, submitting one additional

dial setting during the solo effort predicted a 0.18% higher total

HAT score according to the WTWs model. Moreover, we reject

the null hypothesis that including WTWs does not contribute to

the model with just the treatment controls (F = 124.759, p <

0.001).

The overall WTWt linear regression model was also statistically

significant [R2 = 0.160, F(3,393) = 24.991, p < 0.001], although it

did explain less variance. WTWt significantly predicted HAT Task

2 (β = 0.004, p < 0.001). Submitting one additional dial setting

during the first HAT effort predicted a 0.45% higher HAT score

during the second task according to the WTWt model. Moreover,

we can again reject the null hypothesis that including WTWt does

not contribute to the model with just the treatment controls (F =

69.429, p < 0.001).

In both models, the amount of a HAT score predicted by

WTW is relatively modest. The median number of submitted

dial settings during the solo effort was 33. The distribution was

heavily right-skewed; the maximum number of submissions was

337, and 282 participants submitted 50 or fewer dial settings. In

exploratory analyses, we trimmed the data to only include efforts

in which a participant submitted from 10 to 50 dial settings,

which left 208 observations for the WTWs model and 192 for

the WTWt model. The models were still statistically significant

[R2 = 0.243, F(3,204) = 21.771, p < 0.001; R2 = 0.098, F(3,188) =

6.810, p < 0.001] and, interestingly, although the predicted

effect of both WTWs and WTWt did change, the changes were

modest (WTWs increased to 0.45% while WTWt dropped to

0.37%).

TABLE 1 Multiple linear regression models.

Variable Dependent variable (score)

HAT Task 1 and 2 HAT Task 2

(1) (2)

WTWs |WTWt 0.002∗∗∗ 0.004∗∗∗

(0.0002) (0.001)

Constant 0.720∗∗∗ 0.730∗∗∗

(0.013) (0.016)

Treatment controls Yes Yes

Observations 397 397

R2 | Adjusted R2 0.256 | 0.250 0.160 | 0.154

RSE (df= 393) 0.128 0.164

F Stat. (df= 3; 393) 45.043∗∗∗ 24.991∗∗∗

∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

TABLE 2 Five-fold cross validation resampling results.

Statistic N Mean SD Min Max

RMSE 5 0.128 0.016 0.112 0.154

R-squared 5 0.271 0.050 0.221 0.334

MAE 5 0.098 0.013 0.086 0.116

5.2 Five-fold cross-validation of WTWs
multiple linear regression model

We used a five-fold cross-validation method to evaluate the

WTWs model presented in Equation 1. The sample sizes of the

training sets were 317 or 318 observations. The absolute difference

between the predictions of the model and the observations was

low, suggesting good performance (MAE = 0.098), and the

correlation between the predictions made by the model and the

actual observations reflected that of the model reported in column

(1) of Table 2 (R2 = 0.271). These are considerable improvements

over a similar cross-validation of the null model that does not have

the WTWs measure (MAE = 0.114, R2 = 0.029).

Figure 2 plots the results of the bootstrapping effort: the

difference in the predicted mean scores and the observed scores of

the HATs using five-fold cross-validation. As anticipated, the skew

in the distribution reflects a similar skew in the HAT scores. The

first insight from analyzing the outlier data is that the no anchor,

gain-framing treatment condition (n = 15) was over-represented

in the outlier data. Meanwhile, the anchor, loss-framing treatment

condition was under-represented (n = 5). Given the relatively

small size of the outliers sample (n = 40), we are hesitant to make

definitive claims about the data. However, a logistic regression

model with the no anchor, gain-framing treatment condition as the

reference condition predicting whether a given observation is in

the outlier group did suggest that a HAT with a participant in the

anchor, loss-framing treatment condition was about 33% less likely

to be in the outlier group.

A two-sample t-test comparing the HAT score of the outliers

from the left and right side of the distribution of differences (the
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FIGURE 2

Histogram of the di�erences in predicted and observed scores.

Scores for each HAT were computed but adding the highest

achieved values from both e�orts and dividing by the maximum

score possible. The di�erence was calculated by subtracting the

predicted mean scores from the observed scores. A negative

(positive) value means that the predicted value was greater (less)

than the observed. The solid line is the mean, 0.0003, and the

dashed line is the median, 0.0216, of the computed di�erences. The

distribution is left-skewed.

under and over predictions, respectively) suggests that the two

groups had similar mean scores (t = −0.174, df = 36.023, p =

0.863). Similarly, there was not a statistical difference in their

WTWs (t = −1.426, df = 23.729, p = 0.167), although those for

which the model over-predicted scores, meaning the difference was

negative, did tend to have a higherWTWs (about 54) than those for

which it under-predicted (about 34).

5.3 WTWr multiple linear regression model

WTWs and WTWt capture a participant’s willingness to work

on this task individually (s for solo) and in a HAT (t for team). They

do not account for an interaction if it were to exist. WTWr serves

this purpose. When interacted with WTWs, WTWr illustrates how

the relationship between WTWs and a team’s success varies at

different levels of WTW with the AI relative to a participant’s raw

WTW as measured by their solo effort. In other words, WTWr

moderates the relationship between WTWs and total team score.

The overall WTWr model (Table 3) was statistically significant

[R2 = 0.402, F(5,391) = 52.547, p < 0.001]. The anticipated

main effects were present, meaning WTWs significantly predicted

total team score (β = 0.004, p < 0.001), WTWr did not (β =

0.009, p = 0.769), and the interaction was significant (β =

−0.005, p < 0.001). As with previous models, we reject the null

hypothesis that this model does not offer more explanatory value

than a controls-only model (F = 83.299, p < 0.001). Moreover, it

outperforms the WTWs-only model, a WTWr-only model, and an

additive model (all p < 0.001).

TABLE 3 WTWr multiple linear regression model.

Variable Dependent variable (score)

HAT Task 1 and 2

WTWs 0.004∗∗∗

(0.0003)

WTWr 0.009

(0.031)

WTWs:WTWr −0.005∗∗∗

(0.001)

Constant 0.685∗∗∗

(0.013)

Treatment controls Yes

Observations 397

R2 0.402

Adjusted R2 0.394

RSE 0.115 (df= 391)

F Stat. 52.547∗∗∗ (df= 5; 391)

∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Interpretation of the coefficients from linear regression models

with interactions is not straightforward. The fact that WTWs is

significant in this model merely means that it has an effect in the

hypothetical instance when a person’s effort with and without the

AI was the same. The non-significant result for WTWr means that

when WTWs is zero WTWr does not have an effect (this is a

soundness check, since that case does not exist in our data). The

interaction, however, suggests that we expect WTWr to have an

effect at different levels of WTWs. We can get insight into the

model’s predictions by decomposing the interaction into simple

slopes (the slope of WTWs at a set of particular levels of WTWr)

and plotting the results.

We chose three representative values of WTWr with which

to estimate the slope of WTWs (often called a spotlight analysis):

the mean of WTWs plus one standard deviation above and below

the mean, as is conventional. The mean WTWr value is 14.2%.

The standard deviation values are 40.0% and –12.6%, respectively.

The positive mean and standard deviation above the mean

values indicate putting in less effort when working with the AI

than alone.

The spotlight analysis plot (Figure 3) reveals an increase

in the moderating effect of WTWr on WTWs. As WTWr

decreases (i.e. a person worked more in the HAT), the

predicted relationship between WTWs and total team score

also increases. Since none of the plotted confidence intervals

contain zero, we can conclude that the slopes are significant for

each selected level. The model fit is imperfect, as it predicts

impossible scores, i.e., better than 100% for participants

with exceptional WTWs (the plot trims these observations).

Nevertheless, it still illustrates the moderating effect of

willingness to work in a HAT relative to willingness to work

in general.
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FIGURE 3

Spotlight analysis plot of the moderating e�ect of WTWr on the relationship between WTWs and total team scores. Scores are in percentages, WTWs

is truncated at 75 submissions to ignore outliers, and the 95% confidence levels that do not cross zero indicate a significant slope. Note that the

expected scores on a multi-peaked landscape are greater than 50% because landscapes are built in constrained spaces. Based on the landscapes

generated for this experiment, the expected score of a participant who did no tuning in both trials was about 47%. Submitting just four local searchers

would reveal the immediate topology. For the single-peaked landscape, from the valley to the peak was a maximum of 24 1-setting changes to the

dials. Thus, a small number of submissions was su�cient for modestly sophisticated participants to achieve scores in the 70-80% range.

5.4 Ordinal logistic regression models

Classifying people is oftenmore useful than predicting the exact

outcome of a HAT interaction. The models based on Equation 2,

reported in Table 4, do such classification by using WTWs and

WTWt to predict the likelihood of a HAT achieving a low, medium,

or high score. As outlined above, these classifications are simply the

terciles of the observed data.

The overall WTWs ordinal regression model failed the

proportional odds assumption, meaning the relationship between

each pair of outcome groups (the low, medium, and high HAT

score terciles) is not the same. The alternative modeling approach

when the proportional odds assumption does not hold is to fit a log-

linear model, in this case, a multinomial logistic regression, which

we did. Even though the ordinal model failed the proportional

odds assumption, the multinomial logistic regression only resulted

in a marginally better fit (AIC = 709.381 vs. the ordinal logistic

model’s AIC = 714.332). As the proportional odds test is simply

one of goodness of fit, and given that the alternative model is not a

meaningfully better fit based on the AIC comparison, we opted to

stick with the ordinal logistic regression as it is more parsimonious.

Based on this model, we again reject the null hypothesis that

including WTWs does not contribute to the model with just the

treatment controls (χ2
= 152.093, p > 0.001).

WTWs significantly predicted which category a HAT fell into

(η = 0.047, p < 0.001). The coefficients from ordinal logistic

models can be challenging to interpret as they are scaled in terms of

logs. Thus, we converted the WTWs coefficient into a proportional

odds ratio [Odds Ratio = 1.048, 95%CI = (1.038, 1.058)]. For

every one unit increase in a participant’s WTWs, the odds of being

TABLE 4 Ordinal logistic regression models.

Variable Dependent variable (low, med.,
or high score class)

HAT Task 1 and 2 HAT Task 2

(1) (2)

WTWs |WTWt 0.047∗∗∗ 0.083∗∗∗

(0.005) (0.010)

Treatment controls Yes Yes

Observations 397 397

Residual deviance 704.332 771.587

AIC 714.332 781.587

∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

more successful (medium or high score categories) is multiplied

1.05 times (i.e., increases 5%), all else being equal.

Another alternative for interpretation of the model is

computing predicted probabilities for each outcome category and

plotting the values, as in Figure 4. Although there are some

minor differences across the treatment conditions, the main

effect of WTWs is relatively consistent across the conditions.

The probability of the model classifying a HAT as low steadily

decreases with each additional submission that a participant

made during their solo effort (the solid purple line); the inverse

is true for the high classification (the blue dotted line). The

model suggests an increasing probability of being classified

as medium up to ∼50 submissions during the solo effort, at
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FIGURE 4

A plot of predicted probabilities for categorization into each of the three performance level groups faceted by the experimental treatment conditions.

WTWs suggest distinct predicted probability distributions for each of the three categories.

which point the classification probability starts to decline (green

dashed line).

The overall WTWt ordinal regression model passed the

proportional odds assumption, meaning that the relationships

between each pair of outcome groups were not significantly

different, i.e., the model was a good fit. This model also rejects the

null hypothesis that including WTWt does not contribute to the

model with just the treatment controls (χ2
= 84.839, p > 0.001).

WTWt significantly predicted which category a HAT score for the

second task belonged to η = 0.083, p < 0.001). We also compute

the proportional odds ratio for this coefficient [Odds Ratio =

1.086, 95% CI = (1.066, 1.0109)], which suggests that for every

one unit increase in a participant’s WTWt, the odds of being

more successful (medium or high score categories) during the

second task is multiplied 1.09 times (i.e., increases 9%), all else

being equal. We also carried out the same predicted probabilities

analysis as we did for WTWs. The only notable difference was

a leftward shift in the lines, a result of WTWt only including

one task instead of two (thus, we would expect roughly half the

average value).

6 Discussion

The ability to accurately anticipate the future success of

human-agent teams has broad applications, from appropriately

marketing the likely value of a new technology to calibrating

an AI’s model(s) of its own teaming outcomes. Prior work has

linked experience to HAT outcomes in a variety of ways. For

example, more experienced humans tend to bemore skilled and can

contribute more skilled effort (Chen and Barnes, 2014), experience

in a HAT can improve trust calibration [which is hypothesized

to correlate with well-calibrated compliance (Hafızoğlu and Sen,

2018; Mercado et al., 2016; Yang et al., 2017)], and create

a sense of group belonging (Savela et al., 2021). Our simple

hypothesis was that experience can serve as a proxy measure

of a person’s willingness to do the HAT task and that a

higher willingness to do the task would correlate with better

outcomes. We support this hypothesis with analyses of data from

a previous experiment.

Our analysis revealed that, as measured by how much

effort a study participant put into a task on their own

before teaming with an agent, was significantly and

positively correlated with their future HAT’s success.

Moreover, it was equally effective in a categorical model

as the linear model, meaning that it has the potential as

a tool for binning new HATs according to their potential

for success.

Extending this insight, we applied a k-folds cross-validation

model. The results suggest robust prediction by the general model

and that the outliers may be due to the experimental design. The

sample size constrained our ability to verify this effect. It is worth

noting that the validation suggested that the model tended to over-

predict the scores of participants who displayed a higher willingness

to do the task on their own.

We also found that a higher WTW in a HAT after having some

experience, as measured by how much effort a study participant

put into their first teaming task, was significantly and positively

correlated with their HAT’s second task success. Again, we fit a

categorical model, and it was similarly effective.

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1405436
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Gurney et al. 10.3389/fcomp.2025.1405436

Importantly, we used an interaction model to explore the

moderating effect of a participant’s willingness to work in a

HAT on the effect of their raw willingness to do the task. The

model suggests that having relatively more willingness to work

in a HAT does positively moderate the effect of raw willingness

to do the task on a team’s success. In other words, a high

willingness to do the task solo is most predictive in cases

where a person also has a high willingness to do the task in

a HAT.

6.1 Interpretation of results

The above results generally support our hypothesis that

experience is a reliable predictor of human-agent teaming

outcomes because it serves as a proxy for willingness to work.

We did not explicitly test, thus debunk, alternative hypotheses.

Experience did, however, explain a significant amount of variance

in the models that we tested. This is encouraging, given that other

hypothesized instruments, e.g., disposition to trust (Gurney et al.,

2022b), often come up short. In all likelihood, experience is a

useful predictor of human-agent team outcomes for a variety of

reasons. Based on our results, we believe a major reason is that

it simply serves as a proxy measure of willingness to do a given

task. This reason does not undermine the utility of experience in

predicting HAT outcomes. However, it does suggest the need for a

deeper understanding of the nuances of experience so that models

can better map the relationship between past, present, and future

HAT interactions.

The willingness to work results reported herein also suggest

an opportunity for reevaluating previous work. Many experiments

in the HAT space reflect the structure of the data we analyzed:

a human was familiarized with a task on their own, gained an

intelligent agent teammate, and then worked with the teammate on

the task for a given number of events. We see these as excellent

opportunities for further vetting our hypothesis and comparing it

against prior explanations.

6.2 Related work

6.2.1 Experience and human-agent teams
Experience can impact a HAT in multiple ways (see Table 5 for

existing research). Experience with a trustworthy (untrustworthy)

agent, for example, was correlated with an increase (decrease) in

human trust while teaming with an agent in the Game of Trust

(Hafızoğlu and Sen, 2018). Hafızoğlu and Sen argue that this result

is due to the humans’ emotional states created by their experiences.

These lab results are supported by a survey of autonomous

driving-capable automobile owners that found that drivers who

had experienced unexpected behaviors from their autonomous car

reported lower levels of trust in the system (Dikmen and Burns,

2017). Experience can also calibrate expectations: people with

experience working with industrial robots were less impressed by a

robot’s skills than those without (Sarkar et al., 2017). Additionally,

experience may help teams avoid uncertainty around roles and

task responsibilities, as was found to be the case in robotic surgery

TABLE 5 Representative extant literature.

References Discipline HAT WTW as
predictor

Swallow and Woudyalew

(1994)

Economics No Yes

Sycara and Lewis (2004) Psychology Yes No

Hung et al. (2007) Policy No Yes

Cafaro et al. (2016) HCI Yes No

Gibson et al. (2016) Economics No Yes

You and Robert (2018) Robotics Yes No

Boukaram et al. (2021) HAI Yes No

Paluch et al. (2021) Management Yes No

Verma and Singh (2022) Management Yes No

teams (Cunningham et al., 2013). A lack of relevant experience with

agents, on the other hand, is not necessarily correlated with teaming

likelihood, meaning that people with and without experience in

a type of HAT are equally likely to join one (Schaefer et al.,

2012).

General, domain-relevant experience can also impact

the HAT success. Previous gaming experience, for example,

was correlated with how successfully people teamed with

robots to capture targets (Chen et al., 2011). Similarly, when

trying to identify targets, gaming experience predicted better

teaming with a robot that interfaced between a human

teammate and less sophisticated robots (Chen and Barnes,

2012). Such findings are likely the result of gaming experience

facilitating better visuospatial abilities (Chen and Barnes,

2014).

Humans bring extensive and rich experience into a HAT. Such

experience does not, however, guarantee productive outcomes,

especially if the teammates are not well-calibrated for their

roles (Bhardwaj et al., 2020; Paleja et al., 2021). Within-trial

experience is also a useful instrument for understanding HAT

dynamics. For example, introducing an agent was correlated

with worse performance than human-only in driving (Bhardwaj

et al., 2020) and in a collaborative virtual construction task

(Paleja et al., 2021) for highly-experienced people. Also,

the first compliance decision that participants made in a

reconnaissance scenario was a significant predictor of their

future compliance behavior (Gurney et al., 2022b). Training AI

to have awareness of and the ability to leverage such factors is

believed to be essential to getting the most out of HATs (Kamar,

2016).

There are numerous other proposals for how experience can

impact a HAT. Examples include experience improving trust

(Groom and Nass, 2007; Gutzwiller and Reeder, 2021), experience

reducing the probability of humans ignoring an agent after false

alarms (tied to a calibration mechanism) (Yang et al., 2017), and

the experience creating higher in-group identification with robots

(Savela et al., 2021). While all of these are useful, the context-

dependent nature of HATs limits their predictive value (Curnin

et al., 2015). We argue that WTW is less context-dependent, and

as we demonstrated, easy to measure and instrument.
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6.2.2 Willingness to work
People exhibit considerable variation in their willingness

to engage in different tasks. For example, while some people

love working as software engineers, others cannot think of a

duller profession. Similarly, while some people look forward to

commuting by bike to work, others find it miserable and do

whatever they can to avoid it. As a simplification, we call the

natural, observable variation between people in their willingness to

engage in a given task their WTW. Generally speaking, a person

may have an entirely different WTW as a software engineer from

their “WTW” as a bike commuter. There are likely many intriguing

endogenous and exogenous factors related to a person having

a certain WTW. We are primarily interested in its observable

manifestation and its correlation with HAT outcome(s). Our basic

WTW prediction is quite simple: all else being equal, a person

with a higher WTW as a software engineer will measurably

do more software engineering. More generally speaking, our

definition of WTW positions it as an atomic element of high-order

psychological constructs such as motivation (Heckhausen, 1977),

grit (perseverance) (Duckworth et al., 2007; Credé et al., 2017), or

work ethic (Furnham, 2021).

Outside of our data-driven demonstration, there is evidence

that WTW is a correlate of HAT interactions (You and Robert,

2018)—this research, however, posits WTW as an outcome

measure and not an independent variable. We hypothesize that

a person’s basic WTW predicts HAT success, an idea that has

been studied in other contexts. For example, in economics, WTW

is used as an alternative to willingness to pay because the latter

can be much more volatile due to its relationship to wealth (e.g.,

Swallow and Woudyalew, 1994; Hung et al., 2007; Gibson et al.,

2016). These studies use a method known as contingent valuation

in which people complete a survey that asks whether they would

accept an outcome at different prices or amounts of work. Usually,

the outcome is a benefit, but it can also be the avoidance of a

loss. Participants indicate what they would be willing to give up

to have that benefit—such as how much labor (or money) they

would contribute to reducing the presence of a noxious biting

fly (Swallow and Woudyalew, 1994). Our review of the literature

did not uncover work that identifies a behavioral proxy for such

measures, particularly in the case of human-agent teaming. We

argue that past effort in the same (or similar) setting is a good

candidate behavioral proxy and believe that our demonstration of

its effectiveness using data collected to study how human heuristics

and biases factor into the performance of new HATs establishes a

paradigm for future work.

Other disciplines have tried to capture the idea of a person’s

willingness to work using psychometric scales. For example, Miller,

Woehr, and Hudspeth developed the 65-item Multidimensional

Work Ethic Profile (MWEP) to capture how a person relates

to the concept of work (Miller et al., 2002). Work ethic, which

Miller and company define as a commitment to the value and

importance of hard work, shares some traits with WTW. For

example, a person high in either is likely going to invest time

or mental effort in a work task. However, a person may be

willing to do something, particularly in exchange for something

like monetary gain, but still have poor work ethic because they

do not think the work is important. Despite the conceptual

difference the MWEP and similar psychometric inventories have

been linked to observed work outcomes that may also be linked

to WTW, like generational shifts in workplace values (Cogin,

2012).

It seems plausible thatWTWpredicts or is correlated with other

commonly-studied HAT constructs. For example, considerable

effort has gone into understanding the role of trust on HAT

outcomes, with a general observed finding being that a human’s

trust in their AI-enabled counterpart needs to be appropriately

calibrated (Chen and Barnes, 2014; Gurney et al., 2022a).

Interestingly, people often conflate their own factors, such as prior

actions, with an AI’s performance—which has been shown to

undermine trust (Gurney et al., 2023d). It may be the case that

people also conflate their WTW with other features of an AI. For

example, a person low in WTW may be disappointed in a poor

outcome but not recognize that it was, at least in part, due to

their low WTW and instead blame their AI teammate. Our data,

unfortunately, do not support such hypothesis testing.

We believe that our work has broad implications across

domains of research that consider how humans and AI are

integrated, function in teams, and work together to achieve

objectives. For example, information systems researchers have

documented a general willingness to work with AI (e.g., Dennis

et al., 2023), but have not considered how a person’s basic

WTW might factor into such willingness. Disentangling these two

constructs could inform new avenues of research related to HAT

optimization. Relatedly, emerging research suggests that people

respond well to digital human agents, particularly when they look

and perform on par with human agents (Seymour et al., 2024).

The implication of this insight is that the artificial nature of AI

teammates could have a lower impact on HAT outcomes resulting

in the relative impact of human teammates’ WTW on HATs

to increase.

6.3 Limitations

The primary limitation of our work is that it only examines

WTW in a single task. Although this task is abstract and sought

to study human decision making at a rudimentary level such that

findings generalized, it is possible that our results do not extend to

every domain. The population sample we relied on may also have

impacted our observed outcomes: it is well documented that results

from online workers do not always align well with those from lab or

field samples (Peer et al., 2022). Lastly, although our sample size was

sufficient to demonstrate significant results, a larger, more diverse

sample would allow us tomodel how culture, individual differences,

etc. impact the WTW outcome that we document.

6.4 Future work

The data that we relied on for this study are very much

a snapshot in time. They do not, for example, allow us to

control for additional teaming experiences that people may have,

both with other humans and autonomous agents. Similarly, even

though the tasks were distinct, unique experiences, they happened

in a relatively brief period. A longer time horizon with more

interactions might lead to different, more nuanced effects. The

data are also from a single, abstract task. Controlling for richer
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teaming experiences, increasing the time horizon and number of

interactions, and looking at contextualized settings, we believe, are

all necessary. Importantly, this would facilitate comparing different

levels of experience in a fully between design. Finally, data that

support both willingness to work and alternative predictors, for

example, disposition to trust, would greatly help identify the role

played by WTW relative to other human factors.

Additionally, future research should examine the relationship

between WTW and work quality. Our current measure captures

effort investment through submission counts but does not assess

whether higher WTW correlates with work effectiveness per

submission. While our results show higher WTW predicts better

team outcomes overall, determining whether this stems from work

quantity alone or also reflects quality would require larger samples

to build models that can classify high and low quality work while

controlling for random factors like luck in the landscape search

task. Such analysis could reveal whether WTW serves primarily

as a measure of willingness to invest effort or if it also captures

aspects of individual differences in work effectiveness, helping to

better understand its role in predicting human-agent team success.

For example, it may be the case that more effective workers have a

higher WTW due to their ability to capture rewards. Alternatively,

workers with higher WTW may become more effective, further

reinforcing their WTW.

Further research should also explore how the WTW

paradigm translates to more dynamic, interdependent tasks.

Our study used a relatively structured dial-tuning task with

clear turn-taking between human and agent. However, many

real-world human-agent teams operate in environments requiring

continuous coordination, simultaneous actions, and complex

interdependencies between teammates. For example, search

and rescue scenarios (Pynadath et al., 2023), collaborative

manufacturing (Seeber et al., 2020), or real-time strategic planning

(Narne et al., 2024) all involve more fluid interaction patterns.

Understanding how WTW manifests and predicts team success in

such contexts would be valuable. This could include developing

new measures of WTW suitable for dynamic tasks, examining

how task interdependence affects the relationship between

WTW and team outcomes, and investigating whether WTW

remains a stable predictor across different types of human-agent

coordination patterns.

7 Conclusion

We explored one way a person’s experience in a task domain

can correlate with the dynamics and impact the success of the

human-agent teams they enter. Although previous research posits

many different mechanisms by which experience can hold such

sway over HATs, it largely ignores the simple insight that we

present: measures of experience may simply be serving as proxies

for willingness to do the task. Although this hypothesis cannot

explain every instance of correlation between experience and

human-agent teaming outcomes, we argue that it can account

for many. Moreover, it is simple to assess, is robust enough

for prediction (thus useful to agents in modeling their human

counterparts), and suggests a need for reevaluation of other

empirical results related to experience and teaming success.
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