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An evaluation of methods for
detecting false data injection
attacks in the smart grid

Sarita Paudel*

Department of Science and Technology, Institute of Digitalisation and Informatics, IMC University of

Applied Sciences, Krems, Austria

With the introduction of new Information and Communication Technology

(ICT) to Electrical Power Systems (EPSs) there is an increased potential and

impact of cyber-attacks. Phasor Measurement Units (PMUs) enable very fine

granular measurements to allow situational awareness in smart grids. But

false data injection attacks, which manipulate measurement data, can trigger

wrong decisions and cause critical situations in the grid. In this paper, we

analyze four di�erent false data injection attacks on PMU measurements and

investigate di�erentmethods to detect such attacks. Classical bad data detection

methods are not su�cient to detect stealthy attacks. We therefore propose to

complement detection by additional methods. For this we analyze the detection

performance of four very di�erent detection methods: (a) the classical adaptive

bad data detection approach based on the residuals of linear Kalman Filters,

(b) a simple threshold based on the Median Average Deviation (MAD), (c) a

distribution-based approach using the Kullback-Leibler Divergence (KLD), and

(d) the cumulative sum (CUSUM) as a representative of a change point detection

method. We show that each method has advantages and disadvantages and

that multiple methods should be used together to prevent that attackers can

circumvent detection.
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1 Introduction

The integration of Information and Communication Technology (ICT) into Electric
Power Systems (EPSs) supports enhanced monitoring and control capabilities. An
important use of ICT in this context is to enable situation awareness with respect to the
EPS’s state. To enable situation awareness, a Wide Area Monitoring System (WAMS) can
be deployed that includes distributed sensors, which measure power system state, and
communication technologies that enable the transmission of this state to a control center.
The data that is collected using aWAMS can be used to support real-time decision making
by operators, e.g., in order to respond to a fault, and to facilitate grid planning.

An important technology that has emerged in recent years is Phasor Measurement

Units (PMUs). These devices can measure power system state—e.g., voltage, power, and
phase angle—at very high frequencies (50 Hz), and can be used to support real-time
situation awareness. The data from PMUs can be transmitted over a wide-area network
using specialized protocols, such as IEC 61850, to a control center. One important use of
the data that has been collected by PMUs is to estimate the state of the power system, e.g.,
where there is a lack of monitoring capability available or to mitigate measurement noise.
There are several approaches to State Estimation (SE). An increasingly popular approach
is to use Kalman filters, which have been shown to be robust.
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With the introduction of this new technology to EPS’s, there is
a corresponding increase in risk from cyber-attacks. An example
is the 2015 cyber-attack on the Ukraine power grid that caused a
regional blackout.

Similarly, cyber-attacks to a WAMS could have significant
consequences—in the short-term, if they are used to support fault
isolation, incorrect switching decisions could be made, and in the
longer-term, if the measurements derived from them are used
to support grid planning, sub-optimal and expensive investment
strategies could be employed.

An important class of attacks to WAMS are False Data

Injection (FDI) attacks, wherein an attacker manipulates data (e.g.,
voltage and power measurements) to misdirect the processes and
systems that use it. Besides detecting an attack also the detection
delay it important. The faster an attack is detected, the faster
countermeasures can be put in place or decisions delayed until
the data is verified. Moreover, researchers have investigated a class
of FDI attack that are unobservable to algorithms that aim to
detect bad data, normally caused by measurement noise. It has
been shown that these unobservable attacks can result in significant
consequences to an EPS.

In this paper, we present an investigation into the characteristics
of four important and distinct methods for detecting FDI attacks
to a WAMS: (a) a residuals-based approach using linear Kalman
filters, as an example for an adaptive bad data detection method,
(b) a simple threshold based on the Median Average Deviation
(MAD), (c) a distribution-based approach using the Kullback-
Leibler Divergence (KLD), and (d) the cumulative sum (CUSUM)
as a representative of a change point detection method.

To see how differently these methods perform we inject four
different attack types into a real PMU measurement data sets. We
label the data and then use some part of the data as a training set
to derive suitable thresholds for the different methods. We then
use measurements that appeared later in time as test data, inject
the four different attacks, and then analyze not only if the attacks
are detected but also how fast the different methods would raise an
alarm for the different attack types. Our findings show that most
methods detect some kind of anomaly during attacks, but do not
capture all of the modified data points. Also there is no single
superior method that performs best for all attack types. A further
important finding is that the detection delay varies a lot and highly
depends on the attack type and the methods. We argue that grid
operators need to deploy a set of multiple different methods to be
able to detect different kinds of attacks and to keep up with the
effort of sophisticated attackers that try to remain stealthy.

2 Related work

State estimation (SE) based on PMU data is covered in many
publications. Jones (2011) and Jones et al. (2013) present PMU-
based linear SE for voltage and current. Pignati et al. (2014,
2015) present a three phase linear SE using Discrete Kalman Filter
(DKF) and PMUmeasurements from an EPFL distribution system.
Similarly, Sarri et al. (2016) present a three phases SE model
based on the same data set. Several proposal have been made for
bad data detection (BDD) based on the L2-norm of the residuals

from SE (Liu et al., 2011) or normalized residuals (Abur, 2004;
Korres and Manousakis, 2011). In Soule et al. (2005), Chowdhury
et al. (1991), and Da Silva et al. (1987) the authors use post-
fit residuals (difference between estimation and observation) for
detecting false data injection attacks. A BDD method based on the
pre-fit residuals (difference between prediction and observation) is
presented in Pignati et al. (2014).

Manandhar et al. (2014) use a Kalman filter for SE and feed
the estimated and original signal to two anomaly detectors: χ

2

and a detector based on Euclidean distances between the estimated
and measured data. The authors present the detection of a Denial
of Service (DoS) attack, a continuous random attack, a short
period random attack, a false data injection attack, and a load
change attack using the proposed approaches. Similarly, Gokarn
et al. (2017) use estimated values from a Kalman filter-based real-
time state estimator for attack detection. The authors provide the
estimated values to a k-NN algorithm to identify the behavior of the
real time data. Nevertheless, it has been shown in Liu et al. (2011)
and Dán and Sandberg (2010) that attackers can craft stealthy
attacks that are not detected by classical BDD methods.

Averaging fusion methods help dealing with cyber-
attacks. PMU data can be manipulated either on devices or
in communication channel, i.e., on the way to data centers/control
center. Implementation of averaging fusion methods on PMUs
network helps to suppress false information due to the FDI attacks.
Arithmetic average (AA) based (Li and Hlawatsch, 2021) and
geometric average (GA) based (Mahler, 2000) fusion are widely
used in distributed sensor networks (Wei et al., 2023). Both fusion
methods are derived from the minimization of Kullback-Leibler
Divergence (Li et al., 2019) and applicable to linear or non-linear
approaches (Heskes, 1998; Hwang et al., 2004).

The above mentioned KLD optimization property of the fusion
methods is extended in probability hypothesis density (PDF)
functions. Yang et al. (2024) proposed a hybrid (AA and GA) PDF
averaging fusion framework, and proved that the framework is
resilient to FDI and DoS attacks. The hybrid framework uses AA
fusion to compensate for information shortage due to DoS attack
and GA fusion to suppress false information due to FDI. Similarly,
authors in Yang et al. (2018) proposed a data fusion algorithm to
combat FDI attacks in a networked radar systems and claimed that
the algorithm dramatically reduced the attack’s adverse effects.

Other methods have been proposed to detect anomalies in
sensor data. Leys et al. (2013) and Miller (1991) recommend a
simply use the Median Average Deviation (MAD) as a robust
outlier detection method, and suggested different level of decision
for deriving intervals. Chen andWang (2017) demonstrate that, for
false data injection attacks, CUSUM is the fastest anomaly detection
technique when compared to a log-likelihood ratio test and
extended Kalman filter-based χ̃

2 test. Similarly, Kurt et al. (2018)
propose a distributed and centralized anomaly detection approach
for false data injection and DoS attacks. The authors perform
simulations using the IEEE 14 bus power system, and demonstrate
that CUSUM is robust and can quickly detect anomalies for
time varying states and attacks. Krishna et al. (2016) propose an
approach to electricity theft detection, whichmanifest as falsemeter
readings, using Kullback-Leibler (KL) divergence. This original
work was extended by the authors by proposing a model for
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anomaly detection, also using KL divergence, to detect andmitigate
smart meter fraud.

In our work we investigate how different detection methods
perform on four different attack types. We use a discrete Kalman
Filter (DKF) for estimating states and use the EPFL data set used
in Pignati et al. (2014), Pignati et al. (2015), Sarri et al. (2016),
and Paudel and Shaaban (2024). To show the effects of the different
methods we simplify the model used in Sarri et al. (2016) to a
one phase SE model. We adopt the pre-fit residual BDD method
described in Pignati et al. (2014) and then applyMAD, CUSUMand
KLD-based detection to detect false data attacks that we injected in
the EPFL measurement data.

3 State estimation

State estimation uses observed measurement values to estimate
the true state of the system. For our investigations we use
PMU measured voltage-phasors for estimating the system states.
We estimate the voltage using a simplified SE model (derived
from Sarri et al., 2016) based on only one phase on a
single link. Existing works Pignati et al. (2014, 2015), Sarri
et al. (2016), and Jones et al. (2013) provide approaches for
linear SE based on three phases. If the phases are mutually
coupled, the SE dependents on three phases. Similar to Zanni
(2017), we make the assumption that the phases are independent
to each other, so that we can estimate the states of each
phases separately.

Using rectangular coordinates allows us to apply linear state
estimation. Thus the one phase system true state x is simply
represented by real and imaginary voltage (Equation 1).

x = [Vretrue ,Vimtrue ]
T (1)

All measured values are expressed by the vector z. In our case
the measurement vector also consists of the observed real voltage
and the observed imaginary voltage.

z = [Vre,Vim]
T (2)

3.1 State estimation with linear weighted
least squares

In Sarri et al. (2016) two state estimation methods are
compared: Linear Weighted Least Squares (LWLS) and Discrete
Kalman Filter (DKF). Since we use a very simple model, the simple
LWLS estimator in our case would just use the measured values
zk at time step k as estimates for the states xk. So the residuals
from the LWLS estimation would always be zero and residual-
based BDD would fail. More sophisticate SE methods also include
previous measurements to calculate an estimate. We therefore
focus on an SE model using a discrete Kalman Filter (DKF) as
presented below and analyze if in this case attacks could be detected
by BDD.

3.2 State estimation with Discrete Kalman
Filter

For the DKF, the previous states xk−1 are taken into account to
estimate the current state xk as shown in Equation 3.

xk = Axk−1 + Buk + wk (3)

where A is an m × m matrix that relates the current state xk to the
previous state xk−1, uk ∈ R

l represents a set of control variables at
time step k, B is a m × l matrix that relates a system state to the
control variables uk, and wk ∈ R

m represents the process noise at
time step k, with p(w) ∼ N(0,Qk) with process noise covariance
matrix Qk.

In accordance to Sarri et al. (2016), we use an auto-regressive
integrated moving average (ARIMA) model of order (0,1,0) and
therefore assume no control input (B = 0) and simply predict
the current state using the previous state with an identity matrix
(A = I) (see Sarri et al., 2016). Therefore, the model is reduced to
Equation 4.

xk = xk−1 + wk (4)

The relation between the measurement zk at time step k and the
(unknown) true state xk at time k can be expressed as

zk = Hxk + vk (5)

where H is the observation matrix that relates the true state to
the observed state and vk is the measurement noise. In our simple
model H is the identity matrix, because we estimate the voltage
state directly from the measured voltage. The measurement noise is
assumed to be Gaussian withmeasurement noise covariance matrix
R, so p(v) ∼ N(0,R).

The prediction (a priori state estimate) x̂k|k−1 of a state at time k
is based on the previous estimated state k−1 and determined using
Equation 6.

x̂k|k−1 = x̂k−1|k−1 + wk (6)

where x̂k−1|k−1 is the posteriori estimated state from time step k−1.

4 Attack model

In this section, we introduce a general model for FDI attacks.
We use attacks on voltage measurements as an example. Similar
attacks can be performed on other measurement values, such as
frequency, current or phase angle.

Since PMU measurements are used for estimating the states
of a power system, data integrity attacks on PMU measurements
can lead to incorrect estimated states and potentially bad control
decisions. Similar to Liu et al. (2011), Cui et al. (2012), Bobba
et al. (2010), and Mohammad (2018), we focus on FDI attacks. But,
distinctly, we express different forms of attack using a single model.

It is assumed that an attacker does not want to exceed any safety
limits that result in immediate operator intervention, but rather
their aim is to discretely poison measurement data. This poisoning
can influence historic data for planning or post-incident analysis,
influence SE or also be used to prepare an attack, e.g., by poisoning
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the “new normal,” such that the manipulated data points are taken
as a reference for the subsequent time step.

In our example, the attacker is manipulating only the polar
voltage measurement values, as shown in Equation 7.

z̄k : = zk + ak (7)

Here zk is the kth voltage measurement value, ak is the attack
component (that the attacker adds to the measurements) and z̄k is
the manipulated measurement value at k. The actual measurement
in rectangular form is represented as in Equation (8).

zk : =
[

Vk,re

Vk,im

]

(8)

The attack on the polar voltage affects the measurements in
rectangular form. The manipulated real and imaginary voltage can
be expressed using Equation 9.

[

V̄k,re

V̄k,im

]

: =
[

Vk,re

Vk,im

]

+
[

ck,1
ck,2

]

(9)

where ck,1 is the resulting offset in real voltage and ck,2 is the
resulting offset in imaginary voltage at time step k.

To define different attacks, we describe the attack component
as a combination of a random component rk, with r ∼ N (µ, σ

2) ,
a linear increasing component s · k+ c with a slope s and a constant
offset c.

ak : =
{

rk + s · k+ c during an attack

0 else
(10)

By varying these attack parameters, different types of FDI
attacks can be defined. In our experiments, four general types of
attack are considered:

1. Constant offset, in which c > 0 and all other parameters are
zero. Specifically, an attacker adds an offset such that the first
manipulated voltage reaches an additional 75% of the nominal
voltage and then keeps the offset constant for all observations;

2. Random offset, in which a random component r and a constant
c are added;

3. Incremental constant offset, in which a linearly increasing offset
is added with s · k+ c; and

4. Incremental random offset, in which a random and a linear
component rk + s · k+ c are added.

Table 1 describes these attacks and the parameters that have
been used for experiments.

Voltage phasor measurements need to be converted from polar
to rectangular forms using phase angles. Therefore, aiming to
remain undetected and adding a totally new polar voltage (by
combining the attack parameters) in the existing data set needs
compromising phase angle in the power system. Compromising
and manipulating phase angle in a power system is out of the scope
of this research. Therefore, the attack model presented in this paper
is adequate for the given scenario.

TABLE 1 Attack parameters and attack types.

Type Random Slope Constant

Constant offset
(CO)

r = 0 s = 0 c = 0.075

Random offset
(RO)

r ∼
N (0.001, 4 · 10−6)

s = 0 c ≥ 0

Incremental
constant offset
(ICO)

r = 0 s = 4.33 · 10−7 c = 0

Incremental
random offset
(IRO)

r ∼
N (0.001, 1.6 ·10−7)

s = 1.96 · 10−7 c = 0

5 Data preprocessing

For experiments, we use real PMU measurement data that has
been provided by the École Polytechnique Fédérale de Lausanne
and insert the FDI attacks described in Section 4. A 20kV active
distribution network is deployed on the EPFL campus. To build
reference data for our experiments, we use data from different days
and always take it from the same hour (2 am–3 am) per day. The
measurement frequency is always 50 Hz. Table 2 shows detailed
information about the data sets that were used in our experiments,
including the total number of data points, number of Benign
Anomalies (BAs), and the number of injected Malicious Anomalies
(MAs)—see below for how these are defined. Figure 1 summarizes
how the EPFL data has been processed for our experiments.

First, the data is separated into three portions: historical,
configuration, and test data. The historical data is used for building
a reference histogram for the distribution-based KLD method. The
configuration data is used as a reference for setting thresholds. For
this, we take data from seven different days, always using 1 h from
each day. The test data is used to evaluate our algorithms; for this,
we use data from 14 different days.

It is assumed that there are no attacks in the original EPFL
data. To distinguish between normal and anomalous data in the
original data, we use the MAD method with a decision level 3.5 to
mark all data outside the interval median − 3.5 · MAD < xi <

median + 3.5 · MAD as BAs, and all data within the interval as
normal data points.

In the configuration data, the BAs are replaced by the median
to get a data set with only normal data points. This data is then used
to set thresholds in a way that all normal data points are below the
threshold. In the test data, we keep the BAs and, in addition, inject
the four attack types described in Section 4; affected data points are
labeled as MAs. However, if the data point was already labeled as a
BA, that label persists, because the anomaly is not initially caused by
the attack. We add the attack in each of the 14 test data files, which
each contain one hour of measurement data. All attacks start at
the 60, 001st measurement. We assume that the attacker is running
a program to add an attack component, and does not check the
values before. Therefore, we manipulate the data by always adding
the component a(k) to the original value.

As presented in our previous work (Paudel et al., 2018), the
residual-based (RB) detection method for voltage measurements
proposed in Pignati et al. (2014) fails for data with phase

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1504548
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Paudel 10.3389/fcomp.2024.1504548

TABLE 2 Data sets used for experiment, showing number of all data points (Total DP), benign anomalies (BA), malicious anomalies (MA), not labeled (NL),

substituted (sub).

Data Duration (Dates) Time Interval Total DP BAs MAs

Historical 24 days (1–24 March) 2am–3am 1 h 24 * 180,000 NL 0

Configuration (cleaned) 7 days (25–31 March) 2am–3am 1 h 7 * 180,000 0 (sub) 0

Test 14 days (1–14 April) 2am–3am 1 h 14 * 180,000 7,727 0

Manipulated test 14 days (1–14 April) 2am–3am 1 h 14 * 180,000 7,727 1,673,087

FIGURE 1

Overview of data processing steps.

angle variations. To compare our results with the RB method
from Pignati et al. (2014), we fix the phase angle in the measured
data of each hour with the first observed value.

5.1 Performance metrics

To measure the performance of a detection method, we
compare the original labels (BA orMA) of themanipulated test data
with the predicted labels from the method. From this we calculate
the sum of several metrics: (a) true positives (TP), i.e., the BAs or
MAs that have been correctly identified as an anomaly; (b) true
negatives (TN), i.e., how many normal data points are correctly
classified as normal; (c) false positives (FP), i.e., how many normal
data points are classified as anomalies; and (d) false negatives (FN),
i.e., how many anomalies we miss (anomalies classified as normal).
From these measures, the accuracy, recall, false positive rate (FPR),
and precision are calculated.

If a data point is accidentally detected as an attack (false
positive) then the normal data is treated as an anomaly and
can be replaced/corrected by another data which will influence
applications like state estimation. False positive influences state
estimation in a way that it predicts wrong state which triggers
wrong control actions. For instance, if an anomaly detection
method has high false positives, then it impacts the state estimation
and leads to incorrect decisions.

In addition, we determine the detection delay that shows how
fast an attack is detected. The delay is the difference (in the number

of measurements) between the real start of the attack ks and the
measurement k when the first data point of the attack was correctly
classified as an anomaly. The detection delay has significant
implications regarding the invocation of countermeasures and the
prevention of further poisoning the measurement values, and could
motivate the choice of detection method to apply.

6 Bad data detection

Data sources can have errors; therefore, many grid operators
implement bad data detection (BDD) methods to check for
them in the measurements that could influence SE. Since BDD
methods detect data that deviates from the norm, they could
detect manipulated data. However, previous work has shown
that an informed attacker can evade detection (Liu et al., 2011;
Teixeira et al., 2010). In this section, we apply residual-based BDD
algorithms to investigate whether the attacks described in Section 4
can be detected.

6.1 Residual-based detection of anomalies

Residuals are the difference between predictions and
observations (so-called pre-fit residuals) or the difference between
estimation and observation (post-fit residuals). If residuals are too
high, it is inferred the data is bad. To determine whether a residual
is too high, a threshold is set for the L2-Norm (Liu et al., 2011) or
normalized residuals (Abur, 2004; Korres and Manousakis, 2011).
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FIGURE 2

Original, manipulated and estimated imaginary voltage, residuals, and corresponding L2-Norm and normalized residuals of imaginary voltage. (A)

Normal operation. (B) Constant o�set attack.

For our study, we use a method proposed by Pignati et al.
(2014) that performs Linear State Estimation (LSE) using a Discrete
Kalman Filters (DKF), to estimate the power system voltage
states, based on the PMU measurements. The pre-fit residual
(yk) (or innovation) is determined using Equation 11, where zk
is the observed measurement vector at iteration k (represented
by Equation 5), H is the observation model (a matrix that relates
the true state to the observed measurements) and x̂k|k−1 is the
predicted state (represented by Equation 6), predicted from the
previous state.

yk = zk −Hx̂k|k−1 (11)

The innovation covariance (Sk) is based on the past and current
iterations of the DKF, and is determined using Equation 12, where
Pk|k−1 is the predicted process covariance matrix.

Sk = zk −HPk|k−1H
T + R (12)

Sk changes in response to sudden changes in system state. The
predicted process covariance matrix depends on the previous
process covariance matrix (Pk−1|k−1) and the current process noise
covariance matrix (Qk).

Detection is performed by checking if the pre-fit residuals
exceed a threshold Tnormalized, as shown in Equation 13.

| yk |√
Sk

≤ Tnormalized (13)

Meanwhile, the L2-Norm of the pre-fit residuals is determined
using the approach proposed by Liu et al. (2011) (see Equation 14).

∥

∥y
∥

∥ =
∥

∥z −Hx̂
∥

∥ (14)

Similarly, detection is performed by comparing the L2-Norm
of the pre-fit residuals to a threshold TL2, as shown in Equation 15,
where TL2 is determined from training data.

∥

∥y
∥

∥ < TL2 (15)

A detailed description of the parameters (e.g., Sk,Pk,R, yk)
and the anomaly detection method is presented in our previous
work (Paudel et al., 2018).

6.2 Experiment setup

We use the cleaned training data (see Table 2) to calculate the
innovation covariance, the normalized pre-fit residuals and the L2-
Norm of the residuals. We then define a threshold such that all
data from the pre-fit residuals from the training data stay below
the threshold. For this, we calculate the MAD and set a decision
level such that all normal data points lie within the interval. The
threshold for normalized residuals is set to 10.65 and 1.41 for
L2-Norm.

Since a linear Kalman Filter is used, detection is based on
identifying anomalies in the imaginary and real part of the
voltage (Paudel et al., 2018). All of the anomalies that are
detected in either the real or imaginary voltage are counted. An
example of the original and the manipulated data can be seen in
Figure 2. The effect of the constant offset attack to the imaginary
voltage is shown in Figure 2B. The estimated signal from the
Kalman Filter is shown in the second row. We then calculate the
residuals for the manipulated test data (third row), and their L2-
Norm and normalized value (fourth and fifth row). The residual-
based thresholds are used to classify the data points as normal
or anomalous.
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6.3 Experiment findings

None of the manipulated data points, caused by the four
attacks, were detected using the L2-Norm of the residuals.
However, some were detected using the normalized residuals—
these results are summarized. The average detection performance
(across the 14 test data sets) for the different attack types are shown
in Table 3. The detection rate is very low for all of the attacks,
as indicated by the recall values. Clearly, the BDD method is not
able to reliably detect the four proposed attacks, even using the
normalized residuals.

A close inspection of the data points that were detected as
anomalous was performed. Insights from this analysis can provide
requirements for alternative—more effective—means of detecting
the attacks. Typical results that show the data points that were
detected as anomalous are shown in Figure 3 (Results from the ICO
attack are not shown, for space reasons; however, they have the
same characteristics as those for the IRO).

Figure 3A shows an example plot in which a CO attack
was detected. It can be seen that the onset of the attack is
identified when the attack starts at the 6,001st iteration. Initially, the
estimated state yielded by the DKF results in a normalized residual
that is sufficiently large to fall outside the detection threshold.
However, the DKF adapts to the manipulated data—consequently,
the residuals become smaller and the higher manipulated voltage
is, after several iterations, considered normal. Meanwhile, the
attack persists.

Similarly, the BDDmethod detects benign transient anomalies,
as depicted in Figure 3A at approximately 900 and 1,500 iterations.
Although we cannot confirm it, these anomalies are likely to be
attributable to short non-critical transients (or noise) in the EPFL
distribution grid (In our experiments, 7,191 of these anomalies
were detected). Consequently, in practice, these anomalies may not
be escalated to an operator.

Figure 3B shows how the BDD method is not able to detect
RO attack, despite it being observably anomalous. The normalized
residuals do not exceed the detection threshold.

The IRO attack is also not reliably detected, as shown in
Figure 3C. This is because the attack gradually manipulates the
measured data—in a way that is not abrupt enough to be detected,
as in the CO attack—and the DKF “learns” the manipulated
values. Subsequently, the estimated state from the DKF reflects the
manipulated data. Nevertheless, our previous work (Paudel et al.,
2018) has shown this attack results in a noticeable change in the
distribution of measured data over time.

In summary, these experiments indicate that the attacks that
are defined in Section 4 cannot be reliably detected by the BDD
method. Alternative approaches are required.

7 Anomaly detection methods

To more effectively detect our FDI attacks, we propose the
use of three well-established statistical anomaly detection methods,
which have been applied to similar problems (Messinis and
Hatziargyriou, 2018; Chandola et al., 2009; Zhang et al., 2007,
2010; Rassam et al., 2012): (i) a measure of dispersion—the median
absolute deviation (MAD); (ii) a distribution-based method—the

TABLE 3 Average detection performance of the residual-based BDD using

normalized residuals for four false data injection attacks.

Attack Accuracy Recall FPR Precision

CO 66.63% 1.89% 0.00% 100.00%

RO 47.57% 7.30× 10−6% 0.00% 100.00%

ICO 57.09% 4.48% 0.00% 100.00%

IRO 57.09% 0.34% 0.00% 100.00%

Kullback-Leibler Divergence (KLD); and (iii) a change detection
method—the cumulative sum (CUSUM). We have chosen to
apply relatively simple statistical methods, in contrast to, e.g.,
machine learning-based approaches, to promote the scrutability
(understanding) of the results they produce—a desirable property
for use in a critical infrastructure setting, such as power distribution
networks. These anomaly detection methods are expected to be
variously suitable for detecting different attack types—overall
detection performance could be improved by combining their
output. To this end, we propose the use of a weighted voted
scheme (Lueckenga et al., 2016)—originally applied to machine
learning algorithms—to combine the results of the algorithms. It
is also assumed the anomaly detection methods can be deployed on
multiple regions e.g., substations, control centers.

7.1 Anomaly detection algorithms

7.1.1 Median absolute deviation
The MAD is determined by first calculating the median M of

the data points. Subsequently, for each data point, the difference
to the median (xi − M) is calculated. The MAD is then defined as
the median of those differences (Maronna et al., 2006), as shown
in Equation 16. To use the MAD as an estimator for the standard
deviation, it is multiplied by a scaling factor b, which depends on
the distribution of the data—for normally distributed data, which
is the case here, b = 1.4826 (Rousseeuw and Croux, 1993).

MAD = b ·median(|xi −M|) (16)

median− l ·MAD < xi < median+ l ·MAD (17)

To define a threshold for detection decisions based on the
MAD, aMAD interval can be defined, wherein l is the decision level
(Equation 17). Data that are outside the MAD interval are deemed
to be anomalous.

7.1.2 Kullback-Leibler Divergence
KLD measures the difference between two probability

distributions over the same variable (Kullback and Leibler, 1951;
Kullback, 1968). The KLD of a distribution Q(x) from a reference
distribution P(x) is a measure of information loss, if we use Q(x) to
approximate P(x). The KLD can be used to check a distribution of
observations against a reference distribution. We derive a reference
distribution from historic data and then use the KLD to compare
a sliding time window of test data with the reference distribution.
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FIGURE 3

Visualization of detected anomalies in constant o�set attack using RB. (A) Constant o�set attack. (B) Random o�set attack. (C) Incremental random

o�set attack.

The KLD between two discrete probability distributions P(x) and
Q(x) over a discrete domain is calculated using Equation 18 (Gupta
et al., 2016; Chaojun et al., 2015). DKL(P || Q) is ≥ 0 and is only
zero if P(x) and Q(x) are equal.

DKL(P || Q) =
∑

x∈X
P(x)log

(

P(x)

Q(x)

)

(18)

A threshold can be defined for KLD values that are deemed
to be anomalous. Section 7.2 describes how this is done in our
experiments using the MAD interval.

7.1.3 Cumulative sum
The Cumulative Sum (CUSUM) is a sequential analysis method

to detect change points in time series. A two-sided CUSUM
algorithm is applied to detect changes in the mean in both
directions: µ+

1 = µ0 + ν or µ
−
1 = µ0 − ν. Using the definitions

from Basseville and Nikiforov (1993) (Chapter 2), we define the
sufficient statistic si for detecting a change of the mean from µ0 to
µ1 in a Gaussian distribution with constant variance σ

2, as follows
(Equation 19).

si =
µ1 − µ0

σ 2

(

xi −
µ0 − µ1

2

)

(19)

For detecting a change point at time tn from observations xi to
xk, we build the sum Sn from the si (Equation 20):

Sn =
i=k
∑

i=1

si (20)

We incorporate b
σ
in the threshold and can therefore express

the si in a more simple way as

si = xi − µ0 −
µ

2
(21)

We then define g+n and g−n as

g+n = (g+n−1 + xn − µ0 −
ν

2
)+ (22)

g−n = (g−n−1 − xn + µ0 −
ν

2
)+ (23)

and set the alarm time to the point where either of them exceeds the
threshold TCUSUM .

ta = min{n : (g+n ≥ TCUSUM) ∪ (g−n ≥ TCUSUM)} (24)

7.1.4 Weighted voting
To explore whether combining results can improve overall

detection performance, a weighted voting (WV) scheme is applied,
based on previous work by Lueckenga et al. (2016). In this scheme,
positive and negative weights are assigned that reflect a method’s
prediction accuracy, based on its true positive and negative rates.
The weights are assigned using Equation 25, in which x is assigned
the true positive and true negative rates of the algorithm. Variables
a and b are control variables, which we assign a = 1 and b = 0.85
in the same way as Lueckenga et al. (2016)

f (x) =
1

(1− x) ∗ a+ b
(25)

To determine whether an anomaly is detected, the weights of
the algorithms that predict an anomaly are summed and compared
with the sum of the negative weights from those that predict a
benign result; the largest value determines the overall prediction.

7.2 Experiment setup

For the anomaly detection experiments, the same data sets
and process for defining normal and malicious data points that
is described in Section 5 is used—Figure 1 summarizes these
processing steps. The anomaly detection methods have been
configured, as follows.

For the MAD-based anomaly detection, the decision level is
l = 3.5. This is the same level that was used to label the training
and test data.

The KLD method requires a reference histogram. To create
this, data that have been labeled as normal from the historical

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1504548
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Paudel 10.3389/fcomp.2024.1504548

TABLE 4 The average detection performance of the anomaly detection

methods for the four attack types.

Attack Method Accuracy Recall FPR Precision

CO MAD 96.38% 95.03% 0.91% 99.52%

KLD 96.70% 99.36% 8.63% 95.84%

CUSUM 97.44% 99.43% 6.56% 96.81%

WV 99.48% 99.95% 1.46% 99.28%

RO MAD 36.10% 4.65% 0.91% 91.09%

KLD 36.48% 7.94% 6.36% 71.41%

CUSUM 54.00% 34.32% 6.56% 91.28%

WV 37.27% 6.45% 0.99% 92.89%

ICO MAD 72.89% 59.81% 0.91% 99.20%

KLD 77.08% 68.82% 6.36% 95.59%

CUSUM 82.66% 77.28% 6.56% 95.93%

WV 78.72% 68.60% 0.99% 99.29%

IRO MAD 72.93% 59.86% 0.91% 99.25%

KLD 76.47% 67.91% 6.36% 95.53%

CUSUM 83.02% 77.83% 6.56% 95.96%

WV 79.01% 69.03% 0.99% 99.29%

Best results per attack are shown in bold letters.

set are used. A configuration data set is used to define the
detection threshold for KLD. To set the threshold, the KLD is
calculated between the reference and configuration data using a
one-minute-sized sliding window that progresses in one second
steps. Subsequently, we calculate the MAD of this sequence of
KLD values and define a decision level l, such that all normal
data points lie within the MAD interval. For testing, data that is
outside the interval are labeled as anomalous. The KLD method
determines whether a window of test data is anomalous—some of
this data may not be part of the attack. To calculate the detection
performance for KLD, all of the data within an anomalously labeled
window is marked as such. We adopted this approach as it reflects
how the method would be used in practice. Consequently, more
data points are marked as anomalous, resulting in a higher recall
and false positive rates; this was confirmed by calculating the
results by discriminating betweenmalicious and benign data within
a window.

For the CUSUM method, we calculate the CUSUM upper
and lower bound g+n , g

−
n for the configuration data. The MAD is

calculated for this sequence of CUSUMvalues and a decision level is
set so that all normal data points lie within the interval. For testing,
the CUSUM is calculated and the MAD-based threshold is used to
label data as normal or anomalous.

Finally, for the weighted voting scheme, x (the weights) is
assigned based on the true and false negative rates of each algorithm
using the results from the experiments.

7.3 Experiment results

Table 4 shows the performance for detecting anomalies in
the manipulated test data for the different attacks and detection

TABLE 5 The detection delay for the anomaly detection methods and

attack types.

Attack Method Detection delay

Min Max Average

CO MAD 1 1 1

KLD 1 1 1

CUSUM 570 653 621

WV 1 1 1

RO MAD 4 3,5382 4,696

KLD 70,350 70,350 70,350

CUSUM 1,810 1,01,903 23,875

WV 1,825 1,01,905 35,647.38

ICO MAD 2,044 39,230 18,626

KLD 9,250 22,700 12,714

CUSUM 27,544 38,362 2,84,89

WV 1,574 53,170 24,943

IRO MAD 1,847 70,669 32,126

KLD 19,850 58,500 38,475

CUSUM 40,869 56,047 41,953

WV 2,048 51,333 32,387

Fastest detection per attack is shown in bold letters.

methods. As with the BDD experiments, the overall performance
metrics are shown, which are calculated from all of the data points
from all fourteen of the manipulated test data sets. All methods
detect the CO attack well. The RO attack is better detected by
CUSUM than by MAD and KLD. MAD has a lower false positive
rate than KLD and CUSUM in all attack types. Similarly, MAD also
has higher precision than KLD and CUSUM in attack types CO,
ICO, IRO.

In addition, Table 5 summarizes how quickly the attacks are
detected, showing the minimum, maximum and average detection
delay (measure in number of data points after the attack started).
An attack is assumed to be detected if at least one of the malicious
data points is detected as an anomaly. It therefore only summarizes
the detection delay for the malicious anomalies and does not
consider the detection delay for the benign anomalies that occurred
before the attack. The detection delay shows the number of
data points between attack start and the first detection of an
anomaly. In comparison to other methods, CUSUM’s detection is
delayed in most of the attacks because at the beginning changes
in mean due to the attacks stay within the allowed variation in
the mean.

7.4 Interpretation of detection results per
attack

7.4.1 Constant o�set attack
The CO attack is well detected by all the anomaly detection

methods. Therefore combining BDD with one of the analyzed
methods would be suitable to detect such attacks. If we look
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FIGURE 4

Visualization of detected anomalies in constant o�set attack. (A) Detected anomalies using MAD. (B) Detected anomalies using KLD. (C) Detected

change points using CUSUM.

at the detection delay we can see big differences among the
methods. MAD picks up the attack always immediately when
the first anomalous data point occurs (see Table 5). The KLD
(window based) needs longer than MAD to detect that a change
has occurred (between 1,499 and 3,049 iterations). This can be
explained, because the window progresses over the attack data
points and only after some time the histogram of the data points
in the window differs sufficiently from the reference histogram
so that it is detected as anomaly. CUSUM needs much longer to
detect the attacks (570 to 653 iterations). This is because it needs
some time until the constant change influences the mean value. In
the following we look further into details to explain the different
effects. Figure 4 shows the manipulated voltage for the CO attack
for the first (out of the 14) test data set. The anomalies that
were detected by the four different methods are shown as red
data points.

One can see how the simple MAD method picks up the
anomaly generated by the attack immediately (at the 60,001th

measurement) and detects most of the following anomalous data
points (Figure 4A). This is not surprising because the attack just
suddenly increases the voltage and the MAD just checks for a
threshold. The MAD also correctly detects the benign anomaly at
the beginning of the trace.

For the KLD (window based) method one can see that the
attack is also detected but a bit later (Figure 4B). The CUSUM
method detects a change point at iteration 570 but it takes a bit time
until the change is recognized. Also one can clearly see how the
benign anomaly in the beginning is not detected as change point
by CUSUM, because it just consist of a few outliers that do not
significantly change the mean.

7.4.2 Random o�set attack
The malicious data points due to the RO attack are quite

difficult to detect. With the MAD method the overall accuracy
for all test data is only 36.10% and the recall is 4.65%. That
means we miss more than 95% of the anomalous data points. KLD
(window based) and CUSUM perform even worse. CUSUMmisses
all anomalous data point of the attacks type RO (recall = 0%). KLD

detects<2% of the anomalies (recall = 1.6%) in all 14 data sets using
the window-based approach.

These two results can be explained, because the random offset
is performed by adding values from a random normal distribution
with mean µ = 0.001 (see Table 1). For KLD it seems that
most of the added random values stay within the reference
histogram, which is no surprise for data coming from a normal
distribution. Also with a mean µ = 0.001 the attack only slightly
influences the mean over time and therefore will not exceed the
CUSUM threshold.

Figure 5 shows the manipulated data for attack RO for the first
test data set. It can be seen that the MADmethod only detect those
random data points which by chance exceeded the threshold. KLD
detects not a single anomaly in the first data set, because even
with the random added data points the histograms in the sliding
windows do not differ much from the reference histogram. This
can be seen in the sequence of KLD values shown in Figure 5B,
where each data point represents the KLD which compares the
histogram calculated from a sliding window (size 1 min, sliding
step 1 sec) of the data with the reference histogram. From Figure 5C
one can see that also the calculated CUSUM values stay way below
the threshold.

7.4.3 Incremental constant o�set attack
The ICO attack is detected well by all methods (see Figure 6).

But due to the incremental increase, the attack is only detected
after it exceeds a threshold. Therefore the overall performance
for MAD and KLD is slightly worse than for the constant offset
and the detection takes much longer (see Table 5). CUSUM also
detects the attack (see first red point in Figure 6C) but only
quite late (the fastest detection was 27,544 iterations after the
attack start).

7.4.4 Incremental random o�set attack
The IRO attack is detected by MAD, KLD, and CUSUM but on

average it takes longer than for the pure incremental offset (ICO
attack) until anomalies are detected (see Figure 7). This can be
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FIGURE 5

Visualization of detected anomalies by MAD, KLD-and-CUSUM sequence in random o�set attack. (A) MAD detection. (B) KLD sequence. (C) CUSUM

sequence.

FIGURE 6

Visualization of detected anomalies in incremental constant o�set attack. (A) Detected anomalis using MAD. (B) Detected anomalies using KLD. (C)

Detected change points using CUSUM.

explained by the random component that in some cases prevents
that thresholds are exceeded. So adding some random noise can be
of advantage for attackers to hide malicious activities.

7.5 Summary of findings

Besides the general observations already discussed in Sections
7.3, 7.4, we can conclude the following findings from the results
above:

• Malicious behavior not detected by BDDmethods are detected
by the methods MAD, KLD, and CUSUM.

• MAD performs well and fast for sudden increases. It might
be a good candidate to be applied in addition to BDD.
Nevertheless, it fails for random offsets that remains below the
threshold.

• KLD detects anomalies with some delay but then consistently
detects subsequent anomalies.

• CUSUM completely fails for detecting the random offset
attacks.

• Detection delay varies a lot among methods and attack types.
MAD picks up changes earlier then KLD or CUSUM.

• Adding some random noise can be of advantage for attackers
to hide malicious activities. It also increases detection delays
and therefore prevent early detection.

• The combined method enhanced anomaly detection
performance as it detected all attacks (at least some
anomalous data points); and has a higher precision than the
individual methods as it triggered less false alarms.

As a consequence, we conclude that one should not rely
on a single method but instead combine several methods in
order to prevent that an attacker can circumvent detection. The
combined results were more trustworthy than the results of the
individual methods.

8 Conclusion

In this paper we analyze four different false data injection
attacks on PMU measurements with very different detection
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FIGURE 7

Visualization of detected anomalies in incremental random o�set attack. (A) Detected anomalies using MAD. (B) Detected anomalies using KLD. (C)

Detected change points using CUSUM.

methods based on real PMU data. We apply a Residual
Based (RB) BDD method to the attacks and identify that
three of the attacks are not detected by the RB method.
Then we analyze the performance and detection delay of three
other methods: (a) a simple threshold based on the median
average deviation (MAD), (b) a distribution-based approach
using the Kullback-Leibler Divergence (KLD), and (c) the
cumulative sum (CUSUM) as a representative of a change point
detection method.

Our findings show that no single superior method exists
that performs best for all attack types. Traditional bad data
detection methods based on residuals from state estimation
may be tricked by informed attackers and shows a bad
detection performance for maliciously injected attacks. But
if additional anomaly detection methods are applied, the
detection performance can be significantly improved even
with simple methods. Since the different methods show
different advantages for particular attack types, especially the
combination of methods from different detection concepts
(e.g., simple threshold, distribution-based, and change point
detection) proves to be powerful to detect a broad variety
of attacks.

Another important finding is that the detection delay varies
a lot among attack type and methods. This needs to be taken
into account since this influences the time needed to invoke
countermeasures and therefore can influence the damage caused
by an attack.

From our findings we argue that grid operators need to
combine a set of multiple different methods in order to be
able to detect different attack types and to keep up with
the effort of sophisticated attackers that try to hide from
detection methods.

In our scenarios, we focus on specific FDI attack types
and consider a desirable property for using in a critical
infrastructure setting with few computational resources.
Our future endeavors will include more generalized attack
scenarios and real-world implementation challenges like
methods integration into existing grid management system,
computation time.
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