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In the autonomous vehicle industry, Advanced Driver Assistance Systems (ADAS) 
are recognized for their capacity to enhance service quality, improve on-road 
safety, and increase driver comfort. Driver Assistance Systems are able to provide 
multi-modal feedback including auditory cues, visual cues, vibrotactile cues and 
so on. The study will concentrate on assessing the impacts of auditory and visual 
feedback from assistive driving systems on drivers. A group consisting of five 
participants (N = 5) was recruited to take part in two sets of driving experiments. 
During the experimental sessions, they were exposed to several reminders 
designed for drivers in audio-only format and audio-visual format, respectively. 
Their driving behaviors and performances were under researcher’s observation, 
while their emotions were evaluated by YOLO v5 detecting model. The results 
reveal that the participants higher compliance rate and strong emotional reactions 
(especially the feelings of anger, sadness and surprise) towards the unimodal 
feedback of audio-only driving reminders. There is no strong evidence showing 
that the bimodal ADAS feedback of audio-visual cues effectively improve drivers’ 
performance during driving period. However, both the emotion data and user 
satisfaction results indicate that participants experienced an increase in feelings 
of happiness when they were able to visualize the AI assistant while hearing the 
audio reminders from the assistant. The study serves as one of the pioneering 
studies aimed at enhancing the theoretical foundation in the field of automotive 
user interface design, particularly concerning the design of auditory functions.
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1 Introduction

In recent decades, the significance of AI applications and automated technologies, such as 
chatbots, physical robots in the public sector, and virtual automated systems in vehicles, has 
become increasingly apparent (Fernandes and Oliveira, 2021). AI-based products and social 
robots are commonly used to communicate and interact with users through visual and verbal 
cues, which drives to the fact that the AI-based Digital Voice Assistants are becoming more 
prevalent (Kaplan and Haenlein, 2019). Advanced humanoid-assisted products are introduced 
into the market at the contemporary fast-developing society. In the realm of autonomous 
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vehicle industry Advanced Driver Assistance Systems (ADAS) are 
notable for their ability to improve service quality, increase on-road 
safety, and enhance driver comfort, making them a prominent feature 
in modern vehicle designs (Jamson et al., 2013). It is reported that the 
adoption of assistance system and vehicle automation technology 
contribute greatly to the reduction of road accidents (Biondi et al., 
2018). As vehicle automation levels increase, the dynamics of driver-
vehicle interactions undergo significant transformation. Consequently, 
drivers are increasingly becoming aware of the nuances involved in 
effectively operating modern semi-autonomous vehicles (Mulder 
et al., 2008). Vehicle designers incorporating AI-based supportive 
systems into semi-autonomous vehicles also contemplate strategies to 
enable the most naturalistic communication between vehicles and 
drivers (Chattaraman et al., 2019).

ADAS has gained popularity because it integrates both automation 
systems and supportive systems, enabling drivers to maintain control 
while benefiting from the assistance provided by automated 
functionalities (Bayly et al., 2007). According to the recommendations 
and guidelines regarding safe and efficient in-vehicle information and 
communication system released by European Commission in 2006 
(Commission of the European Communities, 2008), modern 
autonomous vehicles are increasingly being designed with interactive 
devices and features such as touchscreens, voice recognition systems, 
and information visual display panels. This facilitates interaction 
between humans, particularly drivers in this context, and the 
machine-powered system. Consequently, the transition between 
human drivers and semi-autonomous vehicles is a critical scenario 
(Shi et al., 2019). A growing number of drivers are transitioning from 
conventional operators to passive monitors, indicating a shift in their 
role from actively driving to monitoring the ADAS while driving 
(Banks and Stanton, 2019). This shift is primarily due to the driving 
feedback issued by ADAS, which enhance drivers’ awareness of safety 
issues. Driving feedback from ADAS involves auditory signals, visual 
information presented or other types of signals and reminders. In 
other words, a semi-autonomous driving system is designed to 
communicate with drivers through vision, audio, and haptics (Mulder 
et al., 2008).

Wickens’ multiple resource model proposes that human cognitive 
processing involves multiple, distinct resources that operate 
simultaneously but independently, including stages of processing 
(perception, cognition, response), input modalities (visual, auditory), 
and types of codes (verbal, spatial). The model suggests that tasks 
drawing on the same resource create higher interference and cognitive 
load, while tasks using different resources can be  managed more 
effectively in parallel (Wickens, 2008). In the context of driving, 
Wickens’ model implies that auditory feedback is more suitable than 
visual feedback for delivering reminders or messages, as driving is 
predominantly a visual task. Adding visual feedback may increase 
cognitive load due to interference with the visual resources needed for 
monitoring the driving scene.

Besides, current ADAS designs predominantly utilize advanced 
sensors, cameras, radar, and software to deliver real-time assistance 
(Jumaa et  al., 2019; Mishra and Kumar, 2021). However, the 
complexity of these algorithms can reduce system interpretability, 
making it challenging for drivers to fully understand the system, 
especially in dynamic driving contexts. Enhancing the usability, user-
friendliness, and overall user experience of ADAS is crucial in 
supporting the public’s transition 2 to higher automation levels. 

Effective engagement with robotic agents often relies on a combination 
of visual cues, such as facial appearance, and verbal cues, including 
auditory features (Kaplan and Haenlein, 2019; Park, 2009). This 
underscores the importance of understanding which method of 
message delivery is most effective for drivers, as optimizing these cues 
could enhance driver comprehension and interaction with ADAS. It 
is readily apparent that appropriate and timely driving reminders can 
positively support drivers particularly in enhancing safety (Lu et al., 
2004), improving situational awareness (Kridalukmana et al., 2020), 
reducing cognitive load (Cades et al., 2017), and promoting better 
decision-making while driving. Conversely, inadequately designed 
signals from Advanced Driver Assistance Systems (ADAS) can 
adversely affect drivers (Biondi et al., 2018). For instance, ambiguous 
or unclear messages may lead to confusion, while sudden, loud, or 
high-pitched sounds can induce panic. Additionally, excessively 
frequent and repetitive alerts or reminders can cause disruptions in 
the driving experience. Delivering correct alarm reminders and 
capture the attention when necessary is quite important for improving 
drivers’ performance (Wiese and Lee, 2004). To be specific, the abrupt 
and unexpected auditory signals may startle drivers which will reduce 
their wiliness of compliance (Adell et al., 2008). It has been observed 
that the impact of verbal tasks on driver performance can vary 
depending on the driving conditions, such as speed and traffic 
complexity. According to Recarte and Nunes, the impact of verbal 
tasks may differ from that observed in standard driving scenarios, 
particularly in situations involving high speeds or complex traffic 
patterns (Recarte and Nunes, 2000). Specifically, visually demanding 
tasks, such as imagery tasks, tend to reduce drivers’ ability to visually 
monitor important cues, such as continuously checking rearview 
mirrors or responding to critical traffic events. In contrast, verbal tasks 
may cause less interference, especially in complex or high-speed 
driving situations. Thus, while verbal tasks are likely to have a less 
pronounced impact compared to spatial-imagery tasks, they can still 
negatively affect driving performance, particularly when drivers are 
already managing high cognitive demands in challenging traffic 
conditions (Recarte and Nunes, 2000). Therefore, it is worthwhile to 
examine the contribution of auditory feedback and visual feedback in 
ADAS designs, focusing on minimizing cognitive interference and 
enhancing driver performance. Scott and Gray have compared the 
effectiveness of unimodal warnings (vibrotactile or auditory) and 
bimodal warning (vibrotactile and auditory), and the result shows that 
bimodal warnings work better in the emergency situations (Scott and 
Gray, 2008). The results indicate that it is worthwhile to explore and 
design AI-based digital voice assistance tailored to individual drivers 
(McLean and Osei-Frimpong, 2019), especially when ADAS is 
involved. Given that voice-based technology may affect user 
preferences (Kaplan and Haenlein, 2020), a voice-based support 
system in autonomous vehicles may influence drivers’ emotions 
and behaviors.

However, there is limited research investigating the differential 
impacts of task instructions presented in audio-only format versus 
those accompanied by visual elements on drivers’ performance and 
acceptance. In order to fill this gap, the current study aims to provide 
insights for designing in-vehicle driver assistance systems and to 
contribute to the theoretical foundation in this area by exploring the 
effectiveness of driving task instructions in visual and verbal formats. 
This study will focus on the impact of varying ADAS message delivery 
methods on drivers’ performance and behavior within a driving 
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context. This study examines the effects of multi-modal feedback in 
ADAS, with particular emphasis on auditory and visual feedback, and 
their influences on drivers. The research questions guiding this study 
are as follows:

 1 Which advanced driving assistant system reminder is more 
effective in improving drivers’ recognition and compliance: 
auditory-only feedback or audio-visual feedback?

 2 Which advanced driving assistant system reminder is more 
impactful to drivers’ emotions: auditory-only feedback or 
audio-visual feedback?

 3 Which advanced driving assistant system reminder wins higher 
acceptance from drivers: auditory-only feedback or audio-
visual feedback?

To investigate these questions, a comprehensive car simulator 
was utilized, offering participants an immersive driving experience 
(Ultralytics Team, 2023). During the driving sessions, the 
participants received various driving-related reminders in auditory 
and visual formats. Subsequently, their performance was closely 
observed, and their emotions were detected. Through thorough 
evaluation of these interconnected elements, the study aimed to 
gain essential insights for the development of human-machine 
interfaces. Furthermore, it is important to note that this study 
adopts a largely exploratory approach, aiming to investigate 
foundational questions about the effectiveness of auditory and 
visual feedback in ADAS. As such, the use of a small sample size 
is appropriate to establish initial insights and identify key areas for 
future, more extensive investigations.

2 Experiment

The project received approval from the relevant Human 
Research Ethics Committee (Approval Number: H15278). All 
experimental procedures were conducted in accordance with 
applicable guidelines and regulations. Informed consent was 
obtained from all participants or their legal guardians for the use 
and publication of information and images in an online open-
access format.

2.1 Hardware and software

Utilization of driving simulation systems is common in 
experiments targeted at assessing drivers’ behaviors. This type of high-
fidelity driving simulator is featured with safety, reliability, and user-
friendliness, render car simulators viable in diverse experimental 
contexts (Shi et al., 2022). Notably, car simulators reduce the likelihood 
of encountering potential risks inherent in on-road driving scenarios 
(De Winter et al., 2012). By adopting driving simulators, researchers 
can readily adjust observational variables and replicate experiments, 
thereby facilitating efficient investigation, particularly in high-risk 
settings (Robbins et al., 2019). While car simulators offer valuable 
insights, they inherently diverge from authentic on-road driving 
scenarios, thus presenting certain potential disadvantages. One of the 
potential problems is the occurrence of simulator sickness among 
users navigating through 3D animated environments, with older 
drivers being particularly vulnerable to driving discomfort (Brooks 
et  al., 2010). Furthermore, drivers utilizing car simulators may 
encounter constraints related to both physical and behavioral fidelity 
(De Winter et al., 2012). Moreover, drivers’ awareness that simulator-
based hazards pose no actual harm may constrain their reactions and 
sense of responsibility (De Winter et al., 2012). Through attentive 
efforts to enhance both physical and behavioral fidelity, the validity of 
car simulators can be bolstered, rendering them valuable tools for 
researchers (Godley et al., 2002).

A custom-built high-fidelity driving simulator was designed to 
serve as the cockpit for the experiment. It is suggested that a high-
fidelity driving simulator should allow participants to see, hear, and 
feel the impact of automated vehicle handling (Jamson et al., 2013). 
The driving simulator designed for the study includes a monitor to 
display driving routes, a custom-built driving system and a driving 
chair, as displayed in Figure  1A. The driving system consists of a 
Logitech G29 PlayStation version racing wheel with pedals, a Logitech 
gear shifter designed for the G29 driving system, and a driving chair, 
as indicated in Figure 1B. The racing wheel and pedals were affixed to 
an adjustable support stand and adjusted to the standard height of 
human drivers. Furthermore, the selected steering wheels could 
provide participants with different vibration responses, recreating the 
feeling of driving on various road surfaces and uplifting the overall 
realism of the driving experience. The large monitor is placed in front 

FIGURE 1

(A) Experimental simulator setup. (B) Display of driving panel on simulator.
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of the participants to provide a clear view of the driving environment. 
Additionally, an external tablet is integrated into the driving simulator 
to effectively deliver designed reminders through both audio and 
visual cues.

The software component consists of a driving game, an emotion 
detecting model and an AI-based assisted system programed with 
driving reminders. The driving game selected for the study is DiRT 
Rally 2.0. This game is available on the STEAM gaming platform and 
is compatible with the Logitech G29 PlayStation. The game offers 
various maps and driving routes with realistic environments, allowing 
participants to immerse themselves in the simulated driving 
experience by utilizing the hand wheel, pedals and gear shifter. The 
participants will stay informed with reminders from the humanoid 
agent driving assisted system displayed on a tablet-sized screen in 
front of them. Additionally, a pre-programed emotion detection 
model is integrated in the driving system to monitor the emotional 
state throughout the drive session.

2.2 Experiment design

The experiment was utilising a within-subjects design, 
incorporating two conditions: (1) auditory feedback and (2) 
multimodal feedback. The condition of “auditory feedback” consisted 
of the audio-only ADAS for delivering driving reminders. Conversely, 
the “multimodal feedback” condition utilized an ADAS equipped with 
both audio and visual systems, allowing participants to hear the audio 
reminders and simultaneously view an avatar providing the reminders. 
The participants were required to complete two experimental driving 
sessions following a 5-min testing trial. During each experimental 
session, participants were exposed to six different reminders from the 
driving assisted system. Their behaviors were observed by the 
researcher and noted on a structured observation sheet, while their 
emotional responses were detected and recorded by an emotion 
detection model. Upon completion of the two driving sessions, the 
participants were invited to complete a brief online questionnaire.

2.2.1 Content of driving reminders
The participants received six reminders pertaining to their driving 

behavior, which included prompts to fasten seatbelts, check fuel levels, 
inspect rear-view mirrors, reduce speed when exceeding limits, 
exercise caution regarding obstacles ahead, and take a rest when 
experiencing drowsiness. The content of the reminders was generated 
by a Learning Language Model (LLM) which is listed below. Research 
suggests that content generated or modified by LLMs can positively 
influence users’ emotions, particularly when the LLM is instructed to 
produce content in a friendly manner (Zou et  al., 2024). For this 
experiment, ChatGPT (GPT-3.5) provided multiple options for each 
prompt. The first option on the LLM response list was selected as the 
reminder content for the experiment.

Reminder 1

Human Prompt: Please write a reminder for the drivers to check 
the seatbelt.

LLM Response: Before starting the car, make sure your seatbelt is 
securely fastened

Reminder 2

Human Prompt: Please write a reminder for the drivers to check 
the fuel level

LLM Response: It is always good to check if you have enough fuel 
for your journey

Reminder 3

Human Prompt: Please write a reminder for the drivers to check 
the rear mirrors

LLM Response: Please adjust your rear mirrors and make sure 
they provide a clear view

Reminder 4

Human Prompt: Please write a reminder for the drivers when they 
are over-speeding

LLM Response: You are over speeding now. Please slow down

Reminder 5

Human Prompt: Please write a reminder for the drivers when 
there are obstacles ahead

LLM Response: Kindly remind you that there are obstacles ahead

Reminder 6

Human Prompt: Please write a reminder for the drivers when they 
have been driving for a long time

LLM Response: You must feel tired after the long journey. Let us 
have a rest

2.2.2 Driving reminders auditory feature
The auditory cues from humanoid agents do influence the 

emotions of participants. Both voice pitches (alto and bass) and speech 
styles (casual and frozen) play a crucial role. Our prior work [hidden 
for review] indicates that an alto voice pitch, resembling that of an 
adult female, evokes a more cheerful response from participants. 
Additionally, compared with frozen speech, casual speech is more 
effectively bring the participants with sense of happiness. In order to 
create a comfortable environment for the participants in a driving 
setting, we developed a humanoid-agent-assisted system with an alto 
voice and a casual speaking style.

2.2.3 Driving reminders visual feature
The assisted ADAS was designed with an alto voice pitch, so a 

female avatar was chosen to match the voice. The avatar was created 
using Soul Machines, a platform capable of autonomously generating 
animated digital humans using AI. The avatar we  created for the 
system is shown in Figure  2. The visual and audio systems were 
integrated to ensure that the lip movements of the AI-generated figure 
synchronized with the speech content.
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In the experiment, participants attended two separate driving 
sessions with the order of the two conditions (audio-only and audio-
visual) randomized. In the audio-only session, they were exposed 
solely to auditory driving reminders, with the AI-generated face 
remaining invisible to them. The participants received the reminders 
exclusively in audio format. In the audio-visual session, they were 
exposed to both auditory and visual driving reminders. To be specific, 
the animated figure will be  displayed on a tablet-sized screen 
positioned in front of the participants.

2.2.4 Emotion detecting model
The YOLO (You Only Look Once) object detecting model was 

trained and tested as emotion detector in the present experiment. 
YOLO series are currently the most popular object detection 
algorithms in academic studies (Nepal and Eslamiat, 2022). The 
YOLO series is superior to the earlier models in terms of running 
speed, accuracy and its capacity to detect small objects, even facial 
expressions and emotions (Ali et al., 2022). YOLOv5, released in 2020, 
offers a range of pre-trained object detection architectures based on 
the MS COCO dataset (Jocher, 2024). We  conducted data 
augmentation on a subset of the publicly accessible AffectNet dataset, 
which is an expansive dataset comprising approximately 400,000 
images, categorized into eight distinct emotion categories: neutral, 
angry, sad, fearful, happy, surprised, disgust, and contempt 
(Mollahosseini et  al., 2017). For our endeavors, we  employed the 
YOLOv5 model with a prototype precisely curated 10,459 images for 
training purposes, and the results obtained were indeed promising. 
Out of the eight categories, five prevalent emotions, including sad, 
angry, happy, neutral, and surprised were selected for training 
the model.

The model was trained and assessed by using standard metrics 
including precision-recall curve and F1-Confidence Curve. From the 
outcomes in precision-recall curve, the precision-recall values for the 
emotions “Happy” (Vh = 0.864) and “Surprise” (Vs = 0.775) exceed the 
baseline mean Average Precision (mAP) value (Vb = 0.718), suggesting 
that the model exhibits superior performance in predicting these two 
emotions. The values for “Angry” (Va = 0.717) and “Sad” (Vd = 0.701) 
being close to the baseline mAP@50 value indicates that the model 
performs adequately in detecting the angry emotion. These outcomes 
are further validated by the F1-Confidence results. Although the 
YOLO series has been upgraded to YOLOv10, YOLOv5 still 
demonstrates superior processing speed, which is one of the reasons 
we selected YOLOv5 for our study (Ali et al., 2022). And the model has 

robust documentation, community support, and numerous resources 
available for troubleshooting and development (Jocher, 2024).

2.2.5 Task performance observation
Three researchers (observing researcher, coding researcher and 

adjudicating researcher) participated in the observation and coding 
process, ensuring thorough documentation of participants’ 
performance throughout the entire study. The observing researcher 
systematically observed participants’ performance and behavior 
during the experimental sessions, documenting their response 
behavior using an observation sheet, as illustrated in Figure 3. During 
the experiment session, to minimize participant anxiety caused by 
being observed by a crowd, only one researcher conducted on-site 
observation. Table  1 illustrates the detailed criteria used for 
categorizing participants’ behaviors into three different groups. The 
observing researcher adhered to predefined criteria and provided 
detailed textual descriptions on the observation sheet.

Consequently, the observing researcher and the coding researcher 
both follow the below coding rules and transferring the textual 
documents into measurable codes. The documented observation 
results were categorized into three distinct codes: did not notice the 
reminder at all (coded as 1), noticed the reminder but did not comply 
(coded as 2), and noticed the reminder and complied (coded as 3). The 
two blind observation sheets were compared to create the final 
observation sheet. In cases of category conflicts, a third researcher 
which is the adjudicating researcher was invited to review the 
documented observation sheet and determine the final classification. 
Given the small sample size for this pilot study, this observational 
method was both feasible and effective in reducing bias and errors.

After completion of each experimental session, participants’ 
performance were encoded following specific predefined rules, 
allowing for the efficient translation of textual descriptions into a 
numeric, visualized format. For example, to calculate the “recognition 
rate” for Reminder 1, we included observations coded as 2 and 3, 
representing cases where participants either “noticed the reminder but 
did not comply” or “noticed the reminder and complied.” Conversely, 
to calculate the “compliance rate” for Reminder 1, we considered only 
instances coded in 3, representing cases where participants “noticed 
the reminder and complied.” This approach enables a quantitative 
analysis of recognition and compliance, facilitating a clear and 
objective assessment of participant response patterns.

2.2.6 Questionnaire content
In the follow-up experiment questionnaire, participants were 

asked to rate their preference for different formats of driving 
reminders using a five-point rating scale. The two questions are 
listed below:

 • How much do you appreciate reminders from avatars featuring 
voice only?

 • How much do you appreciate reminders from avatars featuring 
voice and face?

2.3 Participants

A group of five participants (N = 5) were recruited to join the 
experimental sessions. The participants with demographic features of 

FIGURE 2

AI-generated avatar figure designed for ADAS.
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university students from a local university in one of Middle East 
countries, age ranging from 17 to 35 years old and with multiple 
culture background. All participants attended two rounds of driving 
sessions, resulting in the collection of 10 datasets for analysis. In the 
first driving session, they were exposed to driving reminders of audio 
format only. While in the second driving session, the participants 
received the same driving reminders in both audio and visual format. 
The sequence of the driving sessions was randomly balanced. 
Specifically, some participants began with the audio-only group, while 
others started with the audio-visual group.

3 Results

3.1 Participants’ performance

Participants’ performance observation sheet provides results of 
their driving performance and responses towards the driving 
reminders. The frequency counts for each note category in observation 
sheet— “did not notice the reminder at all,” “noticed the reminder but 
did not comply,” and “noticed the reminder and complied” —are 
presented in Figure 4.

3.1.1 Recognition rate
In this study, the recognition rate was calculated based on the 

observation results corresponding to code 2 (notice but not follow) 

and code 3 (notice and follow). The results indicate that all participants 
recognized both types of reminders presented in the audio-only 
format. Specifically, the recognition rate for the two types of reminders 
was 100%, suggesting that participants noticed all reminders delivered 
in either audio-only or audio-visual formats. This finding underscores 
that designing audio-only reminders could be a more cost-effective 
approach while still ensuring successful communication with the 
driver when designing in-vehicle driving assistant systems.

3.1.2 Compliance rate
The compliance rate was calculated based on the observation 

results regarding to code 3 only. In other words, only the participants’ 
behaviors were categorized under “notice and follow” were included 
in the calculation. Participants’ responses to the two types of 
reminders exhibit variation in compliance rates. Specifically, during 
the pre-driving stage involving reminders concerning seatbelt check, 
fuel level check, and rear mirror check, participants complied with 
audio-only reminders a total of eight times (compliance frequency = 8) 
compared to six instances for audio-visual reminders (compliance 
frequency = 6).

In the driving stage, which included reminders for over-speeding, 
obstacles detection and drowsy driving, the compliance frequency for 
audio-only reminders (compliance frequency = 11) than for audio-
visual reminders (compliance frequency = 10). These results suggest 
that participants were more likely to comply with audio-only 
reminders in both the pre-driving and during-driving stages.

FIGURE 3

Samples of researcher observation sheet.
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3.2 Participants’ emotion responses

A total of number of n = 17,240 emotion data points were 
collected from the five participants, comprising n (ad) = 8,430 data 
points for the audio-only reminder group and n (ad-vi) = 8,810 data 
points for the audio-visual reminder group. This distribution indicates 
that the data points are nearly equally divided between the two groups. 
Table  2 presents the mean values for each emotion reported by 
participants, along with their corresponding 95% confidence levels 
and confidence intervals (CIs). Figure 5 displays the mean values for 
each emotion, alongside with standard deviations (SD) to convey the 
reliability and variability within the dataset.

For the emotions Angry, Sad, and Surprised, the data for both 
types of reminders exhibit relatively small standard deviation (SD) 
values. An analysis of the 95% confidence intervals for the three 
emotions under the two conditions (audio-only and audio-visual) 
reveals relatively narrow confidence intervals. This suggests that 
we can expect the true mean levels of these emotions to lie within 
these ranges, indicating a degree of precision in the estimated mean 
values and a high level of confidence in the stability of the findings 
within this context. The mean values of emotional responses for 
Angry [Ma (ad) = 0.080], Sad [Mc (ad) = 0.123], and Surprise [Md 
(ad) = 0.114] indicate that participants exhibited stronger reactions to 
audio-only reminders, with a difference of approximately 0.02 
compared to the mean values of these emotions in response to audio-
visual reminders.

Regarding the emotional responses for happiness, the mean value 
[Mb (ad) = 0.076] to audio-only reminders is 0.1 lower than the mean 
value [Mb (ad-vi) = 0.171] provoked by audio-visual reminders. This 
suggests that the participants showed a stronger emotional response 
when they were exposed to audio-visual reminders compared to 
audio-only reminders. The standard deviation for the happy emotion 
in response to audio-visual reminders is 0.204, indicating substantial 
variability in participants’ responses. Additionally, the confidence 
interval is relatively wide, suggesting limited precision in estimating 
the true mean happiness level. This wide interval reflects the high 
variability within the data, indicating that participants’ emotional 
responses to the audio-visual reminders were not consistent.

3.3 Participants’ preference

The participants were given a five-point likert rating scale 
(strongly dissatisfied, dissatisfied, neutral, satisfied, very satisfied) to 
provide their preferences for both audio-only reminder group and 
audio-visual reminder group. The Likert coding scheme is shown in 
Figure 6 where smaller numbers represent lower levels of satisfaction. 
Figure  6 presents a radar chart illustrating the preferences of five 
participants across two conditions. Each axis represents a participant, 
with the innermost circle corresponding to the lowest preference level 
and the outermost circle representing the highest preference level. The 
blue line denotes participants’ preference for audio-only feedback, 
while the grey line indicates their preference for audio-visual feedback. 
The use of a radar chart is particularly appropriate for small sample 
sizes, as it allows for a clear and concise presentation of all data.

Through the calculation of the mean values of the Likert rating 
points, the median value (value =4.0) of satisfaction with audio-only 
reminders is slightly lower than that with audio-visual reminders 
(median value =4.2), which suggests the stronger preference on the 
ADAS with both audio and visual features.

4 Discussion and limitation

The results of this pilot study were assessed from three primary 
perspectives: participants’ performance and responses to ADAS 
reminders, changes in their emotional states, and their 
preference ratings.

The findings on participants’ recognition rates indicate that 
participants were able to perceive the instructions effectively when they 
were voiced, regardless of the presence or absence of visual feedback. 
However, their willingness to comply with the instructions is influenced 
by the presence of visual cues. In the present context of driving tasks, 
there is a consistent tendency of greater compliance rates from the 
participants to audio-only reminders across different types of driving 
reminders in both pre-driving and during-driving stages. The auditory 
cues in the autonomous assistive system place stronger influences on 
the drivers’ behaviors than the visual cues. In other words, in highly 

TABLE 1 Criteria of categorizing participants’ behaviors.

Code 1
Not noticed at all

Code 2
Noticed but not followed

Code 3
Noticed and followed

Reminder 1

No action at all

Verbal response such as “okay,” “got it,” or may even ask 

questions related to the ADAS.

A distinct pause or hesitation in the ongoing actions or 

tasks.

A visible physical reaction, such as nodding the head or 

other body movements.

No observable physical action or movement made by the 

participant within 5 s after hearing the instruction, 

indicating a failure to follow through with the reminder.

Demonstrated the behavior of looking for and fastening the 

seatbelt within 5 s after hearing the instruction.

Reminder 2

Directed their head and eye movement toward the fuel level 

indicator, which is located on a specific position of the large 

screen, within 5 s after hearing the instruction.

Reminder 3
Switched the simulator equipment button that controls rear 

mirror checking within 5 s after hearing the instruction.

Reminder 4
Reduced speed by 10 km/h or more within 5 s after hearing 

the instruction.

Reminder 5

Begun to slow down the vehicle by 10 km/h and more, or sits 

straighter for better vision within 5 s after hearing the 

instruction.

Reminder 6
Started slowing down within 5 s after hearing the instruction 

and eventually stops the car within 15 s.
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dynamic and demanding contexts, participants may be better equipped 
to process unimodal instructions, such as audio-only reminders. While 
multimodal instructions, such as audio-visual reminders, can 
occasionally enhance user engagement and satisfaction, they may also 
introduce challenges during the dynamic driving environment. The 
added visual component has the potential to cause cognitive overload 
or distract participants, especially in scenarios requiring constant 
attention, such as driving. This suggests that Advanced Driver 
Assistance Systems should prioritize well-designed auditory feedback 
mechanisms to ensure driver compliance and responsiveness. Audio-
only reminders can be highly effective, especially in situations where 
visual attention is already occupied by driving tasks.

The findings from emotion response of the participants also offer 
valuable insights. It is not hard to find that participants exhibited 

stronger emotional reactions to auditory cues in advanced driver 
assistance systems, especially the feelings of anger, sadness and 
surprise. Auditory cues are proven to be  effective in provoking 
emotional responses. The emotion of “Anger” may be attributed to the 
frustration elicited by specific reminders which interrupted their 
excitement during driving, such as reminders to reduce speed when 
participants are engaged in high-speed driving. “Sadness” is linked to 
the perception of reminders with negative feedback, which may make 
them feel being criticized. And the unexpected audio alert or reminder 
may elicit participants’ “Surprise.” However, a contrasting pattern was 
detected in the emotional responses to happiness, suggesting that 
involving visual cues may bring positive responses in certain 
circumstances. The findings suggest that a balanced integration of 
visual cues alongside auditory reminders has the potential to enhance 

FIGURE 4

Overview of participants’ performance.

TABLE 2 Mean values of participant’ emotions with CI.

Angry Happy Sad Surprise

Audio only

Mean value 0.0802 0.0756 0.1233 0.1145

Confidence level (95%) 0.0410 0.0393 0.0394 0.1136

Upper CI (95%) 0.1225 0.1114 0.1651 0.2282

Lower CI (95%) 0.0405 0.0327 0.0862 0.0011

Audio_vision

Mean value 0.0687 0.1706 0.1064 0.0889

Confidence level (95%) 0.0288 0.2537 0.0416 0.0551

Upper CI (95%) 0.0987 0.4028 0.1494 0.1405

Lower CI (95%) 0.0412 −0.1047 0.0662 0.0304
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the overall emotional experience for users. Selective incorporation of 
visual cues could foster positive emotional responses and alleviate the 
stress associated with relying solely on auditory feedback. However, 
an excessive use of visual cues may lead to distractions, making such 
an approach unsuitable for contexts that require sustained attention, 
such as driving.

The data on participants’ satisfaction ratings indicate that, within 
the driving context, audio-only cues are slightly more preferred 
compared to audio-visual cues. According to Wickens (2008), adding 
visual feedback to a predominantly visual task competes for the same 
resource pool, increasing cognitive load and the likelihood of 
interference. In contrast, auditory signals utilize a separate resource 
channel, allowing drivers to process instructions without 
overburdening their visual system. This theoretical perspective 
explains why participants demonstrated higher compliance rates and 
satisfaction with audio-only reminders, as these allowed them to 
maintain better focus on driving tasks while still receiving effective 
guidance. These findings prompt further investigation into the specific 
attributes of auditory cues that contribute to their higher acceptance 
and effectiveness. Understanding these characteristics could provide 
valuable insights for designing more user centric ADAS that enhance 
driver satisfaction and compliance. Future research should focus on 
identifying which auditory features, such as tone, frequency, or timing, 
are most effective and well-received in order to optimize the design of 
auditory feedback in ADAS.

One of the limitations for this study is the relatively small sample 
size. A larger sample size is always better for generalization of a study. 
However, pilot study sample size greatly depends on the purpose of 
the study (Johanson and Brooks, 2010) and the context of the study 

(Lenth, 2001). As a pilot study, this paper serves as a pioneering 
research effort in exploring the auditory features of advanced driver 
assistance systems and their impact on drivers’ responses. With 
participants (N = 5) in each of the two groups, contributing to a total 
dataset of 10 copies, this study closely aligns with the scholarly 
recommendation of a sample size of 12 for such research. This sample 
size is deemed sufficient for the purposes of this pilot study (Johanson 
and Brooks, 2010). Besides, it is recognized that the experiment was 
conducted in a Middle East country, therefore, the cultural 
implications may also introduce certain limitations to the present 
study. To enhance the generalizability, the study could be incorporated 
with more participants from diverse cultural backgrounds and age 
groups in the future studies. What’s more, our current study, the 
impact of reminders on participants’ emotional states was not directly 
assessed. We acknowledge this as a limitation, as understanding the 
emotional responses elicited by auditory or multimodal reminders 
could provide deeper insights into drivers’ reactions and overall 
performance. In future research, we plan to incorporate time-stamped 
emotion tracking to evaluate participants’ emotional states before and 
after the reminders are issued. This approach will allow us to more 
precisely measure the emotional influence of auditory and visual 
feedback in driving contexts.

A potential direction for future research could involve expanding 
the detection of various driving behaviors, with a particular focus on 
specific demographic groups, such as older drivers or apprentice 
drivers. This approach could yield insights into how different user 
groups respond to ADAS cues and inform tailored system designs 
that cater to diverse needs. Additionally, it would be  valuable to 
explore which auditory characteristics of humanoid agents are most 

FIGURE 5

Mean values of participants’ emotions with SD.
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effective for ADAS in semi-autonomous and fully autonomous 
vehicles. Investigating these auditory features, such as voice tone, 
pitch, and emotional expressiveness, could enhance the design of 
ADAS systems, making them more intuitive and effective for a 
broader range of users. Moreover, a review of existing literature 
indicates that essential executive functions, such as working memory 
and inhibitory control (Engström et al., 2017), are strongly linked to 
risky driving behaviors and errors that can result in accidents. This 
insight suggests a potential future research direction focused on 
examining the impact of auditory feedback from ADAS on drivers’ 
cognitive load and their levels of attention or distraction. Given that 
drivers’ cognitive load is task-dependent, this finding underscores the 
importance of designing task-specific experiments for future 
investigations (Bamicha et al., 2024).

This pilot study investigated the impacts of auditory and visual 
feedback in Advanced Driver Assistance Systems (ADAS) on driver 
behavior and emotional response. After in total of 10 driving sessions 
from five participants on a well-designed high-fidelity driving 
simulator, results indicated a higher compliance rate and stronger 
emotional reactions, particularly anger, sadness, and surprise, towards 
audio-only reminders. While bimodal feedback did not significantly 
enhance performance, participants reported increased happiness 
when visualizing the AI assistant alongside audio reminders. This is 

possibly due to the novelty of avatar technology, with drivers being 
unaccustomed to interacting with or observing these virtual assistants.

Overall, this study contributes to the extended research in the field 
of human-machine interaction, specifically in the study of Advanced 
Driving Assistance Systems. Future research will aim to address the 
limitations identified in this pilot study by refining the study protocol 
to enhance robustness and generalizability. In future research, we plan 
to investigate specific auditory cue types, such as voice pitch, speech 
style, and tone, that may optimize the driver experience and contribute 
to developing more intuitive, human-centered interfaces to enhance 
driver-assistant interaction. Additionally, expanding the sample size 
in future studies will improve data accuracy and enhance the 
generalizability of the quantitative findings. Through these 
advancements, this research aims to strengthen the theoretical 
foundation of automotive user interface design, highlighting the 
critical role of auditory and multimodal feedback in improving driver 
engagement and satisfaction.
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Participants’ preference feedback.
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