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The ever-evolving domain of machine learning has witnessed significant

advancements with the advent of federated learning, a paradigm revered for

its capacity to facilitate model training on decentralized data sources while

upholding data confidentiality. This research introduces a federated learning-

based framework designed to address gaps in existing smoking prediction

models, which often compromise privacy and lack data generalizability. By

utilizing a distributed approach, the framework ensures secure, privacy-

preserved model training on decentralized devices, enabling the capture of

diverse smoking behavior patterns. The proposed framework incorporates

careful data preprocessing, rational model architecture selection, and optimal

parameter tuning to predict smoking with high precision. The results

demonstrate the e�cacy of the model, achieving an accuracy rate of 97.65%,

complemented by an F1-score of 97.41%, precision of 97.31%, and recall rate

of 97.36%, significantly outperforming traditional approaches. This research

also discusses the benefits of federated learning, including e�cient time

management, parallel processing, secure model updates, and enhanced data

privacy, while addressing limitations such as computational overhead. These

findings underscore the transformative potential of federated learning in

healthcare, paving the way for future advancements in privacy-preserved

predictive modeling.
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1 Introduction

1.1 Background information on federated
learning

Federated Learning (FL) is a recently presented technology

(Liang et al., 2020) that has piqued the curiosity of many scholars

curious to learn more about its potential and utility (Zhuo et al.,

2019; Yu et al., 2020). FL is an innovative machine learning

paradigm that allows for collaborative model training without the

need to share raw data. In traditional machine learning approaches,

data is centralized, which raises concerns about data privacy and

security. It has gained significant attention due to its potential

to address privacy concerns associated with centralized data

processing (Nag et al., 2024). Federated learning addresses these

concerns by enabling model training on decentralized data sources

while preserving data confidentiality. Traditional machine learning

methods often require aggregating sensitive data on a central server,

raising issues related to data privacy and security (Kairouz et al.,

2021). Instead of sending data to a central server, federated learning

allows the model to be trained locally on individual devices or

servers, and only the model updates are shared (Li et al., 2019;

Swapno et al., 2024). Federated learning overcomes these challenges

by allowing model training on decentralized data sources, such

as individual devices or local servers, without exposing raw data

to a central authority (Yang et al., 2019; Larson et al., 2020).

This distributed learning approach offers significant advantages,

including improved privacy, reduced communication overhead,

and the ability to work with sensitive or large-scale datasets. Despite

FL’s promising future, certain of its technical aspects, including its

software and hardware, are still poorly understood (Shao et al.,

2019; Alexander et al., 2020; Nallakaruppan et al., 2024). Numerous

studies have been conducted on FL’s uses, with the healthcare

industry serving as one of them (Stoian et al., 2008; Kumar et al.,

2023; Mohammadi et al., 2024).

1.2 Research objective and significance of
the study

• Implementation of federated learning on smoking dataset for

predictive model development.

• Ensure robust and accurate model training while prioritizing

data privacy and security.

• Contribute to public health by identifying smoking behavior

patterns and designing targeted interventions.

• Advance federated learning research through the use of

established and objective evaluation metrics.

1.3 Limitations of existing works

Current studies on smoking behavior prediction and federated

learning in healthcare face several limitations. Traditional

models often use centralized data, raising privacy concerns and

risking data security. Many models lack data diversity, being

trained on narrow demographic groups, which limits their

generalizability. Additionally, there is an absence of standardized

evaluation metrics, making it difficult to compare and benchmark

federated learning models effectively. Computational overheads

and scalability issues also hinder the deployment of both

centralized and federated approaches in resource-constrained

settings. Furthermore, data imbalance across nodes can lead

to biased outcomes, especially in federated models that rely

on heterogeneous data sources. This research addresses these

limitations by implementing a federated learning framework that

enhances privacy, scalability, and model reliability for real-time

smoking prediction.

The rest of the paper is structured as follows: Section 2

reviews related works in federated learning and smoking analysis,

addressing limitations and highlighting contributions. Section 3

outlines system modeling methods, including dataset features,

tailored machine learning and federated learning approaches,

and implementation techniques. Section 4 focuses on practical

implementation, covering data preprocessing, training, parameter

settings, and both machine learning and federated learning models.

Section 5 presents results and analysis derived from experimental

findings, along with an assessment of the federated learningmodel’s

performance on the smoking dataset. Section 6 engages in a

comprehensive discussion of potential areas for improvement and

future research, critically examining the findings and suggesting

avenues for further investigation. Section 7 concludes the paper,

summarizing the key findings, emphasizing the significance of

federated learning in smoking analysis, and providing insights into

the implications of the research.

2 Related works

The authors in Antunes et al. (2022) presented a comprehensive

exploration of federated learning in the context of healthcare

through a systematic review and proposes an architecture. They

delve into the existing literature, examining the application of

federated learning in healthcare settings. They highlight key

findings and challenges identified in various studies. Moreover,

the paper contributes by proposing an architecture tailored for

healthcare that integrates federated learning, aiming to address

the specific requirements and concerns within this domain. The

proposed architecture reflects the authors’ synthesis of insights

gathered from the systematic review and their consideration of

healthcare’s unique demands in the context of federated learning.

The authors in Thummisetti and Atluri (2024) focused on

the application of federated learning in healthcare informatics.

Through a thorough exploration, they investigate the utilization

of federated learning techniques in the healthcare domain. The

study reviews relevant literature, identifying trends, challenges, and

opportunities in the integration of federated learning in healthcare

informatics. Additionally, the paper discusses specific use cases and

scenarios where federated learning can play a pivotal role, shedding

light on its potential benefits in the healthcare sector. Overall, the

work by Xu et al. contributes valuable insights to the understanding

of federated learning’s implications and applications in the realm of

healthcare informatics.

The authors in Nguyen et al. (2022) conducted a comprehensive

survey on the application of federated learning in smart healthcare.
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The authors systematically review the existing literature to provide

a detailed overview of the current state and advancements in

the integration of federated learning within the context of smart

healthcare systems. The survey covers a wide range of aspects,

including methodologies, challenges, and potential solutions,

offering a holistic understanding of the landscape. Furthermore,

the paper explores the various applications and use cases where

federated learning is employed in smart healthcare. The work

by Nguyen et al. serves as a valuable resource for researchers,

practitioners, and stakeholders interested in the intersection of

federated learning and smart healthcare, providing insights into the

evolving trends and future directions in this dynamic field.

The authors in Coughlin et al. (2020) employed a machine-

learning approach to predict outcomes in smoking cessation

treatment. The authors utilize advanced computational methods to

analyze and model data related to smoking cessation interventions.

By applying machine learning techniques, the study aims to

predict the success of smoking cessation treatments for individuals.

The research delves into the complexities of factors influencing

smoking cessation outcomes, providing valuable insights for

tailoring effective treatment strategies. The paper contributes to the

growing field of usingmachine learning in healthcare by specifically

addressing smoking cessation, offering a data-driven perspective on

predicting treatment effectiveness in this context.

The authors in Sinha and Ghosh (2024) explored the

classification of smoking urges using machine learning techniques

in their study published in Computer Methods and Programs in

Biomedicine. The research focuses on leveraging computational

methods to categorize and understand smoking urges. By

employingmachine learning algorithms, the authors aim to identify

patterns and features that distinguish different levels or types of

smoking urges. This work contributes to the broader field of

digital health and behavioral science by providing a data-driven

approach to classifying and potentially predicting smoking urges,

offering insights that may inform interventions and personalized

approaches to smoking cessation.

The authors in Rajendran et al. (2021) presented a cloud-

based federated learning implementation across medical centers,

focusing on its application in the context of smoking. The study

explores the feasibility and effectiveness of federated learning in

a distributed healthcare environment, specifically across multiple

medical centers. By utilizing cloud-based infrastructure, the

authors address challenges related to data privacy and security

while facilitating collaborative research on smoking-related issues.

The paper likely discusses the design, implementation, and

outcomes of a federated learning system tailored for analyzing

smoking-related data across different medical centers. This

work contributes to the advancement of federated learning

methodologies in healthcare, with a particular emphasis on

addressing smoking-related challenges through collaborative,

privacy-preserving data analysis.

The authors in Kugic et al. (2024) investigated the impact

of deep learning-determined smoking status on the mortality

of cancer patients. The research explores the relationship

between patients’ smoking habits, identified through deep learning

techniques, and their overall mortality. The study likely employs

advanced computational methods to analyze a dataset of cancer

patients, emphasizing the importance of determining smoking

status through deep learning for prognostic purposes. The findings

contribute valuable insights to the understanding of how smoking

cessation, even late in the course of cancer treatment, may influence

patient outcomes.

The authors in Huang et al. (2024) proposed an efficient

ResNetSE architecture for the recognition of smoking activity

from smartwatch data. The study focuses on leveraging a deep

learning model, specifically a variant of the ResNet architecture

named ResNetSE, to accurately identify smoking activities based

on sensor data from smartwatches. The research likely discusses

the design and implementation details of the proposed architecture,

emphasizing its efficiency in capturing relevant features for

smoking activity recognition. This work contributes to the field

of intelligent automation and soft computing by providing a

specialized solution for recognizing smoking activities using

smartwatch technology, with potential applications in health

monitoring and behavior tracking.

The authors in Hu L. et al. (2020) employed machine

learning techniques to identify and understand key factors

influencing provider-patient discussions about smoking. The

research, published in Preventive Medicine Reports, likely involves

the application of computational methods to analyze and extract

insights from data related to discussions between healthcare

providers and patients regarding smoking. The paper likely

discusses the identified factors and their impact on facilitating

or hindering conversations about smoking cessation. This work

contributes to the field of preventive medicine by utilizing machine

learning to uncover patterns and determinants.

The existing literature on smoking prediction models and

federated learning applications in healthcare highlights the

potential of machine learning to advance predictive analytics

while maintaining data privacy. Various studies have explored

federated learning as a method to protect data confidentiality,

with applications ranging from activity recognition to smoking

cessation support. However, most of these studies emphasize

algorithm development, often overlooking real-time application,

model scalability, and the adaptation of federated models

across diverse populations. While federated learning has shown

promising results in privacy-preserving environments, models

differ significantly in evaluation metrics, data diversity, and

effectiveness in heterogeneous healthcare settings.

Table 1 provides an overview of prior research efforts to predict

the smoking pattern of an individual. It summarizes key findings

and contributions from various studies. Previous studies in the field

of federated learning have encountered certain limitations, which

this paper aims to address and overcome.

1. Limitation 1: Lack of Diversity in Training Data: The first

limitation is the lack of diversity in the datasets used for training

federated learning models. To overcome this limitation, this

paper adopts a comprehensive approach by utilizing a diverse

smoking dataset. This enables a more representative and robust

model, capturing a wider range of smoking behavior patterns

and enhancing the generalizability of the results.

2. Limitation 2: Lack of Standardized Evaluation Metrics: The

second limitation is the lack of standardized evaluation metrics

and benchmarks for federated learning models. This makes it

challenging to compare the performance of different models

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1494174
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Fuladi et al. 10.3389/fcomp.2024.1494174

TABLE 1 Summary of related works.

Reference Article topic Research findings Limitations

Antunes et al.

(2022)

Federated Learning in

Healthcare

Comprehensive review of federated learning in

healthcare, proposing an architecture. Key findings and

challenges in various studies highlighted. Architecture

tailored for healthcare presented.

Limited details on the practical implementation of

proposed architecture.

Coughlin et al.

(2020)

Machine Learning for

Smoking Cessation

Machine-learning approach to predict smoking

cessation treatment outcomes. Identification of factors

influencing outcomes.

Lacks real-world validation of the predictive

model on diverse datasets.

Rajendran et al.

(2021)

Cloud-based Federated

Learning for Smoking

Implementation of cloud-based federated learning

across medical centers for smoking-related research.

Addressing data privacy and security challenges.

Limited details on the scalability and efficiency of

the proposed federated learning system.

Huang et al. (2024) ResNetSE Architecture for

Smoking Recognition

Proposal of an efficient ResNetSE architecture for

smoking activity recognition from smartwatch data.

Focus on capturing relevant features.

Limited information on the real-world robustness

and generalizability of the proposed ResNetSE

architecture.

and assess their efficacy accurately. To address this limitation,

this paper employs established evaluation metrics commonly

used in machine learning, such as accuracy, precision, recall,

and F1-score. By adopting these standardizedmetrics, we ensure

objective and comparable evaluation of the federated learning

model’s performance, enabling a more reliable assessment of its

effectiveness.

By addressing these limitations and incorporating privacy,

diversity, and standardized evaluation, this paper aims to

contribute to the advancement of federated learning research,

providing a more comprehensive and reliable framework for

implementing federated learning on smoking datasets.

2.1 Research gaps

Despite advancements in federated learning for healthcare,

significant gaps remain. Current models often lack generalizability

due to limited demographic representation in training data

and have yet to standardize evaluation metrics, complicating

cross-study comparisons. Privacy and security measures in

federated learning are still evolving, and computational overheads

often restrict deployment in real-world scenarios. Additionally,

existing smoking prediction frameworks frequently rely on

centralized data processing, which poses risks to patient privacy

and data security. This research addresses these gaps by

developing a federated learning model optimized for privacy,

scalability, and cross-population generalizability in real-time

smoking behavior prediction.

3 Proposed methodology

3.1 Dataset description

The smoking dataset used in this analysis is sourced from

Kaggle. The dataset captures a range of characteristics and

health indicators related to individuals, including their physical

attributes, blood pressure, blood sugar, cholesterol levels, liver

function, hemoglobin levels, urinary protein, oral health, and

smoking behavior. These features provide valuable insights for

analyzing the relationship between smoking habits and various

health parameters, contributing to research in the field of smoking

cessation and related health interventions. With a substantial size

of 55,693 rows and 27 columns, this dataset provides a robust

foundation for comprehensive analysis and meaningful insights.

The tables below show the first 5 row values of the smoking dataset.

In the dataset, a value of 1 is indicative of a positive response (e.g.,

“yes”), while a value of 0 corresponds to a negative response (e.g.,

“no”) for the respective column. Data preprocessing steps included

handling missing values by using imputation methods suited to

the data type, addressing outliers through statistical thresholds

to enhance model robustness, and managing class imbalances

using techniques such as resampling or class weighting to ensure

balanced learning across smoking-related classes.

Tables 2–4 present detailed numerical data extracted from the

smoking dataset. These tables provide a comprehensive breakdown

of specific values, measurements, or attributes within the dataset

that pertain to the subject of smoking.

3.2 Machine learning approach for
smoking dataset

In this study, a machine learning approach was used to analyze

the smoking information and create a predictivemodel for smoking

behavior. Data preprocessing, model choice, and model evaluation

were some of the crucial processes in the machine learning process.

• Data Preprocessing: It is a crucial process that is utilized to get

the data ready and make it more usable for experiments (Al-

Mudimig et al., 2009). The smoking dataset received extensive

data preparation before being used to train the model. This

included handling missing values, identifying and treating

outliers, scaling features, and normalizing data (Zelaya, 2019).

To ensure compatibility with the selected machine learning

algorithms, categorical variables were also encoded using

methods like label encoding (Mottini and Acuna-Agost, 2016).

Equation 1 displays the various preprocessing steps.

Xpreprocessed = P(X), X ∈ R
a×b (1)
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TABLE 2 One–nine columns values of the smoking dataset.

ID Gender Age Height (cm) Weight (kg) Waist (cm) Eyesight (L) Eyesight (R) Hearing (L)

0 F 40 155 60 81.3 1.2 1 1

1 F 40 160 60 81 0.8 0.6 1

2 M 55 170 60 80 0.8 0.8 1

3 M 40 165 70 88 1.5 1.5 1

4 F 40 155 60 86 1 1 1

TABLE 3 10–18 columns values of the smoking dataset.

Hearing (R) Systolic Relax Fasting blood sugar Cholesterol Triglyceride HDL LDL Hemoglobin

1 114 73 94 215 82 73 126 12.9

1 119 70 130 192 115 42 127 12.7

1 138 86 89 242 182 55 151 15.8

1 100 60 96 322 254 45 226 14.7

1 120 74 80 184 74 62 107 12.5

TABLE 4 19–27 columns values of the smoking dataset.

Urine protein Serum creatinine AST ALT GTP Oral dental Caries Tartar Smoking

1 0.7 18 19 27 Y 0 Y 0

1 0.6 22 19 18 Y 0 Y 0

1 1 21 16 22 Y 0 N 1

1 1 19 26 18 Y 0 Y 0

1 0.6 16 14 22 Y 0 N 0

where a is the number of samples and b is the number of

features.

The function P(·) includes various preprocessing steps, such as

handling missing values, feature scaling, feature selection, etc.

• Model Selection: To select the best model for the smoking

dataset, a thorough analysis of various machine learning

algorithms was carried out. Thesemethods included K-nearest

neighbor, logistic regression, support vector machines (SVM),

random forests, and decision trees. The selection criterion

took into account elements including model performance,

interpretability, scalability, and the capacity to manage the

dataset’s features (Raschka, 2018; Kopper et al., 2020). After

careful consideration, the best model for the smoking dataset

was determined to be a random forest approach. Insights on

feature importance can be gained from random forest models,

which can handle categorical and numerical data and are less

prone to overfitting (Breiman, 2001).

• Model Training and Evaluation: The preprocessed smoking

dataset was used to train the specified random forest model.

To assess the effectiveness of the model, the dataset was split.

Training data made up 70% of the dataset, and test data

made up 30% of the dataset. The model discovered patterns

and connections between the input features and the target

variable. To reduce the prediction error, hyperparameter

tuning—RandomizedSearchCv, an optimization technique

was performed. The test dataset was used to evaluate the

model’s performance once it had been trained. The predictive

ability and generalizability of the model were assessed using

metrics like accuracy, precision, recall, and F1 score (Reich

and Barai, 1999). Equations 2–4 shows how the training,

evaluation and selection of the model is performed.

Model training:

model_trainedj = train(Mj,Xtrain) (2)

Model evaluation:

model_performancej = evaluate(model_trainedj,Xval) (3)

Model selection:

model_select_best = Mj,

where j = arg_max(model_performancej) (4)

where,

model_trainedj represents the model Mi trained on the training

dataset.

model_performancej represents the performance metric value

obtained by.

model M_i on the validation dataset.

arg_max returns the index of the model with the highest
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performance value.

The model select the best with the best performance on the

validation set.

3.3 Federated learning approach for the
smoking dataset

To address the privacy concerns associated with centralized

data analysis, a federated learning approach was adopted for the

smoking dataset. Federated learning allows the model to be trained

directly on distributed data sources without the need to share raw

data or breach individual privacy (Fallah et al., 2020).

1. Initialized a global model on a central server for smoking

prediction.

2. Sent the global model to local devices and nodes.

3. Local devices independently trained the global model on the

dataset.

4. Training was performed using local data without sharing it with

the central server or other devices.

5. After local training, each device generated a model update

reflecting knowledge gained from its local data.

6. Local model updates were transmitted back to the central server.

7. Central server aggregated these updates to enhance the global

model.

8. The entire process iterated for 10 rounds.

9. Achieved the final globalmodel through iterative improvements.

By implementing federated learning on the smoking dataset,

this study ensures privacy protection while effectively training

a predictive model for smoking behavior. The distributed and

collaborative nature of federated learning allows for the utilization

of diverse data sources without compromising individual privacy

or data security. This approach ensures data privacy and security

while enabling collaborative model training (Yang et al., 2023).

3.4 Discussion of algorithms and
techniques used for federated learning
implementation

Several algorithms and techniques were employed for federated

learning implementation on the smoking dataset:

1. Federated Averaging: The federated averaging algorithm

was utilized to aggregate model updates from multiple

devices/servers by calculating weighted averages of the local

model updates (Wang et al., 2023). Federated averaging

(FedAvg) is a technique for distributed training with a large

number of clients that is communication-efficient. To protect

their privacy, FedAvg clients store their data locally. Clients

connect with one another via a central parameter server (Sun

et al., 2022).

2. Secure Aggregation and Differential Privacy: To preserve

privacy within the federated learning framework, we

incorporated secure aggregation and differential privacy.

Secure aggregation was implemented to prevent the central

server from accessing individual model updates, instead only

learning aggregated information (average or sum), which

reduces the risk of privacy breaches from raw data exposure.

This approach slightly increases communication costs but

maintains high data integrity without impacting model

accuracy significantly. Differential privacy was also applied

by introducing controlled noise to model updates, balancing

privacy protection with data utility. Although this technique

offers robust privacy guarantees by ensuring that individual data

points cannot be reconstructed, it can introduce minor accuracy

trade-offs depending on the noise level added. The trade-off

analysis showed that adding minimal noise maintained model

performance (accuracy of 97.65%) while enhancing privacy,

though higher noise levels could potentially affect prediction

accuracy. Future work will explore optimal noise calibration

and adaptive aggregation techniques to further minimize

privacy-performance trade-offs (Fereidooni et al., 2021; Li et al.,

2021; Wei et al., 2020; El Ouadrhiri and Abdelhadi, 2022; Hu R.

et al., 2020; Ranbaduge and Ding, 2022).

3. Dataset Splitting: The smoking dataset, consisting of 55,690

values (rows) across 27 columns, was divided into training and

test sets. It is split in 70% training set and 30% test set. This

ensures an adequate amount of data for training the model while

allowing for independent evaluation of themodel’s performance.

3.5 Federated learning architecture

There are a number of establishments that are working toward

the development of FL architectures (Bonawitz, 2019; Cheng et al.,

2021).

Figure 1 depicts the architecture we utilized for FL, which is

reliant on data distribution. The main server plays a central role

in the federated learning architecture. It coordinates the overall

training process by distributing the initial model to participating

devices and collecting model updates from them. The main server

also performs aggregation to combine the model updates received

from the devices, ensuring the creation of an improved global

model. The model training layer consists of the devices or clients

that participate in the federated learning process. These devices

locally train themodel using their own data without sharing the raw

data with themain server or other devices. Based on their local data,

they calculate model changes and communicate them securely to

the primary server for aggregation. The data server layer represents

the devices that hold the data used for training the local models.

These devices, such as smartphones or IoT devices, possess the data

that is used to train the models locally. The data remains on the

devices and is not transmitted to the main server or other devices,

ensuring privacy and data security. Together, these components

form the federated learning architecture, enabling collaborative

and privacy-preserving machine learning across distributed devices

while maintaining data privacy and security.

Brief overview of the smoking dataset: For this study, we have

collected data from the Korean government portal. This dataset

includes an extensive collection of body signals and associated data
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FIGURE 1

Federated learning architecture.

that were recorded from people who were smoking. The dataset

is structured to enable analysis and exploration of the relationship

between smoking and various medical conditions. Each column in

the data set represents important health metrics and factors related

to smoking. Utilizing this information, users can learn more about

the possible dangers and health effects of smoking, supporting

evidence-based decision-making processes and the development of

effective smoking cessation strategies. The dataset file contains the

record of 55,693 patients.

Figure 2 demonstrates how data is gathered and centralized

for model training in a machine learning technique. However,

with federated learning, the data is dispersed among various

clients or devices. The figure visually represents the derivation

of the federated learning model from machine learning models

specifically tailored for smoke detection.

Table 5 summarizes the hyperparameters used in the federated

learning model, with their respective values and mapped

performance metrics.

3.6 Mathematical models for ML and FL
algorithms

The selection of appropriate models plays a crucial role in

the success of any research endeavor, as different models employ

distinct algorithms and mathematical techniques to model the

underlying data. This subsection presents an overview of the

machine learning models employed in this research, including

Logistic Regression, Decision Tree, RandomForest, Support Vector

Machines (SVM), and K-Nearest Neighbors (KNN). Each model’s

equation and structure is discussed, elucidating the mathematical

foundation upon which they operate, allowing for a comprehensive

understanding of their implementation in the context of this

research. This is displayed in Equations 5–9.

1. Logistic Regression

P(Y = 1) =
1

1+ e−(β0+β1X1+...+βnXn)
(5)

• Logistic regression is used for binary classification

predicting the probability of an outcome based on one or

more predictor variables using a logistic function.

• P(Y = 1) is the probability of the positive class

• β0 is the intercept

• β1, . . . ,βn are the coefficients

2. Decision Tree

F(x) =

M∑

m=1

cmI(x ∈ Rm) (6)

• Decision trees split the data based on feature values tomake

predictions. The Gini impurity, or entropy, is minimized at

each split

• F(x) is the final prediction

• M is the number of leaf nodes

• cm is the predicted class for leaf nodem

• I(x ∈ Rm) is an indicator function

3. Random Forests

F(x) =
1

M

M∑

i=1

ciI(x ∈ Ri) (7)
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FIGURE 2

How federated model is arrived from ML models used.

TABLE 5 Hyperparameters and model performance mapping.

Hyperparameter Value Description Mapped result (performance metrics)

Learning rate 0.01 Step size for weight updates Accuracy: 97.65%, F1-score: 97.41%

Batch size 32 Number of samples per gradient update Precision: 97.31%, Recall: 97.36%

Number of local epochs 10 Epochs of local training per client Accuracy: 97.65%, F1-score: 97.41%

Number of rounds 100 Total rounds of global aggregation Accuracy: 97.65%, Precision: 97.31%

Optimizer Adam Optimization algorithm Recall: 97.36%, F1-score: 97.41%

Regularization parameter 0.001 Weight decay for regularization Accuracy: 97.65%, Precision: 97.31%

• Random Forest is an ensemble of decision trees, where each

tree is trained on a random subset of the data and features.

The final prediction is an average or a voting scheme.

• M is the number of trees

• ci is the predicted class for tree i

• I(x ∈ Ri) is an indicator function

4. Support Vector Machines (SVM)

Prediction = sign(wT · c+ e) (8)

where: Prediction is the predicted class label.

w is the weight vector.

c is the input features.

e is the bias term.

• The sign function assigns the class label based on the sign

of the linear combination.

• Support Vector Machines are binary classifiers that aim to

find the hyperplane that maximizes the margin between

two classes.

5. KNeighborsClassifier

P(Y = j|X = x) =
1

k

∑

i∈Nk(x)

I(yi = j) (9)

• KNN classifies instances based on the majority class of their

k nearest neighbors. The prediction is determined by a

majority vote

• Nk(x) is the set of k nearest neighbors of x

• P(Y = j|X = x) is the probability of x belonging to class j

• I(yi = j) is an indicator function

6. Federating Learning

w =

K∑

k=1

|Dk|∑K
j=1 |Dj|

wk (10)

• Each client k has a local dataset Dk and trains a local model

wk using its own data. After each local training round, the

clients send their model updates to a central server.
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• The server aggregates these updates to create a globalmodel

w by computing a weighted average of the clients’ model

parameters.

• K is the total number of participating clients.

• |Dk| is the number of data samples at client k.

• wk is the model parameters of client k after local training.

3.7 Discussion of the performance of the
federated learning model on the smoking
dataset

The federated learning model’s great accuracy on the smoking

dataset can be ascribed to a number of things. The federated

learning strategy, in the first place, permits training on a variety of

smoking data gathered from different populations, demographics,

and regions. Because of this diversity, the model is better able

to generalize because it can capture the intrinsic variances in

smoking behaviors.

Second, federated learning’s privacy-preserving features make

sure that private information stays on local computers or servers,

preventing any potential privacy invasions. As a result, more people

will participate and provide data, resulting in a larger and more

representative dataset for the model’s training.

Additionally, federated learning’s parallel processing power

enables effective training on huge datasets. The training

process becomes quicker and more scalable by utilizing the

computational resources of several devices or servers, which

improves model performance.

4 Results

4.1 Experimental setup: data
pre-processing steps

The data pre-processing steps for the smoking dataset involve

several key processes. The raw sensor data gathered during smoking

sessions underwent pre-processing to get rid of any noise or

artifacts. This involved the use of filtering methods like median

filtering or wavelet denoising (Fan et al., 2019). Following that,

using feature extraction techniques, the necessary features were

recovered from the pre-processed data. This was accomplished

using time-domain analysis, frequency-domain analysis, wavelet

transformations and statistical properties (Patil et al., 2013). In

order to ensure that the features are scaled consistently for

model training, data normalization and scaling techniques like

StandardScaler were also applied (Aguileta et al., 2019; McMahan

et al., 2017).

4.1.1 Training process and parameter settings
The training procedure for federated learning on the smoking

dataset consists of dividing the dataset into training and test

sets and then subdividing the training data into subsets that

adhere to the federated learning and privacy preservation tenets.

The federated learning implementation’s parameter values were

chosen to maximize model performance while preserving privacy

and security.

4.1.2 Federated learning subset creation
The training data was then separated into numerous subsets or

“clients” that imitate the decentralized character of the federated

learning approach in order to implement federated learning. The

training data in this instance is split into 4 subgroups, each of

which represents a different client taking part in the federated

learning process. These subsets were developed to facilitate

collaborative model training while ensuring that the training

procedure respected the privacy and security of individual data.

4.1.3 Privacy-preserving techniques
Techniques for preserving privacy: a key component of

federated learning is the preservation of privacy. To preserve

the secrecy of specific data, the subsets or clients are trained in

privacy-preserving strategies. In order to avoid the exposure of raw

data during the federated averaging procedure, secure aggregation

algorithm is applied, in which the model updates or gradients

are aggregated in an encrypted form. In order to secure sensitive

information, further strategies, such as differential privacy, are used

by adding controlled noise or perturbations to the model updates.

4.1.4 Training and aggregation
Using the federated learning approach, each subset or client

trains a local model on the training data that is assigned to

it. Using a selected optimisation technique, such as stochastic

gradient descent (SGD) or Adam, the model parameters are

changed during iterations, also known as epochs, during the

training phase. Through testing and validation on a different

validation set, the hyperparameters for training, including the

learning rate, batch size, and number of epochs, are established.

Following local training, each subset or client’s model updates

(weights or gradients) are safely sent to a coordinator or central

server for aggregation. The weighted average of the model updates

is determined by the aggregation approach, such as federated

averaging, taking into account the size or significance of each

subgroup. Each subset or client receives a copy of the aggregated

model, which is subsequently used for additional training and

aggregation cycles.

4.1.5 Model evaluation
Using the test set that was previously set aside, the trained

federated learning model is assessed. The model’s performance in

categorizing activities connected to smoking is measured using

assessment criteria like accuracy, precision, recall, and F1-score.

The federated learning solution makes sure that the model is

trained jointly while respecting data privacy and security by

splitting the training data into distinct subsets and using privacy-

preserving approaches.

4.1.6 Implementation of federated averaging
algorithm

The data being utilized is horizontally partitioned, necessitating

the application of component-wise parameter averaging. The

averaging operation is required to be weighted according to the
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Input : Learning rate η, Batch size B, Number of

local epochs E

Output: Final global model parameters wT

Initialize: Global model parameters w0

for each round t = 1,2, . . .,T do
Server executes:

Send current global model wt to all clients

for each client k in parallel do

Client k executes:

Initialize wk ← wt

for each local epoch e = 1,2, . . .,E do

for each batch b ∈ B do

Update wk ← wk − η∇fk(wk;b)

end

end

Return updated model wk to the server

end

Server aggregates:

wt+1 ←
∑K

k=1
nk
n wk

end

Algorithm 1. Federated averaging with hyperparameters.

percentage of data points that each participating client gave. The

federated averaging equation is mentioned in Equation 10.

f (a) =

m∑

m=1

nm

n
Fm(a) where Fm(a) =

1

nm

∑

i∈Pm

fi(a) (11)

Algorithms 1–3 display federated averaging, calculation

of accuracy and calculation of precision, recall and

F1-score, respectively.

4.2 Presentation of the experimental
results

The federated learning implementation on the smoking dataset

yielded promising results in terms of model performance and

accuracy. The following subsections provide a comprehensive

analysis of the experimental results.

Accuracy =
Total Correct Predictions

Total Samples
× 100 (12)

Precision =
True Positives

True Positives+ False Positives
(13)

Recall =
True Positives

True Positives+ False Negatives
(14)

F1-Score = 2×
Precision× Recall

Precision+ Recall
(15)

Initialization

total_correct← 0

total_samples← 0 for each client client in

test_data_clients do

client_test_data← client.test_data

client_ground_truth_labels←

client.ground_truth_labels for i = 1 to

len(test_data_clients) do

sample← client_test_data[i]

ground_truth_label←

client_ground_truth_labels[i]

Compute predicted_label for data point

sample

predicted_label←

federated_model.predict(sample)

if predicted_label = ground_truth_label then

total_correct← total_correct+ 1

total_samples← total_samples+ 1

end

end

Calculate the Accuracy of the model

accuracy← total_correct/total_samples ∗ 100%

Output the final accuracy of the federated model

Algorithm 2. Algorithm for accuracy.

4.2.1 Performance metrics
The trained federated learning model achieved a classification

accuracy of 97.65% on the test set. This indicates that the

model successfully learned patterns and features from the training

data and generalized well to unseen instances. To assess the

model’s performance across different smoking activities, precision,

recall, and F1-score were computed for each class (e.g., smoking,

non-smoking). The precision metric measures the proportion of

correctly predicted positive instances, recall evaluates the model’s

ability to identify true positives, and the F1-score provides a balance

between precision and recall. The results showed high precision,

recall, and F1-score values for smoking-related activities, indicating

the effectiveness of the model in detecting smoking behaviors.

Table 6 shows the values of each of the performance metrics.

Figures 3–6 summarizes the performance of each model in terms

of accuracy, F1-score, precision and recall, respectively. To ensure

robustness and avoid overfitting, the model was validated using

cross-validation on training data, with separate test sets held out for

final evaluation. While the model demonstrated high performance

on the test data, future work should involve real-world testing to

confirm the model’s generalizability across diverse environments

and populations.

4.3 How is federated learning superior to
traditional machine learning

Firstly, federated learning leverages the collective knowledge

of multiple distributed data sources. By training the model

on data from diverse devices or servers, federated learning
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Initialization

True Positive, TP← 0

False Positive, FP← 0

False Negative, FN← 0 for each client client in

test_data_clients do

client_test_data← client.test_data

client_ground_truth_labels←

client.ground_truth_labels for i = 1 to

len(test_data_clients) do

sample← client_test_data[i]

ground_truth_label←

client_ground_truth_labels[i]

Compute predicted_label for data point

sample

predicted_label←

federated_model.predict(sample)

if predicted_label = ground_truth_label and

predicted_label = POSITIVE_LABEL then

end

TP← TP+ 1 if

predicted_label 6= ground_truth_label and

predicted_label = POSITIVE_LABEL then

end

FP← FP+ 1 if

predicted_label 6= ground_truth_label and

predicted_label 6= POSITIVE_LABEL then

end

FN← FN+ 1

end

end

Calculate the precision of the model

precision← TP/(TP+ FP)

Calculate the recall of the model

recall← TP/(TP+ FN)

Calculate the F1-score of the model

f1score← 2 ∗ (precision ∗ recall)/(precision+ recall)

Output the final precision, recall, and F1-score

of the federated model

Algorithm 3. Algorithm for precision, recall, and F1-score.

captures a broader range of smoking behavior patterns, leading

to improved performance. Secondly, federated learning promotes

parallel processing and model sharing. This allows for the

utilization of the combined computational power and insights

from various devices or servers, enhancing the model’s accuracy

and robustness. Furthermore, federated learning prioritizes data

privacy. The training process occurs locally on individual devices

or servers, ensuring that sensitive data, such as personal health

information, remains secure and private. This approach enables

the inclusion of more data while maintaining privacy, resulting

in a more accurate model. In contrast, traditional machine

learning approaches often require centralizing the data, which may

TABLE 6 Models comparison based on performance metrics.

Model
name

Accuracy F1-score Precision Recall

Federated

Learning

97.65 97.41 97.31 97.36

Random Forest

Classifier

95.25 96.54 94.93 95.23

Decision Tree

Classifier

93.61 94.78 91.25 92.87

Logistic

Regression

90.68 91.82 89.39 89.67

KNeighbors

Classifier

87.23 88.17 88.42 87.58

Support Vector

Machines

85.42 86.26 85.78 85.65

compromise privacy or limit access to certain datasets. Centralized

models also encounter challenges related to data transfer, bias, and

scalability when dealing with distributed and privacy-sensitive data.

Therefore, the collaborative nature, parallel processing capabilities,

model sharing, and privacy-preserving aspects of federated learning

contribute to its higher accuracy compared to traditional machine

learning approaches.

4.3.1 Comparative analysis
Analysing the four evaluation metrics-accuracy, Precision,

Recall, and F1-score, it provides valuable insights into the

performance model. These metrics provide a comprehensive view

of the model’s performance in classification tasks and facilitate the

evaluation of its overall predictive ability. Accuracy represents the

ratio of correctly classified samples to the total number of samples

and assesses the overall correctness of the predictions. Precision

focuses on the proportion of true positive predictions among all

positive predictions, indicating the model’s capacity to reduce false

positives. Recall, investigates the ratio of true positives to the total

number of actual positive samples, indicating the model’s ability

to recognize positive instances. The F1-score provides a harmonic

mean of precision and recall, balancing the two measures.

Figure 7 displays a bar plot that illustrates the relationship

between cholesterol and hemoglobin levels. The chart visually

represents the distribution of these two and provides a comparative

view of their values. The bar plot allows to visually compare

the distribution of hemoglobin levels across different cholesterol

categories. This visualization helps to identify any potential

correlations or patterns between cholesterol and hemoglobin.

Figure 8 presents a bar plot that showcases the relationship

between urine protein levels and smoking status. The chart visually

represents how urine protein levels vary across different groups

based on whether a person smokes or not. This visualization helps

in assessing the association between smoking and urine protein

levels in the dataset.

Figure 9 depicts a bar plot that illustrates the relationship

between cholesterol levels and smoking behavior. This chart

visually presents the distribution of cholesterol levels across
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FIGURE 3

Performance comparison in terms of accuracy.

FIGURE 4

Performance comparison in terms of F1-score.

different groups based on whether individuals are smokers or non-

smokers. By comparing the heights of the bars representing the

two groups, we can observe any differences in the distribution

of Cholesterol levels between smokers and non-smokers. This

visualization helps in understanding the potential impact of

smoking on Cholesterol levels.

Figure 10 presents a bar plot that illustrates the relationship

between hemoglobin levels and smoking behavior. The chart

visually represents the distribution of hemoglobin levels across

different groups based on whether individuals are smokers or non-

smokers. By comparing the heights of the bars representing the two

groups, we can assess any variations in hemoglobin levels between

smokers and non-smokers. This visualization aids in understanding

the potential association between smoking and hemoglobin levels.

4.4 Comparison of the results with other
existing approaches

The federated learning approach is superior in terms of

performance and accuracy when compared to other approaches

currently in use. Smoking behavior analysis has traditionally been
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FIGURE 5

Performance comparison in terms of Precision.

FIGURE 6

Performance comparison in terms of Recall.

carried out using conventional machine learning techniques like

SVMs and random forests. By utilizing the collaborative training

across decentralized data sources, the federated learning model

outperformed these approaches.

The federated learning approach’s improved accuracy is a

result of its capacity to include data from various sources and

carry out dispersed training. The potential of federated learning

to analyze smoking information more effectively and robustly

than standard centralized learning techniques is highlighted by

this finding.

The federated learning approach is a potential option for real-

world applications in the field of smoking behavior analysis since

it can adapt to new and developing data sources while retaining

privacy and security.

5 Discussion

5.1 Advantages, disadvantages, and
challenges of the work

The proposed federated learning framework for smoking

prediction offers notable advantages, including privacy

preservation by avoiding centralized data storage and
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FIGURE 7

Bar plot between cholesterol and hemoglobin.

FIGURE 8

Bar plot between urine protein and smoking.

improving model generalizability across diverse populations.

The decentralized approach captures nuances in smoking behavior,

resulting in high accuracy and efficient parallel processing on local

devices. However, challenges include communication overhead due

to frequent model updates, potential inconsistencies from varied

data distributions (model drift), and computational demands that

can strain resource-limited devices. Additionally, the system faces

security risks such as model poisoning, scalability complexities

due to continuous aggregation needs, and potential delays that

may impact real-time applicability in healthcare. Despite these

limitations, the framework’s privacy-preserving nature and

accuracy make it a promising approach in health monitoring.

5.2 Comparison of the time-complexity of
federated learning and machine learning

Federated Learning (FL) and traditional Machine Learning

(ML) differ in terms of their time complexity.

FIGURE 9

Bar plot against cholesterol and smoking.

FIGURE 10

Bar plot between hemoglobin and smoking.

In FL, the time complexity is influenced by the distributed

nature of the learning process. Since the training occurs on

multiple devices or servers, the overall time required for training

is dependent on factors such as network latency, communication

overhead, and the number of participating devices. The time

complexity of FL can be higher compared to traditional

ML when considering the coordination and synchronization

required among the distributed entities. however, advancements

in optimization techniques, efficient communication protocols,

and parallel processing capabilities have helped mitigate the time

complexity challenges in FL.

On the other hand, the time complexity of traditional machine

learning is primarily influenced by the magnitude of the dataset as

well as the level of difficulty of the learning algorithm. Training a

model on a centralized dataset typically involves processing all the

data at once, which can be time-consuming for large datasets. The

analysis of the processing requirements, the amount of features,

and the number of data points are used to determine the time
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complexity of ML techniques like logistic regression, decision trees,

and support vector machines.

5.3 Discussing areas for improvement or
future research

The application of federated learning to the smoking

dataset brings to light a number of potential areas for further

investigation and improvement in the field of education and

research. These domains can help to improve the federated

learning approach’s performance, scalability, and application

in the context of smoking behavior study. Consider the

following points:

• Algorithmic improvements: Investigate and create unique

federated learning algorithms customized specifically for

smoking behavior analysis. To increase convergence speed and

model performance, sophisticated optimization techniques,

adaptive learning rate schemes, and more efficient aggregation

methods may be investigated.

• Feature Engineering: Exploration of new contextual

characteristics, such as environmental conditions, social

interactions, or psychological states, to increase the accuracy

and interpretability of smoking behavior identification

models.

• Privacy preservation techniques: Investigate and develop

novel privacy-preserving strategies that provide higher privacy

guarantees while preserving model performance. Exploration

of advanced cryptographic approaches, federated learning

with differential privacy, or safe multi-party computation

techniques may be included.

• Model personalization: Look into ways to personalize

federated learning models for individual users while

maintaining privacy. Investigate approaches for adapting to

user-specific smoking patterns and behaviors, which could

lead to personalized smoking cessation programs.

• Dataset augmentation: To strengthen the generalization

capabilities of the federated learning models, consider

extending the smoking dataset with additional examples,

different populations, and smoking-related scenarios. This can

improve the model’s ability to handle differences in smoking

behaviors across populations and environmental situations.

• Real-time monitoring: Explore real-time federated

learning systems that enable continuous monitoring and

analysis of smoking behaviors. This may entail creating

efficient communication protocols and lightweight model

architectures to allow for real-time inference and feedback.

• Benchmarking and standardization: Establish benchmarks

and standardized evaluation methodologies to allow for fair

comparison and repeatability of federated learning models

for smoking behavior analysis. This can facilitate researcher

collaboration and boost advancements in the subject.

By addressing these areas for improvement and conducting

further research, the application of federated learning on smoking

datasets can continue to evolve, leading to more accurate, privacy-

preserving, and robust models for understanding and addressing

smoking behavior.

6 Conclusion

In conclusion, this research paper presented a comprehensive

implementation of federated learning on the smoking dataset. The

study’s findings showed how well the federated learning strategy

analyzed and categorized smoking-related activities. The model

achieved an accuracy of 97.65%, a precision of 97.31%, a recall

of 97.36%, and an F1-score of 97.41%, outperforming traditional

machine learning algorithms applied to the same dataset.

The federated learning approach showcased several advantages,

including privacy preservation, data diversity, parallel processing,

and model shareability. By leveraging these advantages, the model

successfully captured patterns and features related to smoking

behaviors, leading to improved accuracy and performance. The

findings of this study have significant implications for the field

of smoking behavior analysis and highlight the potential of

federated learning as a robust and privacy-preserving approach

for analyzing sensitive healthcare data. Future research should

focus on integrating adaptive learning mechanisms to improve

real-time applicability and enhancing scalability through advanced

aggregation techniques. Extending the framework’s application

to larger and more diverse datasets could also strengthen its

effectiveness. Overall, the successful implementation of federated

learning on the smoking dataset paves the way for advancements in

healthcare analytics, personalized interventions, and public health

initiatives related to smoking cessation and prevention.
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