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Reproducible research policies
and software/data management
in scientific computing journals:
a survey, discussion, and
perspectives

Jose Armando Hernandez* and Miguel Colom

Centre Borelli, ENS Paris-Saclay, Université de Paris, CNRS, INSERM, SSA, Gif-sur-Yvette, France

Introduction: The recognized credibility crisis in scientific research has led to

an increasing focus on reproducibility studies, particularly in computer science.

Existing studies predominantly examine specific technological aspects of

reproducibility but neglect the critical interplay between authors and publishers

in enabling reproducible computational scientific research.

Methods: A systematic review was conducted following the PRISMA Literature

Review methodology, complemented by a Journals Survey. This approach

enabled a comprehensive analysis of reproducibility policies and software/data

management practices in scientific computing journals.

Results: The survey revealed significant variability in reproducibility policies and

practices across computer science journals. Many gaps and challenges were

identified, including inconsistencies in policy enforcement, lack of standardized

tools, and insu�cient recognition of software as a research artifact. The analysis

highlighted the potential of Reproducibility as a Service (RaaS) as an innovative

solution to address these challenges.

Discussion: This study underscores the need for improved standardization and

implementation of reproducibility policies. Strategies to enhance reproducibility

include fostering collaboration among authors, publishers, and technology

providers, as well as recognizing software as a critical research output. The

findings aim to guide stakeholders in bridging the current gaps and advancing

the reproducibility of computational scientific articles.
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1 Introduction

Reproducibility is a broad and complex topic strongly related to the history of science
and knowledge (Ivie and Thain, 2018) reflected in the cumulative technological and
scientific development of humanity (Hughes, 2001). Such development has been based
on the evolutionary capacity of human beings to build new knowledge from previous
discoveries and achievements, passing this knowledge to new generations through a
continuous cycle of refinement. The evolution of science through the reproducibility
of knowledge could be metaphorically compared to the natural mechanisms of DNA
replication (Hu et al., 2020) transmitted from generation to generation in a continuous
refinement cycle. Within these reproducible mechanisms, scientific journals play a
significant role in the communication, divulgation, corroboration, validation, and
acceptance of reliable and trustworthy knowledge.

The reproducibility of knowledge has recently become relevant to the scientific
community given that there is a growing concern for ethics and transparency in the
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research results in scientific publications in the so-called
reproducibility crisis (Plavén-Sigray et al., 2017; Gundersen, 2020).
In addition, with the boom in artificial intelligence/machine
learning (ML/AI), publications have evolved toward data-centric
and model-centric developments that have forced journals to
adapt their publishing models to new dynamics accelerated by
technological changes (Hutson, 2018).

In response to these developments, several recent articles
have hypothesized what the future of academic publishing will
be like (Dodds, 2019; Baillieul et al., 2018; Ahmed et al.,
2023), analyzing important changes, proposing technological
tools (Kitchenham et al., 2020; Anchundia and Fonseca, 2020), and
identifying significant gaps in publishing policies (Stoddart, 2016;
Kapoor and Narayanan, 2022; Lucic et al., 2022; Ahmed et al.,
2022).

This article accounts for policies implemented by publishers
and their evolution, which are crucial for understanding their
evaluation processes oriented to the reproducibility of knowledge,
and facilitate participation, understanding, and dissemination of
research to general public readers and the scientific community.

This article analyzes the journal policies concerning the
reproducibility of knowledge addressed to trustworthiness and
transparency through a survey of computer science journals
indexed in SCOPUS and WoS and makes a systematic PRISMA-
based literature review. Our main purpose is to answer the
following questions: What is the reproducibility gap resulting
from the credibility crisis, and what are the mutualized efforts by
authors and publishers to bridge the reproducibility gap in AI/ML
computer science research?

Figure 1 summarizes three perspectives/facets that have been
addressed and discussed in this paper: efforts required by
authors (Section 6.1) and by publishers (Section 6.2), and the
technological evolution required to reproduce results (Section 3).
The combined efforts of these three actors are required to close the
reproducibility gap.

This article is structured as follows: Section 2 provides the
fundamentals and definitions of reproducibility, including key
terms (Section 2), types of reproducibility (Section 2.1), and
how reproducibility is measured and evaluated (Section 2.2).
We establish the consensus in terminology and definitions
used throughout the article, and we discuss the corresponding
difficulties, definitions, and measures related to reproducibility,
which allows us to define the technological evolution (Baillieul
et al., 2018) as necessary to reproduce results and the fundamental
strategies of reproducibility, as outlined in Section 3.

Section 3 explores strategies and technological evolution
necessary for reproducibility, addressing topics such as open-
source software and repositories (Section 3.1), open data formats
(Section 3.2), system architecture (Section 3.3), and tools
and platforms (Section 3.4). We also highlight the role of
stakeholders (Diaba-Nuhoho and Amponsah-Offeh, 2021) in
ensuring the reproducibility of computational scientific articles.
Section 3.4 presents a landscape of existing tools, data management
platforms, and techniques that are helpful in reproducible research.
Best practices in data management are covered in Section 3.6, and
Section 3.7 discusses the role of scientific publishers in reproducible
research, including new types of publications with code and the
challenges of evaluating research artifacts.

FIGURE 1

This diagram summarizes three perspectives/facets that have been

analyzed and discussed in this paper: e�orts required by authors

(Section 6.1) and by publishers (Section 6.2), and the technological

evolution required to reproduce results (Section 3). The combined

e�orts of these three actors are required to close the

reproducibility gap.

In Section 4, a survey of 16 computer science journals
provides insights into experiences implementing data-code sharing
policies based on the reviewed reproducibility platforms and
technologies. Section 5 includes our technological discussion of
the previous topics, with a focus on dilemmas like virtualization
solutions versus dependency management (Section 5.1) and the
shared responsibility between authors and publishers supported by
technological evolution (Section 5.2).

Section 6 analyzes the combined efforts required by
authors (Section 6.1) and publishers (Section 6.2) to close the
reproducibility gap. Emerging dilemmas regarding reproducibility
sharing policies are discussed in Sections 5.1 and 6.3, which explore
the possibility of regarding reproducibility as a service provided
by a trusted third party, the consideration of software as valuable
research artifacts, and how to appropriately reward authors.
Finally, the paper concludes in Section 7.

2 Fundamentals and definitions of
reproducibility

Several studies (Sculley et al., 2015; Kitzes et al., 2018; Baker
et al., 2019; Parashar et al., 2022; Thompson and Burnett, 2012;
Raghupathi et al., 2022; Cacho and Taghva, 2020; Hummel and
Manner, 2024) have addressed reproducibility from different
points of view, as Gundersen (2021) reproducibility is considered
a fundamental part of the scientific method. However, to our
knowledge, no studies have holistically reviewed the different
dimensions and strategies of reproducibility in computer science,
i.e., to consider their essential participation within an end-to-end
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FIGURE 2

Definition of reproducibility, replicability, repeatability, and reusability (4R) (Benureau and Rougier, 2018). Di�erent degrees of reproducibility can be

considered according to the characteristics of the particular experiment or project.

data science project/experiment life cycle. This life cycle begins
from scientific research and ends in mass industrial production for
final customers. The life cycle also incorporates the responsibilities
of the main stakeholders (Diaba-Nuhoho and Amponsah-Offeh,
2021; Feger and Woźniak, 2022; Macleod and the University of
Edinburgh Research Strategy Group, 2022) in this process (e.g.,
journals, authors, industry, and the scientific community).

The report from the National Academies of Sciences,
Engineering, and Medicine (NASEM) (Committee on
Reproducibility and Replicability in Science et al., 2019) is a
reference reproducibility study that gathers contributions from
relevant specialized researchers. It focuses on strategies for
obtaining consistent computational results using the same input
data, computational steps, methods, code, analysis conditions, and
replicability to obtain consistent results across studies. In NASEM’s
definitions, reproducibility involves the original data and code,
whereas replicability is related to the collection of new data and
similar methods used in previous studies.

The simplest definition of reproducibility extended and used in
the different studies is the one proposed by ACM in version 1.1 of
their Artifact Review and Badging report,1 as shown in Figure 2.

Reproducibility (different team, same experimental setup):
the experiment is done with different equipment, different
environment, and same code/algorithm. Repeatability (same
team, same experimental setup): the experiment is done by
the same team, same environment (software/hardware), and
same code/algorithm. Replicability (different team, different
experimental setup): the experiment is done with different
equipment, different environment, different code, and same
algorithm. Reusability (different equipment, different, and partial
experimental configuration): the experiment is carried out with
different equipment, different environments, different codes, and
the algorithm partially implemented.

There is still some discussion, in some cases even confusion,
about the definitions (Plesser, 2018) even from a taxonomic
point of view (Essawy et al., 2020; Heroux et al., 2018). A

1 https://www.acm.org/publications/policies/artifact-review-and-

badging-current

very different interpretation of reproducibility is presented in
the reproducibility article (Lin and Zhang, 2020), where it is
a continuous improvement process, rather than an achievable
objective. However, following the discussions with the National
Information Standards Organization (NISO), ACM accepted the
recommendation to harmonize its terminology and definitions
with those widely used in the community of scientific research.
In this way, it interchanged the terms reproducibility and
replicability with the existing definitions proposed by ACM to
ensure consistency.

Figure 3A shows, according to these definitions, the minimal
set of components one eventually should consider to make software
reproducible. Figure 3B shows a generalization of an architecture
for reproducible projects or experiments. It is made of basic
blocks interconnected to build complex systems, applications, and
workflows.

In this chapter, we specifically discuss the reproducibility of
complex AI/ML data science projects. A scientific publication
in AI/ML can range from effectively a model developed in
an experiment by a single researcher for a tiny device to
large implementations of Distributed Big Data supercomputing
developed by large consortiums of universities, governmental, or
research institutions.

2.1 Types of reproducibility

Defining reproducibility is as important as determining the
types of reproducibility, considering the nuances that conceptually
appear when studying the various cases and possibilities. The
term reproducibility is acceptable in the case where the same
input can lead to statically equivalent same results. It is also
important to note that reproducibility in data science does not
necessarily imply obtaining the same numerical result from the
same numerical input.

Previous studies (Gundersen and Kjensmo, 2018; Raghupathi
et al., 2022) have defined three degrees of reproducibility: R1
(Experiment, Data,Method), R2 (Data,Method), and R3 (Method).
It is only sometimes possible to obtain the same numerical result
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A

B

FIGURE 3

Generalization of architecture allowing for reproducible projects or

experiments. (A) Basic block software/data and

hardware/environment reproducibility. (B) System/flow

reproducibility.

from different realizations of an experiment. In that case, we can
consider the following definitions (Impagliazzo et al., 2022):

• Experimental reproducibility: similar input (data) + similar
experimental protocol→ similar results.

• Statistical reproducibility: similar input (data) + same analysis
→ same conclusions [independently from (random) sampling
variability].

• Computational reproducibility: same input (data) + same
code/software + same software environment → exact same
bitwise results.

2.2 Measure and evaluate reproducibility

One difficulty is to measure (Rosenblatt et al., 2023) the
degrees of reproducibility depending on the complexity, type of
reproducibility, type of data (Ahmed et al., 2022), and field of the
research study (Raff, 2020) given that despite what is generally
expected from computer systems and as has been shown inmultiple
positions (Gundersen and Kjensmo, 2018; Raghupathi et al., 2022;
Bailey, 2020; Jalal Apostal et al., 2020), executing the same code on a
different machine does not generate the same numerical result, but
it can be established that a result is statistically similar (Raff, 2019).
Another approach is to calculate the probability that a particular
experiment gives comparable results (Nordling and Peralta, 2022).

The survival analysis proposed in Raff (2020) permits the
extraction of new insights that better explain past longitudinal data
and extend a recent data set with reproduction times, taking into
account the number of days it took to reproduce an article (Collberg

and Proebsting, 2016). Additionally, to measure support for
reproducibility in several data management platforms, Gundersen
et al. (2022) proposed a quantitative method.

This point is crucial because it is imperative to measure
reproducibility to evaluate the degree and percentage of
reproducibility of an article. As will be seen in the artifact evaluation
Section 3.9, there is a wide disparity among journals/conferences
in the criteria and policies for describing and evaluating artifacts,
partly due to the difficulty in measuring reproducibility.

3 Reproducibility strategies and
technological evolution

Motivated by the great reproducibility challenges (Schelter
et al., 2015; Freire et al., 2012), the extensive literature on data
science projects include current approaches for executing big
data science projects (Saltz and Krasteva, 2022) and the best
coding practices to ensure reproducibility (Gonzalo Rivero, 2020).
Different strategies have been proposed (LeVeque et al., 2012) to
tackle the problem of reproducibility of scientific works, specifically
in AI/ML.

The size and scope of data science projects can range from
small projects of the Internet of Things (IoT) (Ray, 2022) to very
large high-end distributed HPC (Pouchard et al., 2019). Complex
infrastructure is required for the latter, e.g., for the recently popular
large language models (LLM). As such, different strategies are
required to address the complexity of each specific project and
experiment.

This section surveys the most relevant characteristics that can
be considered as general reproducibility strategies (Gundersen,
2021), such as the use of open source software, open repositories,
open data formats, the use of well-established methodologies, the
following of good practices, and the use of system architectures
which are typically used in systems dedicated to run AI/ML
applications.

We divide the strategies identified in literature into four main
classes: software and data, environment, system data management
and workflows, and methods. Each strategy can be part of a
more complex one. For example, workflows can be made of
containers, and code publications strategies require the open
code/data repositories strategy.

1. Software and data reproducibility

• Adoption of free and open source software.
• Tools with the potential to be used as reproducibility tools,

for example, notebooks.
• Standardized automation benchmarks, open dataset

formats, state-of-the-art model baselines.

2. Environment reproducibility

• Software reproducibility: containers and virtualization.
• System architecture: monolithic, microservices, serverless

functions.
• Hardware reproducibility, including ambient

configuration. For example, Infrastructure as Code.
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3. System and workflow reproducibility

• Metadata and provenance (lineage and traceability).
• Reproducibility as a Service. This includes third-party

specialized and trusted entities that certify reproducibility.
They typically also offer services for the execution of
algorithms on the infrastructure they provide.

4. Methodological reproducibility

• Adoption of good practices and methodologies.
• Teaching and reproducibility culture.
• Performing evaluation specifically for research code and

data artifacts.
• Publications with code (journals and conferences).

3.1 Open source software and open
repositories

Uploading code and data to a public repository and labeling it
as open-source software might be considered a sufficient guarantee
of reproducibility and transparency in research (Macleod and the
University of Edinburgh Research Strategy Group, 2022; Barba,
2022). However, there have been objections to this approach
(Abernathey et al., 2021) as well as proposals for evaluating
the reproducibility level (Gonzalez-Barahona and Robles, 2023).
It cannot be ensured that code will not be modified after
publication2 or that the code is executed in the same environment,
dependencies, and parameters. In many cases, the full reproduction
of a work cannot be achieved and often requires contacting the
authors to obtain detailed information. The authors themselves
may even be unable to replicate the experiment due to changes in
their research infrastructure, lack of documentation, or the code
being outdated as the project evolves (Stodden et al., 2018).

Significant examples of these repositories, reproducibility
initiatives, technological infrastructures, and open source
communities include, GitHub, Bitbucket, GitLab, Zenodo,
the Open Science Framework,3 OpenAIRE (Open Access
Infrastructure for Research in Europe), COAR (Confederation of
Open Access Repositories), the French open document repository
HAL, EOSC (European Open Science Cloud), HuggingFace, the
Harvard DLhub,4 and Dataverse,5 among many others. Certain
studies have proposed concrete solutions to the problem of
sufficient guarantee of reproducibility, such as reproducibility and
scientific software transparency initiatives (Haim et al., 2023a,b;
Stodden, 2020).

The above examples show how the data generally seek
to comply with FAIR principles for Research Software
(FAIR4RS) (Barker et al., 2022),6 which is briefly defined as
findable, accessible, interoperable, and reusable. An open-source

2 Indeed, the history of a repository in GitHub can be altered with a hard

push command or using the corresponding tools provided by GitHub.

3 https://osf.io

4 https://www.dlhub.org/

5 https://dataverse.org/

code may end up being non-reproducible without proper access to
the data. Findable: Metadata are assigned a globally unique and
persistent identifier, for example, the minimal viable identifiers
(minids) or software Heritage SWHIDs. Accessible: The metadata
are retrievable by its identifier using a standardized communication
protocol; Interoperable: Metadata use a formal, accessible, shared,
and widely applicable specification for knowledge representation;
Reusable: Metadata are described in detail with a plurality of
precise and relevant attributes.

Applying the FAIR principles to data, specifically their R
(Reuse) component, allows for the promotion of the reproducibility
of scientific publications. These principles aim to categorize the
data more extensively and systematically (Parland-von Essen
et al., 2018), as a means to improve research data services. They
also promote a convenient tripartite categorization of research
data artifacts. Although many data science projects and research
laboratories have adopted the FAIR principles, each research study
represents a particular case. Therefore, the challenge of complying
with the FAIR principles is usually only partially achieved
(Albertoni et al., 2023). Furthermore, there are discrepancies in
how to implement them, from considering how to handle big
data and using cloud-native repositories (Abernathey et al., 2021)
to smaller scale data science projects requiring affordable sharing
(Vanschoren et al., 2014). Because each team and laboratory
establish their ownmeans of complying with the guiding principles,
determining, and to a certain extent, auditing the degree of FAIR
compliance is particularly challenging.

3.2 Open data formats and benchmarking

There are cases where it is not viable to publish datasets
and codes because they contain sensitive data (e.g., medical data
corresponding to individuals) or industrial secrets (Rosenblatt
et al., 2023) (e.g., patents). In these cases, the assessment of the
reproducibility of the methods is compromised. Therefore, the
concept of federated learning (Karargyris et al., 2023; Baracaldo
et al., 2022) is being developed as a novel paradigm, which is based
on decentralized and private data for the shared training of models.

However, these cases are exceptional and scarce, and, in
general, it is possible to approach open science by using open
datasets, standardized formats, baselines, and benchmarks (Vitek
and Kalibera, 2011), allowing the scientific community to check the
results of published methods reliably.

Even when data cannot be made available for confidentiality
reasons, benchmarking and comparing results without accessing
the data can be relied on. Several tools have been recently developed
for this purpose (Vitek and Kalibera, 2011), including DataPerf,
Mlperf, Collective Mind (Fursin et al., 2014), ReQuEST (Fursin,
2018), or MLCommons7 with MLcube8 among others. Such tools
attempt to determine the state of the art in specific disciplines
by comparing the performances of various scores (e.g., precision

6 https://www.rd-alliance.org/groups/fair-research-software-fair4rs-wg/

outputs/?output=94498

7 https://mlcommons.org

8 https://mlcommons.org/en/mlcube/
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and recall). Competitions such as Kaggle9 or BRATS (brain tumor
segmentation) (Kazerooni et al., 2023) challenge participants to
make predictions using published open datasets and have become a
reference for the industry to evaluate and compare models.

3.3 System architecture

Two major trends can be identified in architecture for AI/ML
systems: the deployment of microservices and the use of serverless
functions.

Microservices allow the building of scalable and flexible
software systems for which each component works independently
and can be reused in different contexts. Because many applications
of AI/ML require large resources for computations and storage,
they are usually deployed as a distributed system. Compared
to monolithic architectures (Fritzsch et al., 2023), microservices
allow different modules to work autonomously and subsequently
contribute to the reproducibility and understanding of the system.

In particular, microservices can help reproduce scientific
experiments and improve the portability and reusability of the
software. By being divided into isolated components of an
experiment into microservices, the flexibility and modularity of the
software can be increased, making it easier to adapt the code for
new tests or experiments and lessening the dependency on software
specific to a development environment.

Serverless computing is a popular cloud-based computing
model (Jonas et al., 2019) that is similarly related to functionality
and dependency isolation. Here, the cloud provider manages the
server infrastructure and platform resources, allowing developers
to focus on application logic. Depending on the provider, the
functionalities can also be referred to as lambda-functions.10

Using these serverless functions is beneficial for reproducibility in
computer science, as it reduces the complexity and variability of
the underlying infrastructure and enables greater modularity and
automation when developing applications and services.

3.4 Tools and platforms

This section surveys tools and platforms commonly used in
AI/ML applications and how they contribute to reproducibility.
Specifically, we focus on containers, cloud computing, and the
Infrastructure as Code (IaC) technique.

3.4.1 Notebooks
In data science, notebooks have been popularized because they

allow the incorporation of executable code, rich visualization, and
documentation in the same document. It has recently become
a common practice to publish and share work with notebooks,
providing a step forward for reproducibility. However, it has
been shown (Pimentel et al., 2019) that this approach has some

9 https://www.kaggle.com/

10 Note that, despite their name, they are totally unrelated to lambda

calculus!

deficiencies, such as needing more version control. Very recent
studies (Samuel and Mietchen, 2023) have also studied the low
degree of reproducibility of Jupyter notebooks in biomedical
publications.

Several solutions have been proposed to address these
challenges (Pimentel et al., 2021), including the use of Python
scripts and the adoption of best practices for documentation,
version control, and additional packages. For instance, the
ReproduceMeGit tool analyzes the reproducibility of ML pipelines
in Notebooks (Samuel and König-Ries, 2021a) and Osiris (Wang
et al., 2020).

3.4.2 Containers and cloud computing
Advances in cloud computing and containerization have

undoubtedly contributed to the reproducibility of large distributed
systems.

These systems are complex and have several interacting
components (Wolke et al., 2016; Congo, 2015) along a pipeline.
Control over the execution environment is required to reproduce
the experiments and even trust them. Given a code, the associated
data, and the execution pipeline, we should be able to obtain the
same results repeatedly. To achieve the same results, the pipelines,
dependencies of the software, and the environment need to be
perfectly defined. Virtual machines and lightweight containers such
as Docker help define and fix the execution environment (Howe,
2012). We could summarize these two concepts as follows:

• Virtualization = data + code + environment.
• Cloudcomputing = data + code + environment + resources +

services.

We address the topics on lightweight containers such as Docker,
the MLOps methodology, the management of scientific workflows,
and techniques such as IaC below.

3.4.3 Docker containers
Since their appearance in 2007, Docker containers have

quickly become popular in computer systems as a fundamental
reproducibility tool. Its lightweight nature allows several containers
to be dedicated to small microservices on the same machine, with
limited consumption and sharing of resources. This feature is a
significant advantage concerning complete virtual machines such
as VMWare or Hyper-V. The light containers eventually allow for
better reuse, and many infrastructures are migrating to containers,
e.g., RE3 (Bahaidarah et al., 2021).

Docker is one of the most efficient and widely used tools
today, with applications for reproducibility. However, it is still
limited (Canon, 2020) in certain aspects of reproducibility
compared to container alternatives such as singularity containers
for HPC.

The emergence of containerization technologies such as Docker
and orchestrators such as Kubernetes (Orzechowski et al., 2020) has
allowed the rapid development and automation (Bahaidarah et al.,
2021; Vasyukov and Petrov, 2018) of experiment pipelines, thus
making the reproduction of complex computationally intensive
experiments possible. Therefore, these experiments can be divided
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into different functional blocks that can be easily integrated, as
shown in Figure 3B.

For example, Repo2Docker (Forde et al., 2018) can, with
Binder, fetch a notebook for a given repository, create a proper
execution environment, and run it inside a container. This
action makes the experiment publicly available for anyone to
reproduce the results. Specifically for HPC, there are initiatives
such as The Extreme-Scale Scientific Software Stack (E4S), a
community effort to provide open-source software packages for
developing, deploying, and running scientific applications on
high-performance computing (HPC) platforms. As an essential
contribution to the reproducibility of such a complex, E4S builds
from source code and provides containers of a comprehensive
collection of HPC software packages.

3.5 Reproducibility of workflows/pipelines
and scientific experiments

Many scientific experiments comprise pipelines that
concatenate several processes (Sugimura and Hartl, 2018). In
terms of reproducibility over time, highly specialized platforms
have been developed to manage these complex workflow
management systems (Steidl et al., 2023) [e.g., watchdog (Kluge
et al., 2020)], tools (Samuel et al., 2021), roadmaps (Da Silva
et al., 2021), and general frameworks are proposed (Melchor et al.,
2022). They allow researchers to focus on solving their specific
scientific problems, rather than the underlying infrastructure,
networking, or other technical characteristics (Françoise et al.,
2021). Despite the significant step forward, many interoperability
and reproducibility difficulties persist (Prabhu and Fox, 2020;
Ghoshal et al., 2020). Because there are myriad possibilities of
languages, open and private infrastructures that are currently
available or under development in the ecosystem of AI/ML data
science technologies need to be considered.

3.5.1 Workflow management systems
Scientific workflow management systems (Meng and

Thain, 2017) help manage complex, cloud-distributed
workflows (Rosendo et al., 2023), and automate repetitive
processes (Cohen-Boulakia et al., 2017). They also enable detailed
documentation and workflow sharing with other researchers, thus
helping improve the reproducibility of results and speeding up
scientific research (Plale et al., 2021).

Direct acyclic graphs (DAG) represent workflows in software
computer design (Santana-Perez and Pérez-Hernández, 2015). In
these graphs, a task starts in a particular node to be processed
and then transferred to the next one in the chain until the final
result is available in the last node. As pointed out in Section 2
and described in Figure 3B, the pipeline of the workflows and the
node themselves need to follow well-established reproducibility
principles to obtain reliable results, including access to the source
code running the computations, as well as an accurate description
of the environment, the use of FAIR data, and the use of open data
formats for interoperability, among others.

Each scientific community has developed its own workflow
managers. Some well-known workflow managers include

Taverna (Hull et al., 2006) (bioinformatics, cheminformatics, and
ever social sciences), the Galaxy project (The Galaxy Community
et al., 2024) (bioinformatics), OpenAlea (Pradal et al., 2019)
(Botanics), Chimera11 (cheminformatics), or Pegasus (Deelman
et al., 2004) (physics and bioinformatics), Knime12 (semantic
workflow), Makeflow (Albrecht et al., 2012) (data-intensive
workflow). Pegasus was the workflow management system used by
LIGO for the first detection of gravitational waves and became very
popular in the physics community.

The criteria to establish the reproducibility of a given pipeline
can vary significantly between different communities. Although the
basic principles between different workflows remain the same (see
Section 3), their specificities depend on the field. Cohen-Boulakia
et al. (2017) address this point in their study, which analyzed
three cases of the use of in silico experiments in the domain
of biological sciences with Taverna, Galaxy, OpenAlea, VisTrails,
and Nextflow, proposing different criteria and discussing these
reproducible environments based on Docker, Vagrant, Conda, and
ReproZip.

3.5.2 MLOps and reproducibility
The significant increase in articles on AI/ML inevitably forces

workflows to adapt toward novel requirements in the management
of both data and software(code) because both are a source and
contribution to knowledge in these articles. Therefore, analyzing
tools, infrastructures, and technologies must evolve to support
constraints linked to thesemanagement requirements. In this sense,
SciOps (Johnson, 2024), AIOps/MLops have evolved from the
DevOps/DevSecOps (Development—Operations) concept to cover
several reproducibility management infrastructures for computer-
based scientific articles.

Transferring knowledge and prototypes from academic to
industrial environments is often challenging (Breck et al.,
2017). There are very specific methodologies for software
development in the industry, such as DevOps, which includes
continuous integration/continuous delivery (CI/CD). However, in
the academic environment, these practices are only sometimes
followed, explained in part by authors’ need for more career
rewards (as discussed in Section 6.2.2).

MLOps (Gift and Deza, 2021) can be considered the natural
evolution of the DevOps best practices components adapted to the
particular needs ofML-based software development (Amershi et al.,
2019). In general terms, within data science projects, MLOps tries
to harmonize the practices of two environments with very different
characteristics, such as academic/research environments with ML
production environments for a final client, where reproducibility
plays a crucial role. MLops harmonization is an end-to-end process
from the research model to the last model, exploited by the end
customer or reproducibility reviewer. Few studies deal with MLops
from the point of view of reproducibility. Among these, Gundersen
et al. (2022) does an excellent analysis of the reproducibility of
various MLops tools.

Other studies have proposed benchmarks for different MLops
features (Schlegel and Sattler, 2022), as both open and proprietary

11 https://www.rbvi.ucsf.edu/chimera/

12 https://www.knime.com/
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software (Preprint, 2021). These tools are equally important when a
journal requires data and software management. The most relevant
tools from our review of the literature include the following:
Neptune,13 Comet,14 Weights&Biases,15 Sacred + Omniboard,16

Polyaxon,17 ClearML,18 Pachyderm,19 MLflow, Tensorboard,20 and
Collective Knowledge (Fursin, 2020a). Table 7 in the Appendix
benchmark different MLops tools for more detail on its features.

With the emerging Internet of Things (IoT) technology
and the advances in smaller devices with significant computing
power, simplified ML models at the edge are possible with
TinyMLOps (Ray, 2022). Significant reproducibility challenges
appear considering the substantial energy consumption
restrictions, limited computing capacity, and heterogeneity
between different devices and technologies. In addition, it is no
longer possible to containerize and virtualize with Docker.

3.5.3 Workflow languages
Despite the efforts to unify existing workflows, each

community has kept its own particularities, including the
language to define the pipelines (Cohen-Boulakia et al., 2017). This
fragmentation (Adams et al., 2020) makes it harder for integration
and interoperability between different academic groups. Indeed,
some of the groups use a very particular language for their
workflows.

There are initiatives such as SHIWA (SHaring Interoperable
Workflows for Large-Scale Scientific Simulations on Available
DCIs) (Korkhov et al., 2012) that try to provide a solution
to this problem of interoperability. Multiple organizations and
providers of workflow systems have also jointly worked to propose
the Common Workflow Language (CWL) (Crusoe et al., 2022;
Demchenko et al., 2023) to standardize the pipelines around a
common language.

Those specifications propose a conceptual workflow language
to describe high-level scientific tasks, aiming to promote
workflow specification portability and reusability and address the
heterogeneity of workflow languages.

3.5.4 Infrastructure as code (IaC)
Much attention is focused on source code and containerization

to address reproducibility, but unfortunately, only a little attention
is paid to hardware (Bowman, 2023). With the rise of cloud
computing technologies, the possibility of replicating the exact
execution environment for an experiment is viable. Indeed, for
reproducibility purposes, it is required to define the characteristics
of hardware, such as the type of CPU, TPU, GPU, memory

13 https://neptune.ai/

14 https://www.comet.com/

15 https://wandb.ai/

16 https://github.com/IDSIA/sacred

17 https://polyaxon.com/

18 https://clear.ml/

19 https://www.pachyderm.com/

20 https://www.tensorflow.org/tensorboard

amount, or network architecture. This is especially important for
an extensive distributed system such as HPC applications.

In this respect, IaC provides several advantages toward
reproducibility in computer science. One of the main benefits
is that IaC allows researchers to define and control their
infrastructure accurately in a format that can be easily stored,
versioned, and shared,making it easy to reproduce experiments and
obtain the same results at each execution. Defining infrastructure
as code discharges from manually configuring infrastructure
resources allows researchers to easily version and share the
infrastructure configuration with colleagues. According to the
Octave 2022 report,21 the Hashicorp Configuration Language
(HCL) programming Terraform languages were widely used by
developers in 2022, indicating that IaC practices are becoming quite
popular for GitHub projects.

Additionally, IaC can improve consistency and accuracy by
ensuring that all infrastructure instances are created and configured
identically. This helps ensure that the test conditions are the
same each time an experiment is performed. IaC in the academic
environment can significantly help in many aspects, such as
the quality of software developed, and is a step forward in
the reproducibility of scientific research. As a recent example,
Daniel Adorno Gomes and Serodio (2019) managed to define a
complete experiment with IaC from a unique high-level code with
Pulumi (pulumi.com, 2019).

3.5.5 Provenance and metadata traceability of
artifacts

Provenance refers to how the origin (Silva Junior et al., 2021)
of the artifacts of an experiment is documented in metadata.
Provenance documentation is a commonly used technique to
improve the reproducibility of scientific workflows and research
artifacts. There are numerous articles proposing tools such as
ProvStore (Huynh and Moreau, 2015), ReproZip (Chirigati et al.,
2013), MERIT (Wonsil et al., 2023b), CAESAR (Samuel and König-
Ries, 2022a), HERMES (Druskat et al., 2022), Provbook (Samuel
et al., 2021) in several different disciplines and research
areas (Samuel and König-Ries, 2022b), demonstrating how it can
help improve traceability, linage and transparency of results.

The PROV standards allow the task to be carried out (see
Openprovenance,22 for example. However, it needs to be completed
and can be generalized to multiple cases and languages. The
preceding requires the use of permanent, Unique Identifiers and
tools that manage this aspect to have correct traceability of
data sources and artifacts, even using new technologies such
as blockchain (Wittek et al., 2021) InterPlanetary File System
(IPFS) (Kawamoto and Kobayashi, 2020) to achieve traceability and
lineage of software or code snippets.

3.5.6 Reproducibility as a Service (RaaS)
The Reproducibility as a Service (RaaS) concept was proposed

in 2021 by Wolsin (Wonsil et al., 2023a). A strategy based

21 https://octoverse.github.com/

22 https://openprovenance.org/store/)
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on RaaS takes advantage of the availability of cloud computing
technology to offer reproducibility services. This strategy includes
the reproduction and research artifacts after the execution of
software in the controlled environment and its evaluation,
validation, and certification (related to this, see Section 3.9 about
code review). In addition, granting reproducibility badges, tracking
software provenance, or assigning persistent identifiers to software
at different granularity levels. Another responsibility of RaaS is
to manage the underlying architecture in a way that makes it
easier for authors to share and execute their code depending on
the chosen complexity, from bare-metal infrastructure to fully
managed services. Figure 4 shows how a RaaS architecture is
organized in a complex system.

Crick et al. (2015) to make a first approach to offering
reproducibility services for journals/conferences from an
empirical and quantitative point of view. They presented a cyber-

infrastructure and the associated workflow for a reproducibility
service as a high-level technical specification without delving into
technical details. On the other hand, the study by Demchenko et al.
(2023) addresses the topic of provisioning on demand in research
environments. It introduces the concept of Platform Research
Infrastructure as a Service (PRIaaS) to ensure data quality and
support effective data sharing.

For example, the IPOL journal (Colom et al., 2015) also
partially meets the attributes of what can be considered as a RaaS
tool, together with the article, makes available a technological
platform for the creation and execution of online demos (simplified
demonstrations of algorithms).

Equally, among other existing reference platforms, we could
mention CodeOcean, Chameleon, Replicate,23 TXYZ.AI,24 and
Whole Tale. They allow code to be executed in a wide range of
languages but are still maintained at the demo level with certain
technical restrictions to offer the mentioned features. They start to
be actively taken into account by publishers.

3.6 Best practices and data management
methodologies

Agility and security are among the many quality attributes
of software (Milewicz and Mundt, 2023), even though most of
them are not specifically designed for reproducibility in computer
science. However, data project management methodologies and
well-known best practice guides are applied widely across the
AI/ML industry to improve reproducibility.

Several studies (Schelter et al., 2015) and best practices guides
(Stodden and Miguez, 2014) have proposed different tools for
the management of data science project artifacts (Schlegel and
Sattler, 2022) as well as methodologies. For example, Goodman
et al. propose 10 simple rules to achieve reproducibility. The

TuringWay handbook also provides a relevant compilation of good
practices (The Turing Way Community, 2022) for reproducible,
ethical, and collaborative data science projects.

23 https://replicate.com/

24 https://txyz.ai/

There is a consensus that one of the main factors limiting the
success of data science projects is the need for reproducibility in
the management platforms (Baillieul et al., 2018; AlNoamany and
Borghi, 2018; Martinez et al., 2021). Of the many methodologies
available, the most popular are CRISP-DM (Schröer et al., 2021),
KDD, SEMMA, Microsoft TDSP, Agile DS Lifecycle, Domino, DS
Lifecycle, IBM FMDS, RAMSYS, and MIDST, among others. These
are widely used in the industry, especially CRISP-DM.

Indeed, as observed in the scarce literature, there
needs to be a standard or unified methodology focused on
reproducibility for data management. So far, only good practices,
recommendations (Turkyilmaz-van der Velden et al., 2020; Merz
et al., 2020; Samuel and König-Ries, 2021b; Nichols et al., 2021),
and guides from different fields of computer science for different
needs are available.

3.7 Scientific publishers and reproducible
research

Historically, one of the primary forms of communication,
recognition, socialization, and validation before the scientific
community are the articles published in journals and
conferences (Stodden et al., 2018). Publishers de facto become
auditors of the scientific activity, and indeed, the metrics (impact
factor and others); they have established are the typical indicators
used to evaluate researchers in their career and their advancement.
Publishers have, therefore, a responsibility to assure the scientific
integrity of the work they make public, along with their own
interest in maintaining their own reputation. This responsibility
includes not only avoiding fraud but also establishing clear quality
criteria. In scientific publications, reproducibility is fundamental
as it allows others to verify if the same or equivalent results are
obtained when repeating the experiment, thus allowing them to
refuse a paper containing wrong or inaccurate claims. As pointed
out by Heesen (2017), the work that is not widely shared is not really
scientific work.

3.8 Publications with code

Associating source code with a particular publication is gaining
popularity in the scientific and technical community (Bonsignorio,
2017). It allows for greater transparency and reproducibility, which
is essential to guarantee the quality and reliability of the results
(De Sterck et al., 2023). However, the reproducibility aspects of this
practice are evaluated in the Dataverse repository (Trisovic et al.,
2020).

Many conferences have started to request that the source code
be given and made public. Others go one step further and perform
an exhaustive evaluation of the artifacts. For example, Checklist
NeuroIPS (Pineau et al., 2020) is a widely recognized checklist for
the reproducibility assessment of conference papers.

From many examples, we might include Code Ocean, used
by IEEE’s publishers after the integration of the CodeOcean’s
platform as a computational research platform, Whole

Tale (Chard et al., 2020) allowing researchers to create and
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FIGURE 4

Representation of a RaaS-managed cloud infrastructure. The description layers, microservices, the serverless approach, and taking care of the

granularity of software help the reproducibility of a complex system.

share scientific narratives that include data, code, and runtime
environments (Brinckman et al., 2019; Chard et al., 2019),
Binder as a platform that allows users to create and share code
execution environments online, making it easy to reproduce
and distribute results, PapersWithCode with open resources
on ML, ReproducedPapers with open teaching and structuring
machine learning reproducibility (Yildiz et al., 2021), or the
ReScience Journal (Rougier and Hinsen, 2019) which replicates
computations from independent open-source implementations of
original research and the advanced Chameleon25 large-scale edge
to cloud tool (Keahey et al., 2019), CatalyzeX,26 ScienceCast,27

DagsHub,28 and CentML.29

Unfortunately, in many cases, this is limited to providing
a non-persistent link (Salsabil et al., 2022; Idrissou et al.,
2022) to the source code repository in public platforms (see
Section 3.1). Moreover, each journal sets its own strict criteria,
formats, and procedures for authors. Aspects such as consistency,
reproducibility, and reusability cannot be appropriately tracked or
audited by other teams and research over time, thus limiting their
impact (Raff and Farris, 2022).

3.9 Review of research artifacts

First, it must be understood that for different reasons
(Gomes et al., 2022) an article is not 100% reproducible,

25 https://www.chameleoncloud.org/

26 https://www.catalyzex.com/

27 https://sciencecast.org/

28 https://dagshub.com/

29 https://centml.ai/centml-platform-launch/

but relatively certain elements (e.g., computational artifacts,
pseudocode, algorithms, and demos) that the author decides to
share and considers sufficient grounds to legitimize their results.

The evaluation criteria for accepting articles for publication are
traditionally well-defined for scientific journals. They are typically
based on originality, novelty, or overall scientific interest. However,
when considering a publication as the article and all major
research artifacts, including source code, the criteria are relaxed,
if considered at all. When the evaluation considers the associated
source code, it is required to establish the proper evaluation criteria
for peer review (Supporting computational reproducibility through
code review, 2021).

Conferences have started to publish guides containing
checklists for evaluating artifacts and to grant the so-called
reproducibility badges (Frery et al., 2020; Athanassoulis et al.,
2022) if the conditions are met. Among the most important
conferences, we can cite the checklist of NeurIPS 2019,30 the
ACM reproducibility badges,31 and other initiatives such as the
Unified Artifact Appendix and the Reproducibility Checklist,32 the
CTuning artifact evaluate,33 or the Empirical Evaluation Guidelines
SIGPLAN NISO RP-31-2021,34 among others.

Following several of the published guides, recently, the
SC23 supercomputing conference (one of the most important
conferences in HPC) (Plale et al., 2021) adopted the Reproducibility
Initiative, where accepted papers with available artifacts were
acknowledged with the corresponding ACM badges. The use

30 https://nips.cc/Conferences/2019/CallForPapers

31 https://www.acm.org/publications/policies/artifact-review-badging

32 https://ctuning.org/ae/checklist.html

33 https://ctuning.org/ae/reviewing.html

34 https://www.sigplan.org/Resources/EmpiricalEvaluation/
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of blockchain technology for artifact traceability has also been
proposed (Radha et al., 2021; Kawamoto and Kobayashi, 2020).
CTuning has participated in the artifact evaluation task for different
ACM conferences (Fursin, 2020c) and has defined a more detailed
Unified Artifact Appendix and the Reproducibility Checklist based
on the previous evaluation experience in ACM ASPLOS, MLSys,
MICRO, and SCC’23 conferences.

Other specialized scientific journals have already implemented
specific criteria to a greater or lesser degree. For example,
checklist for Artifacts Description/Artifacts Evaluation (AD/AE)
reproducibility (Fostiropoulos et al., 2023; Malik, 2020) for data
science experiments and projects of different publishers.

Eventually reproducibility-certifying agencies have started to
offer their evaluation as a service in different disciplines working
with sensitive or confidential data, outsourcing this function as a
trusted third party. Recently, Cascad (Pérignon et al., 2019) has
been proposed in the field of economics and management (Radha
et al., 2021).

From our review of the data above, we observe that the
existing criteria are still quite varied, not standardized, complex
for the authors to fulfill, and time-consuming on the reviewer’s
side. Table 3 extensively summarizes the reproducibility strategies
and technologies reviewed in this work. However, how they
are implemented according to the reproducibility policies of
the different scientific journals needs to be analyzed. From
an empirical point of view, our survey provides insights on
applying these strategies directly from participating journals,
and Table 4 summarizes different evaluation/description
(AD/AE) guides.

4 Survey on policies of computer
science journals

4.1 Related work

The existing literature concludes that there is still incipient
and timid progress toward implementing sharing and open science
policies in scientific works (Stodden et al., 2013, 2018). The
traditional peer review scheme is maintained, with slight variations,
and it is, in general, limited to encouraging the publication of the
source code and data in software repositories (Lewis, 2023; Stodden
et al., 2012).

For example, The Diamond OA Journals Study (Bosman et al.,
2021) makes a general survey; in our case, the results of question 41
are highlighted. To the question “Do you have any policy or practice
to stimulate open sharing of research data?” 42% of the respondents
declared to have a policy or practice to stimulate open sharing of
research data. In the same survey, Question 54 asked, “Does the
journal require linking to data, code, and other research results?”
and although there is not much information available from journals
about requiring links to data, code, and other research outputs in
DOAJ, from the survey data, the study found that nearly half of
respondents reported not requiring this, against 24.8% who do. For
more than 25%, the answer was “No” or “Unknown.”

The above questions are undoubtedly limited to code-sharing
policies in journals but do not delve into actual reproducibility
policies through article automation, evaluation, and preservation

of reproducibility technologies. This inconsistency represents a
dilemma that is discussed in Section 6.3.

In the article Vasilevsky et al. (2017), the authors reviewed 318
biomedical journals manually to analyze the journals’ data-sharing
requirements and characteristics. 11.9% of journals analyzed
explicitly stated that data sharing was required as a condition of
publication. 9.1% of journals required data sharing but did not state
that it would affect publication decisions. 23.3% of journals had
a statement encouraging authors to share their data but did not
require it.

Another contribution by Konkol et al. (2020) from the
point of view of the analysis of reproducibility technologies for
publishing computational research concludes that still, publishing
reproducible articles is a demanding task and not achieved simply
by providing access to code scripts and data files. Several platforms
were analyzed, including Whole Tale, ReproZip, REANA, o2r,
Manuscripts, Gigantum, Galaxy, eLife RDS, Code Ocean, Binder,
its limitations, and the facilities it offers for authors. The previous
article is complemented by the study by Willis and Stodden
(2020). In the study by Malik (2020), the technical difficulties are
discussed, and the benefits of implementing Artifact Description
and evaluation policies for presenting scientific articles to journals
and conferences.

We observe that the percentage of implementation of concrete
reproducibility policies is still low at this moment.

4.2 Questions and answers

In our case, this study analyzes the problem from the point
of view of practical implementation of policies by publishers,
based on your opinion and experiences with the following research
questions: best way to make reproducibility policy mandatory, or

instead an incentive policy for authors and reviewers, to allow

publishers improve the quality and impact of their publications?

What type of technological infrastructure best supports these types

of reproducibility policies?

Question 1. Do you want to be mentioned in the

acknowledgment section as a Survey participant? Despite
having a policy of sharing and publishing code and data
implemented at some level, some publishers 26.7% refrained from
being mentioned, probably due to not being able to match several
items. Indeed, the survey asked very specific questions about the
implementation of infrastructures and technical details. Some
publishers requested to be considered anonymous in this question.

Question 2. Respondent’s role in the scientific journal The
answers came from a variety of different roles, with a predominance
of eight editors-in-chief.

Question 3. Do you have a Reproducibility policy or similar

in your guidelines for authors? A large majority (75 %) of the
respondents indicate that they do have a reproducibility policy.
we can observe that there is a significant percentage (41.7%) of
journals which request reproducibility as an essential condition
for publication and thus make it mandatory. This decision has
important consequences and, in general, it is counterproductive for
almost all journals to add extra requirements for the publication
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FIGURE 5

How do you think the reproducibility policy requirements should be?

FIGURE 6

Reproducibility validation method.

because it reduced the publication rate.35 On the other hand, it
improves the overall quality of the publications.

Question 4. If youwish, you can indicate the link to the policy

of the scientific journal or guides for authors. Nine journals
provided a link to their reproducibility policy.

Question 5. How do you think the reproducibility policy

requirements should be? In this question we asked about what
should be the most significant requirements for a reproducibility
policy, regardless whether the journal actually implemented them
or not. The results are given in Figure 5, with a variety of different
preferences and showing, in any case, gradual interest toward
making them mandatory.

Question 6. Do you follow any guide or checklist for the

evaluation of research artifacts? If so, which one? The responses
were very varied, which shows the lack of standardization in this
matter, or don’t have 36.8%. The problem of the evaluation of the
research artifacts has been extensively studied, yet without much
agreement or formalization.

35 See https://scholarlykitchen.sspnet.org/2018/09/25/does-adopting-a-

strict-data-sharing-policy-a�ect-submissions/.

Question 7. Journal access modality Most of the
journals answered that their publication modality was
open-access 56.3%.

Question 8. What is the range of your APC (Article

Publication Charges)? The APC are very relevant for the
discussion about how the reproducibility costs are shared between
authors, publishers, and technology providers. Free publication
costs predominate in the responses 50%. Between $50 and $500,
12.5%; between $500 and $1,000, 18.8%; between $2,000 and
$3,000, 18.8%. In addition to question #7, it is an indicator that the
business model of these journals is based on open platforms and
repositories.

Question 9. Preferred sharingmethod This question confirms
that free open platforms are used to share the code, and the
number of journals that owe third parties or have their own
technological storage infrastructure is very low: 18.8%, public
online repository, 25%, journal hosted own infrastructure, and
31.3% multiple methods equally recommended.

Question 10. How compliant is your publication of software

and data policy with FAIR-TLC? The answers indicate the
increasing level of implementation of the reproducibility policies,
considering that most of the articles are accessible and reusable but
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FIGURE 7

If you request to share source code, what platforms or repositories do you recommend for sharing code?

still low in the other attributes. This could be explained because
the use of open repositories limits the journals to offer the other
attributes satisfactorily.

Question 11. Reproducibility validation method

The results (Figure 6) show that the traditional peer review
model for article validation and acceptance is maintained,
compared to other more automated forms of reproducibility
validation. Therefore, validating the legitimacy of an article rests on
one or two experts as well as their own available testing resources.
Two responses to Evaluation/Description Artifacts checklist and
one open response, “Only if an issue arises with the paper.”

Question 12. If you request to share the source code. What

platforms or repositories do you recommend for sharing code?

If others, you can write those you recommend

The results (Figure 7) describe show that GitHub if the
preferred specialized platform, although more for developers than
for publishing research results. Zenodo, on the other hand, allows
the citation of code and data through its identifiers but remains
a simple non peer-reviewed repository. There is therefore still a
significant lack of automation in the policies of code and data for
reproducibility purposes, to validate the legitimacy and quality of
the articles.

5 Reproducibility technological
discussion

As pointed out by several of the review studies, reproducibility
is greatly beneficial for both authors and journals. Such benefits
include greater credibility and recognition (Ghimpau, 2019),

research results are accurate and reliable, increased visibility

and impact (Boulbes et al., 2018), facilitate collaboration and

reuse (AlNoamany and Borghi, 2018), and increase credibility and
confidence in the results (Samuel and König-Ries, 2021b; Gupta
et al., 2022).

In this section, we discuss reproducibility insights from the
point of view of technological evolution. These insights are
based on the strategies, which are presented as a reproducibility
fundamental lever and support. We analyzed how these interrelate
with different challenges, problems, and solutions that have
been proposed in other studies, as well as how they relate
to the above benefits. In particular, we discuss the issue of
the responsibility of authors and publishers, including their
efforts toward reproducibility, the possibility of understanding
reproducibility as a service, and the impact of considering software
as an essential research artifact and the reward to researchers.

5.1 Dilemma: virtualization solution or
dependency

As described in the technological evolution Section 3.4, many of
the reproducibility tools and platforms (e.g., Workflows) proposed
so far are entirely based on container technology.

Docker, or more generally lightweight virtualization, is
considered the holy grail of reproducibility. As seen in Section 3.4,
many solutions to computer reproducibility are based on this
technology. Following the popularization of agile methodologies
demonstrated by the landscape and the containerization strategy,
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many reproducibility problems have been partially solved with
docker (Moreau et al., 2023; Canon, 2020). However, many signs
suggest that the practice of lightweight virtualization is being
abused. As noted earlier, Docker is practical, light, and facilitates
many processes previously tedious; however, it is not a tool
specifically designed for reproducibility and, therefore, cannot be
used indiscriminately to hide bad practices.

The possibility of packaging, freezing, and porting a code to any
infrastructure and maintaining stable functionality over time make
it attractive in the scientific world; however, as stated in Fursin
(2020b), this indiscriminate use brings great inconveniences.

At this point, it is necessary to analyze the problem of
reproducibility, repeatability, containers, and development in
depth. The problem is that two characteristics are desirable in
systems, but actually, they are antagonists. On the one hand, we
want robust systems that will not break after an update. The classic
example is a Python program that uses PyPI packages that, even if
the user sets the versions in a virtual environment, the libraries may
not be available in a particular version of Python. In that case, many
system designers opt for virtualization.

The containers ensure reproducibility, given that the complete
environment is fixed. However, proper attention is not paid to the
maintenance of the container. In that case, it might face security
problems because if the environment is fixed and not updated, the
libraries will stop receiving bug fixes and security updates.

Docker is undoubtedly a useful tool that allows fixing the
execution environment, but maintenance is still required. Regular
automatic testing is recommended.

5.2 The shared responsibility between
authors and publishers

As discussed in Sections 3.4 and 3.7, complying with the
criteria for reproducibility implies some costs (e.g., working time,
economic infrastructure resources). It also implies a mutualized
shared responsibility between authors and scientific journals. Share
responsibility also needs a commitment to transparency and
reproducibility (Haibe-Kains et al., 2020). Despite the analysis of
the reproducibility stakeholders in Diaba-Nuhoho and Amponsah-
Offeh (2021), Feger and Woźniak (2022), and Macleod and the
University of Edinburgh Research Strategy Group (2022), the roles
and relationship between authors and publishers still need to be
clarified: indeed, much of the reproducibility burden relies on the
authors.

Authors are responsible for providing detailed information
about the methods and techniques used in their research and
making public the data and codes used to generate the results. They
must also ensure that their results are replicable, and thus, they can
be verified by peers. On the other hand, publishers are responsible
for establishing clear policies and guidelines (Stodden et al.,
2018) for processing the submitted scientific articles adequately
and verifying and guaranteeing the results’ transparency and
reproducibility.

Guaranteeing and legitimizing the reproducibility of scientific
work in AI/ML implies assuming significant economic and time

costs (Poldrack, 2019) depending on the size and complexity of the
research project. These cannot be assumed only by the researcher.

5.2.1 Reproducibility cost
Estimating the cost of reproducibility is not easy because the

cost can be assessed from the execution of a simple container on a
personal laptop as well as a distributed execution of software in the
cloud, with the market costs per hour of CPU, GPUs, and storage
depending on each provider and their business model (e.g., GCP,
Amazon, Azure, Oracle, and others).

Existing virtualization, containerization techniques, and
cloud computing infrastructure are crucial elements of this
problem (Howe, 2012). Therefore, the costs related to cloud
computing are relevant to reproducibility.

It is essential to highlight these associated costs (Armbrust,
2009) and the implications for the scientific parties that have a role
in the reproducibility of the scientific work. One can describe the
main technological costs for the reproducibility of computational
projects and experiments as follows:

CR = CHD + CHC + CRC

where CR is the total reproducibility cost, CHD the cost of hosting
data, CHC the cost of hosting code, and CRC the cost of running
code.

The problem of increasingly complex research projects is not
specific to computer science but common to other disciplines,
especially when they combine different fields. Take, for example,
the case of bioinformatics.

Researchers in this field need to have not only knowledge of
biology but also the skills to operate software, data formats of
research artifacts, and running environments. Specialized expertise
is typically required in Python, R (Gandrud, 2020), diverse
operating systems, database management, and complex platforms
such as Galaxy (Afgan et al., 2018).

IaC, virtualization and containerization, and cloud computing
approaches help address this divisional responsibility in a simplified
manner. They allow the author’s steps to be tracked so that other
researchers can repeat and reproduce the experiment in the same
environment. However, these approaches still require a high level of
computing skills, which should not necessarily be assumed only by
the authors. Section 6.2.1 discusses the Reproducibility as a Service
(RaaS) strategy and how it can be applied to manage this shared
responsibility.

6 Reproducibility e�orts of authors
and publishers

6.1 E�ort of authors

In the case of authors, from the technical and methodological
limitations and for several of the reasons discussed, we can deduce
that, in most cases, a scientific article cannot be reproduced in
its entirety (100%). Authors generally choose to reproduce only
parts of the algorithms, demos, or data essential to support the
conclusions.
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Therefore, authors work to achieve 100% reproducibility in
their study or to fully clarify the reasons that prevented reaching
this objective, complying with the policies and requirements of
journals and conferences.

The improvement of the writing quality in scientific articles
and the associated documentation of the software has already
been studied (Mack, 2018) and represents an additional effort
for the author. In practice, however, these aspects are sometimes
overlooked. We can easily identify articles with confusing writing
unnecessarily overloaded with complex academic jargon. Such
writing is challenging to interpret and, consequently, very hard or
impossible to reproduce.

6.1.1 Reproducibility guide for authors when
submitting their research

From our analysis of the shared responsibility between authors
and journals and the most recent technological advances in
computing, we shall discuss the efforts required by each of these
two actors.

It is still challenging for journals and authors to close the gap
in a mutual effort, and it is even more complex when the authors
must comply with article submission guidelines between different
journals. An article comprises theoretical and computational parts
that can only be reproduced in a certain percentage and specific
components that only the author is responsible for defining and
specifying with the greatest of details and following a standard
guide that avoids reprocessing between publishers.

MICRO2023 is a recent experience toward unified EA (artifact
evaluation) guides and procedures,36 which allows speed up the
AE process. In a conference where artifacts can be complex and
time-consuming to evaluate, 25% of the submitted artifacts were
awarded the artifact reusable badge. In this context, practices such
as Reviewers performing an initial “smoke test” (for example,
installing the artifact or resolving access/environment/setup issues)
were developed. In addition, they reviewed the key claims of the
paper and the artifact. Similarly, two surveys were conducted
consulting authors and evaluators to seek feedback on the AE
process. Essential insights are derived from this survey, especially
in enabling authors and reviewers to quickly iterate on artifacts
efficiently and seamlessly in a reasonable time. For example,
Reviewers suggested that requesting authors to prepare a subset
of simulations (and/or representative checkpoints) would be a
good practice. Results “will appear in the ACM/IEEE MICRO

2023 conference front-matter”37 and support a trend toward
improvements to the process and clearer and standardized
instructions preferable to most subjective assessment of other
experiences.

Therefore, in addition to standardizing the different evaluation
and description guides of artifacts, we propose to incorporate a
mandatory and standardized unified guide between journals where
the author contributes the effort to comply and assess the level of
reproducibility of their scientific article (see Table 1).

36 https://ctuning.org/ae/micro2023.html

37 https://www.linkedin.com/pulse/micro-2023-artifact-evaluation-

report-56th-ieeeacm-symposium-fursin-bsgwe/

TABLE 1 Proposal of a reproducibility checklist guide for authors.

Item Options

Article based on software/data? Yes/no

Programming languages used (e.g., Python, C++)

Contains instructions for
reproducibility

(e.g., complete, verified)

Badges, certified third-party
reproducibility evaluators

(e.g., ACM badge, Ctuning)

Infrastructure reproducibility
required/trusted third-party RaaS
Operator

(e.g., Docker containers, MLflow,
CodeOcean, Chameleon)

Repository (e.g., Zenodo, Software Heritage)

Unique persistent citable identifiers
of Software/Data Artifacts

(DOI, SWID, BlockchainID)

Percentage of reproducibility of the
Article

(%)

Reproducible components (e.g. DEMO, virtual infrastructure,
figures, tables, Backend, Frontend,
Microservices, Lambda functions)

Component reproducibility degree (R1, R2, R3, R4)

Non-reproducible components
(Why)

(e.g., proprietary software, sensitive
data, distributed project)

We propose to incorporate a mandatory and standardized unified guide between journals

where the author contributes the effort to comply and assess the level of reproducibility of the

scientific article.

6.2 E�orts of publishers

In the case of publishers, given the comprehensive typology
of articles submitted to journals and their reproducibility costs,
it is economically unfeasible that they maintain their own
reproducibility infrastructure. Because of such costs, journals
today tend to rely on third trusted parties. Here, we discuss
how the Reproducibility as a Service (RaaS) methodology could
help discharge authors from the burden of running code and
maintaining a complex reproducibility infrastructure. We also
discuss how publishers consider software as more valued research
artifacts and thus properly reward authors. Finally, we provide a
brief gap analysis from our survey results in Section 4.2.

6.2.1 Reproducibility as a Service
As pointed out in Section 5.2, reaching reproducibility might

require a significant technological investment for some projects,
which should not be assumed only by the authors but shared with
publishers and offered by specialized third parties. One particular
strategy, Reproducibility as a Service (RaaS) (Wonsil et al., 2023a),
might be helpful for this purpose.

As introduced in Section 3, RaaS is an approach to address
non-reproducibility in scientific research by providing access to
tools and resources that researchers and industrial actors can
use to replicate experiments and data science projects. RaaS also
facilitates, manages, and overcomes many of the limitations and
barriers that we have identified in our literature review.

According to Brundage et al. (2020), RaaS could be labeled as
any third-party service made of tools that allow the reproducibility
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of scientific work. They propose using the existing cloud computing
tools to offer a service that fills the gap between two major
requirements to achieve reproducibility. First, actions are taken by
researchers who want to facilitate reproducibility. They provide
a detailed procedure that allows the ability to obtain the result
artifacts and the exact execution environment. Second, actions
taken by publishers or the industry validate reproducibility.

Additionally, there are trusted third parties that deal with
big data projects and confidentiality issues of sensitive datasets.
They aim to reduce the need for the strong computing skills
typically required to study in complex AI/ML data science projects.
Cloud Native-based RaaS (Wonsil et al., 2023a) adds an additional
standardized layer with simplified interfaces for IaC, virtualization,
and cloud computing (see Figure 4). Examples of these tools
include Invenio,38 Eprints,39 DSpace,40 among others.

Although not particularly adapted to complex workflow
systems and user interactivity, the partnership between IEEE and
Code Ocean41 is an excellent example of the relationship between
a journal and a third party that offers reproducibility services
in the cloud. The code from IEEE articles can be browsed,
discovered (assigned a DOI), run, modified, and eventually built
the researcher’s study on the cloud without any complex setup.

6.2.2 Culture of software as a valuable research
artifact and reward to authors

Traditionally, the published computer science article has been
considered the most important and rewarded (Parsons et al., 2019)
research artifact, leaving aside software production. Universities,
research centers, and evaluation committees often consider the
number of articles published in high-impact factor journals and the
number of citations as the major criterion for hiring a researcher,
increasing the salary, and career evolution, among other incentives.
Consequently, researchers typically do not invest considerable
resources in the reproducibility of the results, the quality of
the produced software, or even the possibility of publishing the
software itself. For example, the study by Gomes et al. (2022) and
Baker (2016) focus on the barriers (Anzt et al., 2020) concerning
why authors might be reluctant to share code and data in their
publications.

Many research projects are based on software contributed by
others, including libraries, applications, or complete frameworks,
and in many cases, there is no explicit recognition of the authors of
the third-party software. The recent incident about the vulnerability
in the log4j library (Hiesgen et al., 2022) is an excellent example
of a widely spread software used by hundreds of companies, not
necessarily acknowledging the library’s authors.

Moreover, some of the current incentives produce perverse
behaviors in a hyper-competitive environment (Edwards and
Roy, 2017), which certainly goes against ethics and scientific
transparency. They have also promoted the rise of predatory

journals (Cukier et al., 2020); some authors are discouraged from

38 http://invenio-software.org

39 http://www.eprints.org

40 http://www.dspace.org

41 https://codeocean.com/signup/ieee

improving the quality of their papers in the so-called publish or

perish race.
The lack of incentives for researchers and software developers

to produce quality and reproducible software has a clear negative
impact (Ke et al., 2023) on the development of Open Science.
Fortunately, the criteria for evaluating researchers are evolving in
parallel and going in the right direction (Technopolis, 2020).

Relatedly, the reproducibility culture has also been analyzed in
previous studies (Karathanasis et al., 2022; Mauerer et al., 2022;
Hofman et al., 2020; Fund, 2023; Lin, 2022), as has teaching
reproducibility in academic environments to young students and
Massive Open Online Courses (MOOC).42 ,43 ,44

Different studies (Parsons et al., 2019; Smith et al., 2016)
have focused on analyzing the citation of scientific software
and data publishers (Cousijn et al., 2018) as a natural need to
implement FAIR and paper-with-code strategies. To this purpose,
FORCE11 (The Future of Research Communications and e-
Scholarship) (Smith et al., 2016) provides guidelines for citation
software and data.

Software needs to be properly cited and preserved. Given their
dynamic and changing nature, these two requirements are certainly
not easy to fulfill. Indeed, millions of software repositories are
constantly being updated at every instant in GitHub and other
repositories.

The Software Heritage project, supported by UNESCO, is one
important step forward in both citation and perpetual preservation
of software via proper identifiers, such as the SWHID (Di Cosmo
et al., 2022). Zenodo also provides a Digital Object Identifier (DOI)
and Chameleon a QR-code to reference the code. It is also a great
source of information for determining the provenance of software
contributions.

Regarding using badges as an incentive for author
reproducibility, it must be observed that they really impact
the researcher’s reputation in the same way as the popularized
and mature badge system awarded in e-learning by important
companies, academies, to certify technical skills (Stefaniak and
Carey, 2019) published on reputable platforms such as Credly45 and
easily shared on Linkedin,46 which allow the candidate to reinforce
their CV and demonstrate to the employers in a competitive labor
market. Currently, at least 138 computer science journals award
reproducibility badges.47

As pointed out by Dozmorov (2018), GitHub is currently
the most complete database to measure the impact of software.
Interestingly, they concluded that the number of forks as
a measure of software impact is not correlated with the
number of citations associated with a scientific paper. This
finding, at first counter-intuitive, shows that citation indices
(such as the h-index and others) must fully explain the true
impact of the scientific work and the associated software. The

42 https://www.fun-mooc.fr/en/courses/reproducible-research-

methodological-principles-transparent-scie/

43 https://www.coursera.org/learn/reproducible-research

44 https://learning.edx.org/course/course-v1:HarvardX+PH527x+1T2020

45 https://info.credly.com/

46 https://www.linkedin.com/

47 https://cos.io/our-services/open-science-badges/
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FIGURE 8

Proposal for a future editorial process on which the article and code are published as a whole, and third parties certify reproducibility.

TABLE 2 The gap in the implementation of the journal policies, along

with the related survey’s questions.

Journals reproducibility
features

Survey questions Gap level

Automatic validation and
execution tool

11, 12, 13 High

Author incentives 14 Intermediate

Reviewer incentives 15 Intermediate

Reproducibility policy 3, 4, 5, 6, 16 High

Managed repository 9 High

Article/data/software persistent
unique identifier

9 High

Business model oriented to
reproducibility

7, 8 Intermediate

FAIR-TLC 10 Intermediate

consequence is, therefore, that producing quality software is
neither properly promoted nor taken into account for researchers’
career advancement.

There is, therefore, a need for metrics that are specific to
software, beyond indirect measures such as the number of forks
or stars in public repositories. Strategies such as RaaS and more
adapted metrics such as the scientific impact factor (SIF) (Lippi
andMattiuzzi, 2017) could be of great help rather than the H-index
or impact factor of the journal (FIJ), Clarivative,48 or Altmetric49

indicators.
Our recommendation is depicted in Figure 8. It includes

incentives for all the actors, as well as for third parties
that implement permanent and long-term reproducibility
infrastructures supporting the editorial business.

48 https://clarivate.com/

49 https://www.altmetric.com/

6.3 Dilemma: reproducibility sharing
policies

At this point, an important clarification must be made,
journal reproducibility policies should not be confused with
traditional open access and open science initiatives. It could
even be considered an open topic that requires standardization.
In Stodden et al. article (Stodden et al., 2018), the authors
made a first approximation to the analysis of data and
code of the publications in policy adoption by Journals.
Consequently, this work analyzes (Stodden et al., 2013, 2012) the
journal policy implementation and effectiveness for computational
reproducibility, however a clear concept of “reproducibility
policies” is not consolidated. This leads us to consider that
journals face an important dilemma in defining their internal
policy of just limiting themselves to a code and data sharing
policy or going further in defining veritable and strict automation
tools and reproducibility evaluation article reproducibility policy.
Maintaining a sustainable cost and businessmodel at the same time.

6.4 Brief gap analysis

We provided a small gap analysis of the level of implementation
of reproducibility policies that we observed in our survey. We
intended to bring together all the elements of analysis. We include
technological aspects and the efforts required by both authors and
publishers to help close or, at least, reduce the reproducibility
gap. Aspects such as the standardization and implementation
of reproducibility policies, adaptation of business models, and
association with specialized third parties are considered. These
recommendations come from analyzing the answers in our survey
results (Section 4.2).

Table 2 shows the journal policy evaluation gap in identified

key aspects, indicating the survey question that helps evaluate the
percentage of implementation of the reproducibility policies. With
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TABLE 3 Summary strategies for reproducibility.

Type Strategy References Examples

(1) Sof

Open source software, Open
science, repositories, FAIR

Parland-von Essen et al., 2018; Raff and Farris, 2022; Macleod
and the University of Edinburgh Research Strategy Group,
2022; Abernathey et al., 2021; Haim et al., 2023b,a;
Gonzalez-Barahona and Robles, 2023; Barba, 2022; Stodden,
2020

GitHub, GitLab, Bitbucket, Zenodo, Software Heritage,
Dataverse, Hugging Face

CSharing/documentation tools Pimentel et al., 2019, 2021; Samuel and König-Ries, 2021a;
Wang et al., 2020

Reprozip, Notebooks, CRAN, Rmarkdown,

Open data formats, baselines,
SOTA benchmarks

Khritankov et al., 2021; Kazerooni et al., 2023; Fursin et al.,
2014

JSON, XML, MLperf, Dataperf, Kaggel, Brats,CM,
MLcube, MLdev

(2) Env

Container/virtualization/cloud Howe, 2012; Canon, 2020; Moreau et al., 2023; Bedő et al.,
2024

Docker, Vmware, singularity, AWS, GCP, AZURE,
ORACLE, BioNix/ Guix

Architectures Fritzsch et al., 2023; Jonas et al., 2019 Monolithic/microservice/serverless/cloud/hybrid

IaC—Infrastructure as a Code Bowman, 2023; Octoverse, 2024; Daniel Adorno Gomes and
Serodio, 2019; pulumi.com, 2019; Orzechowski et al., 2020

Terraform, pulumi, kubernetes CloudFormation,
Ansible, puppet

(3) Sys

Cientific workflows and MLOps
tools BPML CWL languages

Gift and Deza, 2021; Demchenko et al., 2023;
Cohen-Boulakia et al., 2017; Rosendo et al., 2023; Gundersen
et al., 2022; Bahaidarah et al., 2021; Ghoshal et al., 2020; Kluge
et al., 2020; Korkhov et al., 2012

Taverna, Galaxy, VisTrails, Nextflow, Neptune, Weight,
Comet, Omniboard, Mlflow, TensorBoard, Polyaxon,
ClearML, Valohai, Pachyderm, Kubeflow, Verta.ai,
SageMaker, DVC, kheOps, RE3, Hyperflow, watchdog,
SHIWA

Metadata and provenance
(traceability lineage logging
monitoring)

Huynh and Moreau, 2015; Silva Junior et al., 2021; Wonsil
et al., 2023b; Samuel and König-Ries, 2022b,a; Peregrina et al.,
2022; Kawamoto and Kobayashi, 2020; Wittek et al., 2021;
Samuel et al., 2021; Druskat et al., 2022

MERIT, HERMES, ROVPY, PROVNEO4J, PROV-DB,
CONNECTOR, NOWORKFLOW, GIT2PROV,
Provbook, blockchain, SWHID, DOI

RaaS—Reproducibility as a service Wonsil et al., 2023a; Demchenko et al., 2023; Chard et al.,
2020

Whole tale, chameleon, CodeOcean, IPOL

(4) Met

AE/AD peer code reviews Supporting computational reproducibility through code
review, 2021; Fostiropoulos et al., 2023; Malik, 2020; Pineau
et al., 2020; Athanassoulis et al., 2022; Plale et al., 2021;
Lopresti and Nagy, 2021

Reviewcommons, ArVix, Peer Community In (PCI),
SIGPLAN, Ctuning, NeuroIPS, Badging

Publications with code De Sterck et al., 2023; Bonsignorio, 2017; Salsabil et al., 2022;
Trisovic et al., 2020

Some Journals (nature), Conferences (ACM, IEEE),
runmycode

Policies, best practices,
methodologies, teaching
reproducibility culture

Korkhov et al., 2012; Schröer et al., 2021; Milewicz and
Mundt, 2023; The Turing Way Community, 2022; Melchor
et al., 2022; Mauerer et al., 2022; Lin, 2022; Akhlaghi et al.,
2021; Merz et al., 2020; Turkyilmaz-van der Velden et al.,
2020; Hofman et al., 2020; Samuel and König-Ries, 2021b;
Nichols et al., 2021

NASEM, DevSecOps, AIOps, MLops, CRISP-DM,
KDD, SEMMA, turing way, journal reproducibility
policies, MOOCs

The table shows the relationship between the nine sections and the four main classes. (1) Sof (Sections 3.1, 3.2), (2) Env (Sections 3.3, 3.4), (3) Sys (Section 3.5), (4) Met (Section 3.6-3.9).

this table, each journal is evaluated regarding its reproducibility
policies and the effort it must make in the key aspects identified.

It can observed from the answers that there is a low percentage
of implementation of reproducibility policies, as well as the low use
of technological tools for automation, validation, and sustainability
of reproducibility in the long term (longevity of reproducibility).

This is explained by the fact that there is still no consensus and
standardization on what should be a good reproducibility policy for
journals, as well as the lack of a developed and mature market of
trusted specialized RaaS services.

To determine the gap, we used the following qualitative
ranking:

• High: when there is a complete lack of accomplishment or
implementation of the criterion.

• Intermediate: when there is the presence of an initiative with
immature development of the criterion.

• Low: when there is a complete and functional implementation
of the criterion.

Unfortunately, there is a significant gap in implementing
some aspects, mainly those related to automation, establishing
reproducibility policies, managing repositories, and using
persistent identifiers for the research artifacts, including software.
Other aspects, such as orienting the business model toward
reproducibility itself or the use of FAIR data seem to be more
developed.

Despite the observed gap, there is an opportunity to reduce
the reproducibility gap with the common efforts of authors,
publishers, and technological providers. See Tables 1–3 for
more details.

6.5 Classification of reproducibility criteria

Table 4 shows the classification of reproducibility criteria for
artifacts description (AD) and artifacts evaluation (AE) used in the
review of publications.
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TABLE 4 Classification of reproducibility criteria for artifact description

(AD) and artifact evaluation (AE).

Criterion Description Type

Gundersen et al.
criteria

Gundersen et al. (2022)

Results Documented result and analysis Experiment

Analysis Supported claims Experiment

Justification Justified method, metrics, datasets Experiment

Workflow Summarized experiment execution
and configurations

Experiment

Workflow execution Tracked execution with
configuration

Experiment

Hardware Specified hardware Experiment

Software Documented software dependencies Experiment

Citation Export Reference automatically generated Experiment

Code repository Shared code in repository Experiment

Code metadata Code metadata included Experiment

Code license Code license included Experiment

Code citable Code (DOI) or (PURL) assigned Experiment

Hypothesis Documented hypothesis Method

Prediction Documented predictions Method

Setup Documented parameters, conditions,
statistical significance of results

Method

Problem description Clearly described problem Method

Outline Conceptually described method Method

Pseudo code Documented pseudo code Method

Data repository Data shared in accessible repository Data

Data metadata Metadata included in datasets Data

Data license Licensed data Data

Data citeable DOI or P-URL of data assigned Data

NEUROips Checklist Pineau et al., 2020

Model and algorithms Clarified models, algorithms, settings;
assumptions explained; algorithm
complexity analyzed

Experiment

Theoretical claim Clarified claim statements; fully
proven claims

Method

Datasets Statistics, train/validation/test split
details, excluded data explained,
preprocessing, downloadable link,
quality control

Data

Code Dependencies, training/evaluation
code, README with results table,
pre-trained models

Experiment

Experimental result Method selection, best
hyperparameters, runs count, metrics
and results statistics, energy cost,
runtime

Method

SIGPLAN

Clearly stated claims Explicit claims, limitations
recognized

Method

Suitable comparison Appropriate baseline comparison, fair
comparison

Method

(Continued)

TABLE 4 (Continued)

Criterion Description Type

Principled benchmark
choice

Fair use of non-standard suite,
applications instead of kernels

Method

Adequate data analysis Sufficient trials, statistical summary,
data distribution reported

Method

Relevant Metrics Effective and comprehensive metrics Method

Experiment Design Reproducible, reasonable platform,
key design parameters, test set
evaluation

Method

Presentation of results Clear summary, axes properly labeled,
precision adequate

Method

Ctuning

Abstract Clearly stated problem, solution, and
results

Method

Algorithm New algorithm specification Experiment

Program Benchmarks used Method

Compilation Requires specific compiler Experiment

Transformations Require transformation tool Experiment

Binary Binaries included Experiment

Model Specific models used Experiment

Data set Specific data sets used Experiment

Run-time environment OS-specific artifacts Experiment

Hardware Specific hardware requirements Experiment

Run-time state State-sensitive to runtime Experiment

Execution Runs under specific conditions Experiment

Metrics Metrics evaluation method Experiment

Output Output specification Experiment

Experiments Reproduction instructions Method

Disk space Required disk space Experiment

Workflow Time needed to prepare workflow Experiment

Time evaluation Time required for experiment
completion

Experiment

Publicly available Data

Code licenses License specification Data

Workflow frameworks Frameworks used for automation Method

Archived Software archived and public Data

Access Instructions for artifact access Data

Hardware
dependencies

Hardware-specific requirements Experiment

Software dependencies OS and software package
requirements

Experiment

Data sets Third-party data sets in packages Data

Installation Setup procedures described Method

Experiment workflow Workflow implementation and
execution described

Experiment

Expected result Key result reproduction instructions Method

Experiment
customization

Special customization instructions Method

(Continued)
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TABLE 4 (Continued)

Criterion Description Type

NISO

Artifact Available DOI or URL link with unique
identifier provided

Data

Artifacts
Evaluated-Functional

Documented, consistent, complete,
validated artifacts

Method

Artifacts
Evaluate-Reusable

High-quality, well-documented,
reusable artifacts

Method

Open Research Objects
(ORO)

DOI or URL for public archival
repository

Method

Research Object
Reviewed (ROR)

Independent study reproduction
without original artifacts

Method

Results Replicated
(RER)

ROR+ORO, independent evaluation Method

Results Reproduced
(ROR-R)

ROR+ORO, subsequent independent
evaluation using original artifacts

Method

FAIR-TLC Parland-von Essen et al., 2018

Findable Rich metadata for discovery and
identification

Data

Accessible Available and accessible with clear
mechanisms

Data

Interoperable Structured for integration with other
data

Data

Reusable Open license for use and reuse Data

Traceable Provenance information included Data

Licensed License specifying usage terms Data

Connected Linked to related datasets and
resources

Data

This compilation shows criteria used by different reproducibility assessment works.

7 Conclusion

As a consequence of the aforementioned credibility crisis, in
this study, we have addressed the problem of reproducibility,
specifically in computer science, including ML/AI projects, from
diverse reproducibility stakeholder points of view. We establish
insights from the best practices, frameworks, methodologies, and
technologies available at the moment.

In computer science, the variety of languages, new
developments, platforms, frameworks, hardware, and architectures
on which the code of scientific articles can be run are vast.

We conclude that the high cost of guaranteeing the
reproducibility of a software project is not adequately rewarded
at this moment to the reproducibility stakeholders. Considering
the costs in own infrastructure that would be required, we still
need to consider business models that encourage investment by
third parties in infrastructure and thus guarantee longevity and
perennity in the reproducibility of scientific publications.

It is convenient to define a new metric equivalent of the
Impact Factor, which could be used specifically for software.
This could help properly reward the effort of software developers

by acknowledging them clearly as co-authors of the scientific
study and measuring the real impact of their contributions in
reproducible computer science projects.

There is a low level of implementation of reproducibility
policies in journals. For the moment, the traditional peer review
evaluation methodologies are preferred. The responsibility of the
validation is mainly on the expertise of the reviewers chosen by the
editors and the few functional tests of the artifacts that they can do
with their limited testing infrastructure.

We conclude that mutually beneficial relationship should be
established between authors, reviewers, and publishers to balance
the benefits and costs. Therefore it is imperative to bring together
coordinated efforts to agree on standardized guides for authors
to submit articles, unified reproducibility policies and artifact
evaluation criteria from editors, supported by the reproducibility
strategies and technological evolution discussed in this article.
Consequently, there is a promising future with opportunities
and potential to reduce the reproducibility gap identified with
the joint effort of all actors involved to ensure reliability and
trustworthiness in the knowledge conveyed by computer science-
based publications.

In the current circumstances, readers and the general public
could be considered passive actors. However, it is interesting
to suggest that in the future, strategies and policies will
be created that promote the more active participation of
readers (e.g., likes and followers) in reviewing inconsistencies
or errors in research claims as an important support to the
scientific community.
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Feger, S. S., and Woźniak, P. W. (2022). Reproducibility: a researcher-centered
definition.Multimodal Technol. Interact. 6:17. doi: 10.3390/mti6020017

Forde, J., Head, T., Holdgraf, C., Panda, Y., Nalvarete, G., Ragan-Kelley, B., et al.
(2018). Reproducible Research EnvironmentsWith Repo2Docker. Openreview. Available
at: https://openreview.net/pdf?id=B1lYOwuoxm

Fostiropoulos, I., Brown, B., and Itti, L. (2023). “Reproducibility requires
consolidated artifacts,” in 2023 IEEE/ACM 2nd International Conference on AI
Engineering – Software Engineering for AI (CAIN) (Melbourne, VIC: IEEE), 100–101.
doi: 10.1109/CAIN58948.2023.00025

Françoise, J., Caramiaux, B., and Sanchez, T. (2021). “Marcelle: composing
interactive machine learning workflows and interfaces,” in The 34th Annual ACM
Symposium on User Interface Software and Technology (New York, NY: ACM), 9–53.
doi: 10.1145/3472749.3474734

Freire, J., Bonnet, P., and Shasha, D. (2012). “Computational reproducibility: state-
of-the-art, challenges, and database research opportunities,” in Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data (Scottsdale, AZ:
ACM), 593–596. doi: 10.1145/2213836.2213908

Frery, A. C., Gomez, L., and Medeiros, A. C. (2020). A badging system for
reproducibility and replicability in remote sensing research. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 13, 4988–4995. doi: 10.1109/JSTARS.2020.3019418

Fritzsch, J., Bogner, J., Haug, M., da Silva, A. C. F., Rubner, C., and Saft, S. (2023).
Adopting microservices and DevOps in the cyber-physical systems domain: a rapid
review and case study. software: practice and experience. Softw. Pract. Exp. 53, 790–810.
doi: 10.1002/spe.3169

Fund, F. (2023). “We need more reproducibility content across the computer
science curriculum,” in Proceedings of the 2023 ACM Conference on Reproducibility
and Replicability (Santa Cruz, CA: ACM), 97–101. doi: 10.1145/3589806.
3600033

Fursin, G. (2018). “Invited talk abstract: introducing ReQuEST: an open platform
for reproducible and quality-efficient systems-ML tournaments,” in 2018 1st Workshop
on Energy Efficient Machine Learning and Cognitive Computing for Embedded
Applications (EMC2) (Williamsburg, VA: IEEE), 3. doi: 10.1109/EMC2.2018.00008

Fursin, G. (2020a). Collective knowledge: organizing research projects as a database
of reusable components and portable workflows with common APIs. arXiv [Preprint].
arXiv:2011.01149. doi: 10.48550/ARXIV.2011.01149

Fursin, G. (2020b). The collective knowledge project: making ML models more
portable and reproducible with open APIs, reusable best practices and MLOps. arXiv
[Preprint]. arXiv:2006.07161. doi: 10.48550/ARXIV.2006.07161

Fursin, G. (2020c). Enabling reproducible ML and Systems research: the good, the
bad, and the ugly. Zenodo. doi: 10.5281/ZENODO.4005773

Fursin, G., Miceli, R., Lokhmotov, A., Gerndt, M., Baboulin, M., Malony, A. D., et al.
(2014). Collective mind: towards practical and collaborative auto-tuning. Sci. Program.
22, 309–329. doi: 10.1155/2014/797348

Gandrud, C. (2020). Reproducible research with R and RStudio. The R series, 3rd
Edn. Boca Raton, FL: CRC Press. doi: 10.1201/9780429031854

Frontiers inComputer Science 22 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1491823
https://doi.org/10.1158/1078-0432.CCR-18-0227
https://doi.org/10.1038/s43586-023-00218-x
https://doi.org/10.1109/BigData.2017.8258038
https://doi.org/10.1016/j.future.2017.12.029
https://doi.org/10.48550/ARXIV.2004.07213
https://doi.org/10.1007/978-3-030-43020-7_68
https://doi.org/10.1109/CANOPIEHPC51917.2020.00008
https://doi.org/10.3233/APC200107
https://doi.org/10.1145/3322790.3330594
https://fchirigati.com/files/papers/chirigati-tapp2013.pdf
https://fchirigati.com/files/papers/chirigati-tapp2013.pdf
https://doi.org/10.1016/j.future.2017.01.012
https://doi.org/10.1145/2812803
https://doi.org/10.1109/NTMS.2015.10287266500
https://doi.org/10.25080/Majora-7b98e3ed-01d
https://doi.org/10.1038/sdata.2018.259
https://doi.org/10.48550/ARXIV.1504.01310
https://doi.org/10.1145/3486897
https://doi.org/10.1186/s12916-020-01566-1
https://doi.org/10.1109/WORKS54523.2021.00016
https://doi.org/10.1007/s10915-023-02193-7
https://doi.org/10.1007/978-3-540-28642-4_2
https://doi.org/10.1109/COMSNETS56262.2023.10041378
https://doi.org/10.17605/OSF.IO/KDE56
https://doi.org/10.1186/s13104-021-05875-3
https://doi.org/10.1002/leap.1258
https://doi.org/10.3389/fbioe.2018.00198
https://doi.org/10.48550/arXiv.2201.09015
https://doi.org/10.1089/ees.2016.0223
https://doi.org/10.1016/j.envsoft.2020.104753
https://doi.org/10.3390/mti6020017
https://openreview.net/pdf?id=B1lYOwuoxm
https://doi.org/10.1109/CAIN58948.2023.00025
https://doi.org/10.1145/3472749.3474734
https://doi.org/10.1145/2213836.2213908
https://doi.org/10.1109/JSTARS.2020.3019418
https://doi.org/10.1002/spe.3169
https://doi.org/10.1145/3589806.3600033
https://doi.org/10.1109/EMC2.2018.00008
https://doi.org/10.48550/ARXIV.2011.01149
https://doi.org/10.48550/ARXIV.2006.07161
https://doi.org/10.5281/ZENODO.4005773
https://doi.org/10.1155/2014/797348
https://doi.org/10.1201/9780429031854
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hernandez and Colom 10.3389/fcomp.2024.1491823

Ghimpau, V. (2019). “Incentives, rewards, and recognition - what really motivates
a researcher?,” in Judging Research (MDPI). doi: 10.3390/books978-3-03928-315-6-11

Ghoshal, D., Paine, D., Pastorello, G., Elbashandy, A., Gunter, D., Amusat,
O., et al. (2020). “Experiences with reproducibility: case studies from scientific
workflows,” in Proceedings of the 4th International Workshop on Practical Reproducible
Evaluation of Computer Systems (Stockholm: ACM), 3–8. doi: 10.1145/3456287.
3465478

Gift, N., and Deza, A. (2021). Practical MLOps: operationalizing machine learning
models, 1st Edn. Sebastopol, CA: O’Reilly Media Inc. OCLC: on1249501065.

Gomes, D. G. E., Pottier, P., Crystal-Ornelas, R., Hudgins, E. J., Foroughirad,
V., Sánchez-Reyes, L. L., et al. (2022). Why don’t we share data and code?
Perceived barriers and benefits to public archiving practices. Proc. R. Soc. B Biol. Sci.
289:20221113. doi: 10.1098/rspb.2022.1113

Gonzalez-Barahona, J. M., and Robles, G. (2023). Revisiting the reproducibility
of empirical software engineering studies based on data retrieved from development
repositories. Inf. Softw. Technol. 164:107318. doi: 10.1016/j.infsof.2023.107318

Gonzalo Rivero, J. C. (2020). Best Coding Practices to Ensure Reproducibility.

Gundersen, O. E. (2020). The reproducibility crisis is real. AI Mag. 41, 103–106.
doi: 10.1609/aimag.v41i3.5318

Gundersen, O. E. (2021). The fundamental principles of reproducibility. Philos.
Trans. R. Soc. A Math. Phys. Eng. Sci. 379:20200210. arXiv:2011.10098 [cs].
doi: 10.1098/rsta.2020.0210

Gundersen, O. E., andKjensmo, S. (2018). State of the art: reproducibility in artificial
intelligence. Proc. AAAI Conf. Artif. Intell. 32:11503. doi: 10.1609/aaai.v32i1.11503

Gundersen, O. E., Shamsaliei, S., and Isdahl, R. J. (2022). Do machine learning
platforms provide out-of-the-box reproducibility? Future Gener. Comput. Syst. 126,
34–47. doi: 10.1016/j.future.2021.06.014

Gupta, A., Wright, C., Ganapini, M. B., Sweidan, M., and Butalid, R. (2022). State of
AI ethics report. arXiv [Preprint]. arXiv:2202.07435. doi: 10.48550/arXiv.2202.07435

Haibe-Kains, B., Adam, G. A., Hosny, A., Khodakarami, F., Massive Analysis
Quality Control (MAQC) Society Board of Directors, Waldron, L., et al. (2020).
Transparency and reproducibility in artificial intelligence. Nature 586, E14-E16.
doi: 10.1038/s41586-020-2766-y

Haim, A., Shaw, S., and Heffernan, N. (2023a). “How to open science: a principle
and reproducibility review of the learning analytics and knowledge conference,” in
LAK23: 13th International Learning Analytics and Knowledge Conference (Arlington,
TX: ACM), 156–164. doi: 10.1145/3576050.3576071

Haim, A., Shaw, S. T., and Heffernan, N. T. (2023b). “How to open science:
promoting principles and reproducibility practices within the artificial intelligence in
education community,” inArtificial Intelligence in Education. Posters and Late Breaking
Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners,
Doctoral Consortium and Blue Sky, Vol. 1831, eds. N. Wang, G. Rebolledo-Mendez, V.
Dimitrova, N. Matsuda, and O. C. Santos (Cham: Springer Nature Switzerland), 74–78.
doi: 10.1007/978-3-031-36336-8_11

Heesen, R. (2017). Communism and the incentive to share in science. Philos. Sci. 84,
698–716. doi: 10.1086/693875

Heroux, M. A., Barba, L., Parashar, M., Stodden, V., and Taufer, M. (2018). Toward
a Compatible Reproducibility Taxonomy for Computational and Computing Sciences.
Tech. Rep. SAND2018-11186. doi: 10.2172/1481626

Hiesgen, R., Nawrocki, M., Schmidt, T. C., and Wählisch, M. (2022). The race to
the vulnerable: measuring the log4j shell incident. arXiv [Preprint]. arXiv:2205.02544.
doi: 10.48550/arXiv.2205.02544

Hofman, J. M., Goldstein, D. G., Sen, S., and Poursabzi-Sandegh, F. (2020).
“Expanding the scope of reproducibility research through data analysis replications,”
in Companion Proceedings of the Web Conference 2020 (Taipei: ACM), 567–571.
doi: 10.1145/3366424.3383417

Howe, B. (2012). Virtual appliances, cloud computing, and reproducible research.
Comput. Sci. Eng. 14, 36–41. doi: 10.1109/MCSE.2012.62

Hu, Y., Tareen, A., Sheu, Y.-J., Ireland, W. T., Speck, C., Li, H., et al. (2020).
Evolution of DNA replication origin specification and gene silencing mechanisms.Nat.
Commun. 11:5175. doi: 10.1038/s41467-020-18964-x

Hughes, T. (2001). “History of technology,” in International Encyclopedia
of the Social & Behavioral Sciences (Amsterdam: Elsevier), 6852–6857.
doi: 10.1016/B0-08-043076-7/02648-6

Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M. R., Li, P., et al. (2006).
Taverna: a tool for building and running workflows of services. Nucleic Acids Res. 34,
W729-W732. doi: 10.1093/nar/gkl320

Hummel, T., and Manner, J. (2024). “A literature review on reproducibility studies
in computer science,” in Proceedings of the 16th ZEUS Workshop on Services and Their
Composition (ZEUS 2024) (CEUR). Available at: https://ceur-ws.org/Vol-3673/paper9.
pdf

Hutson, M. (2018). Artificial intelligence faces reproducibility crisis. Science 359,
725–726. doi: 10.1126/science.359.6377.725

Huynh, T. D., and Moreau, L. (2015). “ProvStore: a public provenance
repository,” in Provenance and Annotation of Data and Processes, Vol. 8628, eds.
B. Ludäscher, and B. Plale (Cham: Springer International Publishing), 275–277.
doi: 10.1007/978-3-319-16462-5_32

Idrissou, A., Zamborlini, V., and Kuhn, T. (2022). “Documenting the creation,
manipulation and evaluation of links for reuse and reproducibility,” in Knowledge
Engineering and Knowledge Management, Vol. 13514, eds. O. Corcho, L. Hollink, O.
Kutz, N. Troquard, and F. J. Ekaputra (Cham: Springer International Publishing),
81–96. doi: 10.1007/978-3-031-17105-5_6

Impagliazzo, R., Lei, R., Pitassi, T., and Sorrell, J. (2022). “Reproducibility in
learning,” in Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing (Rome: ACM), 818–831. doi: 10.1145/3519935.3519973

Ivie, P., and Thain, D. (2018). Reproducibility in scientific computing. ACM
Comput. Surv. 51, 63:1–63:36. doi: 10.1145/3186266

Jalal Apostal, S. F., Apostal, D., and Marsh, R. (2020). “Improving numerical
reproducibility of scientific software in parallel systems,” in 2020 IEEE International
Conference on Electro Information Technology (EIT) (Chicago, IL: IEEE), 066–074.
doi: 10.1109/EIT48999.2020.9208338

Johnson, E. C. (2024). SciOps: achieving productivity and reliability in data-
intensive research. arXiv [Preprint]. arXiv:2401.00077. doi: 10.48550/arXiv.2401.00077

Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C.-C., Khandelwal, A., Pu, Q., et al.
(2019). Cloud programming simplified: a Berkeley view on serverless computing. arXiv
[Preprint]. arXiv:1902.03383. doi: 10.48550/ARXIV.1902.03383

Kapoor, S., and Narayanan, A. (2022). Leakage and the reproducibility crisis in ML-
based science. arXiv [Preprint]. arXiv:2207.07048. doi: 10.48550/ARXIV.2207.07048

Karargyris, A., Umeton, R., Sheller, M. J., Aristizabal, A., George, J., Wuest, A., et al.
(2023). Federated benchmarking of medical artificial intelligence with MedPerf. Nat.
Mach. Intell. 5, 799–810. doi: 10.1038/s42256-023-00652-2

Karathanasis, N., Hwang, D., Heng, V., Abhimannyu, R., Slogoff-Sevilla, P., Buchel,
G., et al. (2022). Reproducibility efforts as a teaching tool: a pilot study. PLoS Comput.
Biol. 18:e1010615. doi: 10.1371/journal.pcbi.1010615

Kawamoto, Y., and Kobayashi, A. (2020). “AI pedigree verification platform
using blockchain,” in 2020 2nd Conference on Blockchain Research & Applications
for Innovative Networks and Services (BRAINS) (Paris: IEEE), 204–205.
doi: 10.1109/BRAINS49436.2020.9223307

Kazerooni, A. F., Khalili, N., Liu, X., Haldar, D., Jiang, Z., Anwar, S. M., et al.
(2023). The brain tumor segmentation (BraTS) challenge 2023: focus on pediatrics
(CBTN-CONNECT-DIPGR-ASNR1229 MICCAI BraTS-PEDs). arXiv [Preprint].
arXiv:2305.17033v7. doi: 10.48550/ARXIV.2305.17033

Ke, Q., Gates, A. J., and Barabási, A.-L. (2023). A network-based normalized impact
measure reveals successful periods of scientific discovery across disciplines. Proc. Nat.
Acad. Sci. 120:e2309378120. doi: 10.1073/pnas.2309378120

Keahey, K., Riteau, P., Stanzione, D., Cockerill, T., Mambretti, J., Rad, P., et al.
(2019). “Chameleon: a scalable production testbed for computer science research,” in
Contemporary High Performance Computing, eds. K. Keahey, P. Riteau, D. Stanzione,
T. Cockerill, J. Mambretti, P. Rad, et al. (Boca Raton, FL: CRC Press), 123–148.
doi: 10.1201/9781351036863-5

Khritankov, A., Pershin, N., Ukhov, N., and Ukhov, A. (2021). MLDev: data
science experiment automation and reproducibility software. arXiv [Preprint].
arXiv:2107.12322. doi: 10.48550/arXiv.2107.12322

Kitchenham, B., Madeyski, L., and Brereton, P. (2020). Meta-analysis for
families of experiments in software engineering: a systematic review and
reproducibility and validity assessment. Empirical. Softw. Eng. 25, 353–401.
doi: 10.1007/s10664-019-09747-0

Kitzes, J., Turek, D., and Deniz, F. editors (2018). The practice of reproducible
research: case studies and lessons from the data-intensive sciences. Oakland, CA:
University of California Press.

Kluge, M., Friedl, M.-S., Menzel, A. L., and Friedel, C. C. (2020). Watchdog 2.0: new
developments for reusability, reproducibility, and workflow execution. GigaScience
9:giaa068. doi: 10.1093/gigascience/giaa068

Konkol, M., Nüst, D., and Goulier, L. (2020). Publishing computational research -
a review of infrastructures for reproducible and transparent scholarly communication.
Res. Integr. Peer Rev. 5:10. doi: 10.1186/s41073-020-00095-y

Korkhov, V., Krefting, D., Montagnat, J., Truong-Huu, T., Kukla, T., Terstyanszky,
G., et al. (2012). Shiwa workflow interoperability solutions for neuroimaging data
analysis. Stud. Health Technol. Inform. 175, 109–10.

LeVeque, R. J., Mitchell, I. M., Stodden, V. (2012). Reproducible research for
scientific computing: tools and strategies for changing the culture. Comput. Sci. Eng.
14, 13–17. doi: 10.1109/MCSE.2012.38

Lewis, T.-M. (2023). From policy to practice: How journal-based data policies
encourage scientists’ adoption of reproducible research practices (PhD thesis). Chapel
Hill, NC: The University of North Carolina at Chapel Hill University Libraries.

Lin, J. (2022). Building a culture of reproducibility in academic research. arXiv
[Preprint]. arXiv:2212.13534. doi: 10.48550/ARXIV.2212.13534

Frontiers inComputer Science 23 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1491823
https://doi.org/10.3390/books978-3-03928-315-6-11
https://doi.org/10.1145/3456287.3465478
https://doi.org/10.1098/rspb.2022.1113
https://doi.org/10.1016/j.infsof.2023.107318
https://doi.org/10.1609/aimag.v41i3.5318
https://doi.org/10.1098/rsta.2020.0210
https://doi.org/10.1609/aaai.v32i1.11503
https://doi.org/10.1016/j.future.2021.06.014
https://doi.org/10.48550/arXiv.2202.07435
https://doi.org/10.1038/s41586-020-2766-y
https://doi.org/10.1145/3576050.3576071
https://doi.org/10.1007/978-3-031-36336-8_11
https://doi.org/10.1086/693875
https://doi.org/10.2172/1481626
https://doi.org/10.48550/arXiv.2205.02544
https://doi.org/10.1145/3366424.3383417
https://doi.org/10.1109/MCSE.2012.62
https://doi.org/10.1038/s41467-020-18964-x
https://doi.org/10.1016/B0-08-043076-7/02648-6
https://doi.org/10.1093/nar/gkl320
https://ceur-ws.org/Vol-3673/paper9.pdf
https://ceur-ws.org/Vol-3673/paper9.pdf
https://doi.org/10.1126/science.359.6377.725
https://doi.org/10.1007/978-3-319-16462-5_32
https://doi.org/10.1007/978-3-031-17105-5_6
https://doi.org/10.1145/3519935.3519973
https://doi.org/10.1145/3186266
https://doi.org/10.1109/EIT48999.2020.9208338
https://doi.org/10.48550/arXiv.2401.00077
https://doi.org/10.48550/ARXIV.1902.03383
https://doi.org/10.48550/ARXIV.2207.07048
https://doi.org/10.1038/s42256-023-00652-2
https://doi.org/10.1371/journal.pcbi.1010615
https://doi.org/10.1109/BRAINS49436.2020.9223307
https://doi.org/10.48550/ARXIV.2305.17033
https://doi.org/10.1073/pnas.2309378120
https://doi.org/10.1201/9781351036863-5
https://doi.org/10.48550/arXiv.2107.12322
https://doi.org/10.1007/s10664-019-09747-0
https://doi.org/10.1093/gigascience/giaa068
https://doi.org/10.1186/s41073-020-00095-y
https://doi.org/10.1109/MCSE.2012.38
https://doi.org/10.48550/ARXIV.2212.13534
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hernandez and Colom 10.3389/fcomp.2024.1491823

Lin, J., and Zhang, Q. (2020). “Reproducibility is a process, not an achievement:
the replicability of IR reproducibility experiments,” in Advances in Information
Retrieval, Volume 12036, eds. J. M. Jose, E. Yilmaz, J. Magalhães, P. Castells, N.
Ferro, M. J. Silva, and F. Martins (Cham: Springer International Publishing), 43–49.
doi: 10.1007/978-3-030-45442-5_6

Lippi, G., and Mattiuzzi, C. (2017). Scientist impact factor (SIF): a new metric for
improving scientists’ evaluation? Ann. Transl. Med. 5:24. doi: 10.21037/atm.2017.06.24

Lopresti, D., and Nagy, G. (2021). “Reproducibility: evaluating the evaluations,” in
Reproducible Research in Pattern Recognition, Vol. 12636, eds. B. Kerautret, M. Colom,
A. Krähenbühl, D. Lopresti, P. Monasse, and H. Talbot (Cham: Springer International
Publishing), 12–23. doi: 10.1007/978-3-030-76423-4_2

Lucic, A., Bleeker, M., Jullien, S., Bhargav, S., and de Rijke, M. (2022).
Reproducibility as a mechanism for teaching fairness, accountability, confidentiality,
and transparency in artificial intelligence. Proc. AAAI Conf. Artif. Intell. 36,
12792–12800.doi: 10.1609/aaai.v36i11.21558

Mack, C. A. (2018). How to Write a Good Scientific Paper. Bellingham: SPIE Press.
OCLC: on1019885580. doi: 10.1117/3.2317707

Macleod, M., and the University of Edinburgh Research Strategy Group (2022).
Improving the reproducibility and integrity of research: what can different stakeholders
contribute? BMC Res. Notes 15:146. doi: 10.1186/s13104-022-06030-2

Malik, T. (2020). “Artifact description/artifact evaluation: a reproducibility bane or
a boon,” in Proceedings of the 4th International Workshop on Practical Reproducible
Evaluation of Computer Systems (Stockholm: ACM), 1. doi: 10.1145/3456287.34
65479

Martinez, I., Viles, E., and Olaizola, I. G. (2021). “A survey study of success factors
in data science projects,” in 2021 IEEE International Conference on Big Data (Big Data)
(Orlando, FL: IEEE), 2313–2318. doi: 10.1109/BigData52589.2021.9671588

Mauerer, W., Klessinger, S., and Scherzinger, S. (2022). “Beyond the badge:
reproducibility engineering as a lifetime skill,” in Proceedings of the 4th International
Workshop on Software Engineering Education for the Next Generation (Pittsburgh, PA:
ACM), 1–4. doi: 10.1145/3528231.3528359

Melchor, F., Rodriguez-Echeverria, R., Conejero, J. M., Prieto, A. E., and Gutiérrez,
J. D. (2022). “A model-driven approach for systematic reproducibility and replicability
of data science projects,” in Advanced Information Systems Engineering, Vol. 13295,
eds. X. Franch, G. Poels, F. Gailly, and M. Snoeck (Cham: Springer International
Publishing), 147–163. doi: 10.1007/978-3-031-07472-1_9

Meng, H., and Thain, D. (2017). Facilitating the reproducibility of scientific
workflows with execution environment specifications. Procedia Comput. Sci. 108,
705–714. doi: 10.1016/j.procs.2017.05.116

Merz, K. M., Amaro, R., Cournia, Z., Rarey, M., Soares, T., Tropsha, A., et al. (2020).
Editorial: Method and data sharing and reproducibility of scientific results. J. Chem. Inf.
Model. 60, 5868–5869. doi: 10.1021/acs.jcim.0c01389

Milewicz, R., and Mundt, M. (2023). “Towards evidence-based software quality
practices for reproducibility: preliminary results and research directions,” in
Proceedings of the 2023 ACM Conference on Reproducibility and Replicability (Santa
Cruz, CA: ACM), 85–88. doi: 10.1145/3589806.3600040

Moreau, D., Wiebels, K., and Boettiger, C. (2023). Containers for computational
reproducibility. Nat. Rev. Methods Primers 3, 1–16. doi: 10.1038/s43586-023-00236-9

Nichols, J. D., Oli, M. K., Kendall,W. L., and Boomer, G. S.(2021). A better approach
for dealing with reproducibility and replicability in science. Proc. Natl. Acad. Sci. U S A
118:e2100769118. doi: 10.1073/pnas.2100769118

Nordling, T., and Peralta, T. M. (2022). A literature review of methods for
assessment of reproducibility in science. Res. Sq. doi: 10.21203/rs.3.rs-2267847/v1

Octoverse (2024). State of the octoverse 2024. Available at: https://octoverse.github.
com/ (accessed December 24, 2024).
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