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cost-sensitive learning models
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Early and accurate detection of plant diseases is crucial for making informed

decisions to increase the yield and quality of crops through the decision of

appropriate treatments. This study introduces an automated system for early

disease detection in plants that enhanced a lightweight model based on the

robust machine learning algorithm. In particular, we introduced a transformer

module, a fusion of the SPP and C3TR modules, to synthesize features in various

sizes and handle uneven input image sizes. The proposed model combined with

transformer-based long-term dependency modeling and convolution-based

visual feature extraction to improve object detection performance. To optimize

a model to a lightweight version, we integrated the proposed transformer model

with the Ghost module. Such an integration acted as regular convolutional layers

that subsequently substituted for the original layers to cut computational costs.

Furthermore, we adopted the SIoU loss function, a modified version of CIoU,

applied to the YOLOv8s model, demonstrating a substantial improvement in

accuracy. We implemented quantization to the YOLOv8 model using ONNX

Runtime to enhance to facilitate real-time disease detection on strawberries.

Through an experiment with our dataset, the proposed model demonstrated

mAP@.5 characteristics of 80.30%, marking an 8% improvement compared

to the original YOLOv8 model. In addition, the parameters and complexity

were reduced to approximately one-third of the initial model. These findings

demonstrate notable improvements in accuracy and complexity reduction,

making it suitable for detecting strawberry diseases in diverse conditions.

KEYWORDS

DNN, transformer, Ghost Conv, SIoU loss function, pre-trained, quantization, android

application

1 Introduction

Detecting diseases in crops, especially in major crops, is a crucial issue in agriculture.

Early disease detection and prevention are vital measures to minimize damage to crops

and increase productivity. However, detecting diseases on strawberries poses a challenge

due to variations in shape, color, and size among different diseases. Traditional methods

for strawberry disease detection, reliant on the analyses of agricultural experts, are time-

consuming and lack accuracy. With the significant progress in deep learning and computer

hardware, advanced image recognition technologies are increasingly employed by scholars

for agricultural disease recognition.
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Recent applications of deep learning, particularly

Convolutional Neural Networks (CNNs), in detecting crop

diseases have shown promising results (Mahmud et al., 2019;

Jayawardena et al., 2016). Scholars have proposed CNN techniques,

such as GoogLeNet (Ferentinos, 2018), for plant leaf identification,

achieving recognition rates exceeding 94%, even with partial leaf

damage. CNNs have been utilized for discovering crop species

and diseases (Ha and Chen, 2021), with reported accuracies

of 99.35%. Deep Transfer Learning (DTL) (Chen et al., 2020)

has been employed for banana disease detection, reaching an

accuracy of 90%. Diverse deep CNN architectures (Cheng et al.,

2017), including AlexNet, MobileNet, GoogLeNet, VGGNet,

and Xception, have been proposed for inspecting strawberry

quality, with reported accuracies of up to 95%. Supervised

machine learning technologies (Selvaraj et al., 2019) have also

been addressed to recognize strawberry powdery mildew disease

with an accuracy of 94.34%. The classification model (Ha et al.,

2024) for identifying plant diseases through the integration of

local and global features utilizing a transformer-based approach

demonstrated very high results with 99.18% and 94.05% accuracy.

Object detection techniques, such as Fast RCNN (Mohanty et al.,

2016) and Faster-RCNN (Chen et al., 2019; Girshick, 2015; Baweja

et al., 2018) have found widespread applications in detecting insect

diseases in plants. Additionally, mask R-CNN (Sa et al., 2016) has a

demonstrated significant accuracy, especially in fruit discovery for

strawberry harvesting.

Beyond strawberries, recent research has significantly expanded

the application of object detection models to target plant

diseases in various crops. Liu and Wang (2021), in their review

“Plant Diseases and Pests Detection Based on Deep Learning,"

emphasize the advancements in utilizing deep learning techniques

to detect diseases such as powdery mildew (Erysiphe necator)

and black spot (Alternaria alternata) in tomatoes and cucumbers,

as well as apple scab (Venturia inaequalis) and downy mildew

(Plasmopara viticola). Similarly, Shruthi and Nagaveni (2024)

demonstrate a hybrid convolutional neural network (CNN) model

using self-regulated layers and inception layer for accurate and

efficient diagnosis of tomato diseases with severity levels. These

studies highlight the promising capabilities of AI systems to

revolutionize plant disease detection and management across

diverse agricultural application.

In terms of attention mechanisms and transformer-based

architectures, have significantly improved the performance of

plant disease detection systems. Transformers, initially popularized

in natural language processing, have demonstrated exceptional

capability in modeling long-range dependencies and multiscale

features, making them highly effective for visual tasks. For instance,

Gu et al. (2024) proposed the Multi-Modal Fast Gated Transformer

(MFGTN), which integrates spatial and temporal data for improved

feature fusion, inspiring potential applications in plant disease

detection under diverse environmental conditions. Similarly, Song

et al. (2024) introduced CenterFormer, a transformer-based model

that enhances segmentation accuracy through a cluster center-

guided attention mechanism, offering a promising approach for

localizing disease-affected regions in plants. These studies highlight

the importance of attention mechanisms in achieving precise

feature extraction and localization.

In the context of one-stage object detection, the YOLO (You

Only Look Once) family, including YOLOv3, YOLOv4, YOLOv5

(Yu et al., 2019; Zhang et al., 2022; Sozzi et al., 2022), and YOLOv7

(Gallo et al., 2023), has shown promising results in detecting

diseases in plants, including strawberries. These models efficiently

combine feature extraction and prediction, with fair inference time.

The evolution of disease detection methodologies, particularly

through the integration of advanced deep learning techniques,

provides a strong foundation for AI-mediated disease detection

in agriculture.

In line with the prevailing trend and its application to the

challenge of strawberry leaf disease detection, this work introduces

models designed for accuracy enhancement model complexity

minimization based on YOLOv8s released in 2023, a state-of-the-

art model in single-stage object detection as well as within the

YOLO family. Specifically, our contributions to this paper are

as follows:

- A new dataset is proposed and collected from high-quality images

on Google with farm settings, as well as from the Ministry

of Agriculture, Vietnam. Through rigorous preprocessing and

adherence to strict criteria regarding color, area, density of the

diseased part, and species shape, we curated 1,000 high-quality

images, categorizing them into five classes: Normal, Rubber, Gray

Mold, Black Spot, and Powdery Mildew.

- We develop the SC3T module to ameliorate model accuracy.

Inspired by the transformer module widely used in natural

language processing, the SC3T module employs an attention

mechanism designed for multiscale processing, effectively

handling feature maps at different scales and ensuring accurate

detection of objects of various sizes.

- The loss function of CIoU in YOLOv8s is replaced by the SIoU

loss function, a variant of CIoU incorporating angle factors. This

establishes the basis for inferring costs related to distance, ratio,

and intrusion.

- The Ghost convolution module is specifically devised to address

limitations in conventional deep neural network models like

YOLOv8s, to successfully establish a lightweight model.

- Quantization through ONNX Runtime, leading to a streamlined

ONNX file suitable for deployment, is conducted for aiming at

enhancing model performance and efficiency.

- Subsequently, our object detection app was developed

and demonstrated on Android devices, showcasing

the tangible deployment and practical utility of the

proposed deep learning model in real-world object

detection scenarios.

The subsequent sections of this paper are organized as

follows: Section 2 presents an extensive overview of existing

methodologies in the literature employed for plant disease

detection. Section 3 details the proposed methodology, offering

more specific explanations on enhancement features. In Section

4, we illustrate the dataset, training environment, and both

quantitative and qualitative results in three aspects: accuracy

complexity, and loss functions. Additionally, comparative analyses

of our models are addressed on different datasets. Finally, the

conclusion is given in Section 5 with a brief summary of

this work.
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2 Related previous work

2.1 One-stage object detection

Among the prominent one-stage object detection frameworks

(Yao et al., 2021), the YOLO series (Redmon et al., 2016)

stands out for its real-time performance and unified, efficient

architecture, consistently achieving high accuracy and versatility

across various applications through iterative advancements.

YOLOv1 and YOLOv2, while groundbreaking, relied on a rigid

grid-based prediction mechanism that struggled with localization

accuracy for small or occluded objects. To address these limitations,

YOLOv3 introduced multi-scale feature detection, significantly

enhancing object recognition across varying sizes. However, its

deeper architecture increased training time and computational

costs. Building on these improvements, YOLOv4 incorporated

the CSPDarknet53 backbone, further boosting accuracy but at

the expense of higher GPU resource requirements. YOLOv5

shifted focus toward lightweight design, achieving faster inference

times but lacking advanced feature fusion capabilities, which

limited its performance in cluttered environments. YOLOv7

enhanced training efficiency and detection speed, yet it remained

dependent on intricate hyperparameter tuning and showed reduced

robustness for objects in motion.

YOLOv8 addresses these challenges with significant

architectural advancements by integrating the C2f module to

enhance multiscale feature aggregation and reduce computational

overhead compared to the C3 module used in YOLOv5 and

YOLOv7. In addition, YOLOv8 supports ONNX Runtime and

TensorFlow Lite, enabling seamless deployment across diverse

platforms and enhancing performance in real-time applications. Its

lightweight architecture and optimized inference reduce latency,

making it particularly well-suited for time-critical tasks. Based on

these strengths, we have utilized and implemented the experiments

in YOLOV8s.

2.2 Object detection models with accuracy
improvement

From foundational models, numerous studies have sought

to improve the accuracy performance, notably in the context

of YOLO-related research. For instance, in YOLOv3 (Zhao and

Li, 2020), this model was introduced to accelerate the rate of

convergence when initializing the width and height of the predicted

bounding boxes. This method enables the selection of more

representative initial dimensions, leading to a significant increase in

mAP. Another study (Yao et al., 2020) employed double K-means to

generate anchor boxes, aiming to lift localization accuracy. Several

investigations have focused on refining the structures within the

YOLO’s backbone, such as an introduction of the bottleneck CSP-2

module in Yan et al. (2021) or the incorporation of special modules,

as seen in Yao et al. (2021), which introduced SELayer (Xu et al.,

2021) and integrated EfficientNet into the YOLO architecture.

One promising module inspired by a transformer, a natural

language processing model developed by Google, is gaining

attention. With its attention mechanism via matrix computations,

a transformer can effectively link semantically relevant content.

This mechanism performs well with image data, facilitating

the correlation of related features. Leveraging this advantage,

the adoption of the transformer has demonstrated significant

effectiveness in models like YOLOv5s (Zhu et al., 2021; Yu et al.,

2021). Referring to these enhancement ideas, we propose the SC3T

transformer module to improve mAP accuracy in the state-of-the-

art YOLO model, YOLOv8.

2.3 Object detection models with light
weights

Enhancing the accuracy of YOLO often increases model

complexity, leading to higher Floating-Point Operations per

Second (FLOPs). Consequently, the challenge of improving the

model in a lightweight direction for high-efficiency hardware

computing has become a highly prospective research area.

For example, tinier-YOLO (Fang et al., 2019) proposed a

lightweight solution for tiny YOLOv3. This involved modifying the

SqueezeNet module to reduce the number of model parameters

and subsequently decrease the overall model size. Another

noteworthy approach is found in Lu et al. (2020), named YOLO-

compact, which separates the down-sampling layers from all

network modules. This model is 3.7, 6.7, and 26 times smaller

than tiny-YOLOv3, tiny-YOLOv2, and YOLOv3, respectively.

The Ghost module, applied in YOLOv5 (Dong et al., 2022;

Liu et al., 2021; Xu et al., 2022), has demonstrated notable

efficiency in reducing computational operations and the number of

parameters significantly. Such a module can be a good candidate

for lightweight model designs. Recognizing its effectiveness, we

explored incorporating the Ghost convolution module into the

backbone architecture of YOLOv8s, yielding highly favorable

results in experimental evaluations.

2.4 Loss functions

The loss functions serve as a crucial aspect for evaluating

the overall model accuracy by calculating the deviation between

the actual and predicted objects. This dimension associated with

maximizing accuracies in object detection tasks is pivotal. In

YOLOv5, the loss function comprises three components:

Classification loss: used to compute the deviation between the

predicted probabilities of object classes and the actual ones of object

classes in an image.

Localization loss: employed to calculate the accuracy of the

predicted bounding box positions concerning the actual ones of

objects in an image.

Objectness loss (equivalent to IoU loss): used to determine the

accuracy of classifying image pixels as objects or non-objects.

This study focuses on object loss in order to heighten the

model’s accuracy. Specifically, in YOLOv5, the objectness loss

utilized is CIoU loss (Zheng et al., 2021), which considers three

factors: the distance between the centers of the predicted and actual

boxes, the aspect ratio difference, and the diagonal distance ratio.

These special factors are beneficial to improve detection accuracy,
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especially for small objects. The SIoU loss function, proposed

by Gevorgyan (2022) in May 2022, is a variant of CIoU loss,

incorporating an angle factor. This addition constructs the basis

for inferring distance and ratio factors. Studies associated with

replacing CIoU with SIoU have demonstrated promising results in

YOLOv5. Inspired by this, we experimented with SIoU in YOLOv8,

yielding favorable outcomes.

2.5 Pre-trained model

The early achievements of deep learning in the field of

computer vision owe much to transfer learning. The pre-

training based on ImageNet played a pivotal role in achieving

advancements over state-of-the-art results in various recognition

tasks, including object detection (Lin et al., 2017; Liu et al.,

2016), semantic segmentation (Chen et al., 2017; He et al., 2017),

and scene classification (Zhou et al., 2017; Herranz et al., 2016).

The adaptability of pre-trained features has been thoroughly

investigated (Azizpour et al., 2015; Cui et al., 2018; Kornblith et al.,

2019). For instance, Azizpour et al. (2015) quantified the similarity

between tasks using ImageNet classification; Cui et al. (2018)

investigated the transfer of nsights gained from large classification

datasets have been applied to smaller, detailed datasets; Kornblith

et al. (2019) explored the relationship among ImageNet pre-

training accuracies, transfer accuracies, and network architectures.

In this work, the proposed model was trained on a large dataset,

as detailed in Afzaal et al. (2021). Subsequently, we utilized these

weights as the pre-trained parameters for further learning on our

specific dataset.

3 Proposed model

This work proposes and optimizes models for practical use,

specifically object detection models in a typical phase like those

in the YOLO family. After training, evaluation, and testing,

these models undergo quantization and are integrated into the

application software. An overview of our system architecture is

depicted in Figure 1. Initially, to assess the effectiveness of the

proposed models, we trained them on a large dataset, followed by

evaluation and selection of the outperformance candidates based

on two criteria: accuracy and lightweight nature. These top models

are then saved as pre-training models for the Vietnam strawberries

dataset. With the proposed accuracy model, we aim to achieve

high accuracy without considering its complexity, while with the

lightweight model, we emphasize reducing model complexity as

well as accuracy. Subsequently, the lightweight model is quantized

to optimize its weights, suitably embedded into edge devices.

Specifically, we built an Android app for disease detection on

strawberries. To delve into the specifics, we will explore the original

YOLOv8 architecture.

From an architectural point of view, YOLOv8s doesn’t exhibit

many differences from YOLOv5s. A key distinction lies in

the integration of the C2f module, which supersedes the C3

module originally employed in YOLOv5. In YOLOv5, the C3

module consists of three standard convolutional layers and several

bottleneck blocks. This structure incorporates two branches: one

branch utilizes multiple stacked bottleneck blocks and three

standard convolutional layers, while the other branch processes

a single basic convolutional layer before merging with the first

branch. The effective design of the bottleneck module minimizes

the number of training parameters and computational load, thus

mitigating issues of gradient explosion and vanishing in deep

networks, and thereby enhancing the model’s learning capabilities.

YOLOv7 further refines gradient calculations by introducing

multiple parallel gradient branches and implementing the ELAN

module, resulting in improved accuracy and more reasonable

latency. YOLOv8 designed the C2f module based on the C3

module and ELAN’s concept to gather diverse gradient clues while

maintaining a lightweight structure.

In Figure 2, YOLOv8s-Transformer is devised based on the

basic architecture of YOLOv8s to enhance the accuracy. We have

integrated SC3T into the final layer of the backbone to optimize

the extracted data at different scales, thereby improving overall

model efficiency. Subsequently, these features at various scales are

extracted in the head section before moving to the prediction

part. Here, we experimented with various loss functions to identify

the most suitable one that achieves outstanding performance for

our application.

Similar to YOLOv8s-Transformer, as shown in Figure 3,

YOLOv8s-Trans-Ghost has been developed with the addition of

the transformer module and a loss function similar to those in

the YOLOv8s transformer. However, the positions of conventional

convolutions are substituted with Ghost convolutions. This

modification aims to balance enhanced accuracy with reduced

computational load by mapping each input channel to a smaller

number of output channels, rather than mapping each input

channel to a corresponding output channel as done in typical

convolutional layers.

In comparison to YOLOv8, we have implemented the

following optimizations:

- Propose the S3CT module into the last layer of the backbone,

aiding the model in more accurately extracting and localizing

germination features, thereby improving the mAP accuracy of

the model.

- Replace convolutional layers with Ghost convolution, enhancing

not only the model’s performance but also reducing its

computational complexity, making it more lightweight

and efficient.

- In YOLOv8s, the loss function utilizes CIoU, which has

demonstrated significant effectiveness compared to GIoU and

DIoU used in the earlier versions of YOLOv8. However, CIoU

doesn’t handle objects that change in scale whereas SIoU, as a

variant of CIoU, addresses this issue by normalizing distance and

diagonal distance via the width and height of the ground truth

box. This helps the model ameliorate performance in detecting

small objects as well as increase the mAP accuracy of the model.

3.1 Proposed SC3T

The proposed SC3T (Do et al., 2023) module which is

integrated into the last layer of the backbone is a fusion of the
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FIGURE 1

Our system structure.

FIGURE 2

YOLOv8s-transformer accuracy model.

SPP and the C3TR modules which is shown in Figure 4. The SPP

module addresses the challenge posed by non-uniform input image

sizes encountered in object detection tasks. In traditional CNN, the

input image size is typically fixed, requiring resizing or cropping

of input images to a predefined one before feeding inputs into the

network. However, this approach is not ideal for handling images

of different sizes efficiently. To overcome this limitation, the Spatial

Pyramid Pooling (SPP) module allows the network to accept input
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FIGURE 3

YOLOv8s-Ghost-Trans lightweight model.

images of various sizes without the need for resizing. We design

SPP using kernels with a uniform stride of 1 but varying sizes (5 ×

5, 9× 9, and 13× 13). This strategy ensures that important features

at different scales are captured effectively. After pooling, each sub-

region is processed independently to extract distinctive features.

The extracted features from all sub-regions are then concatenated

along the channel dimension. This feature fusion process through

channel concatenation enables the model to combine features of

different spatial resolutions efficiently, facilitating robust object

detection across images of varying sizes. By incorporating the

SPP module into the network architecture, we elevate the model’s

ability to handle non-uniform input sizes while preserving spatial

information effectively, contributing to improved performance in

object detection tasks. Subsequently, the output of the SPP module

is combined with that from the C3TR module to create the SC3T

module in Figure 4, replacing the C3 and the final SPPF layer in

the YOLOv5s network to enhance the speed and accuracy of object

detection with a smaller network size. The C3TR layer is shown

in Figure 4, a combination of a transformer with the C3 layer

of CSPDarknet53, which is utilized in the YOLOv5 model. This

layer is pivotal for extracting and integrating features from various

regions of the image, utilizing the transformer’s ability to capture

interdependencies among different data segments. Whereas the

C3 layer in CSPDarknet53 is dedicated to feature extraction, the

transformer is adept at identifying feature relationships. The fusion

of these capabilities within the C3TR layer empowers the model

to extract features and understand their relationships, which is

essential for object detection tasks.

The C3TR layer capitalizes on the transformer’s capability to

learn hierarchical representations, ranging from low-level to high-

level image features. This, in conjunction with CSPDarknet53’s

feature extraction prowess, enhances feature learning with a more

comprehensive contextual insight. The C3TR layer promotes

stable learning by utilizing the transformer’s layer normalization

and residual connections, thereby alleviating issues of gradient

vanishing and explosion during the training process, which ensures

stable learning in deep neural networks.

Designed for multiscale processing, the C3TR layer receives

and integrates feature maps at different scales, ensuring efficient

detection of varied-size objects. The head of the C3TR layer reduces

the size of the feature map, integrates it with other feature maps,

and channels it through the transformer, enabling the learning of

characteristics from different image scales. Serving as the input

feature map for channel numbers 512, 1,024, and 2,048, the C3TR

layer is a pivotal element in YOLOv5’s object detection model.

Transformers have demonstrated exceptional performance in

sequence modeling and have proven to be more effective than

traditional architectures in non-sequential tasks such as object

detection. In particular, the use of transformer-based learning in

C3TR capitalizes on the model’s ability to capture long-range

dependencies. These dependencies involve correlations between

elements that are separated by significant distances in a sequence or

within spatio-temporal data. Put simply, long-range dependencies

reflect the meaningful relationships between a given element and

those that come before or after it. For example, this includes

the contextual links between words in a sentence, the spatial

relationships between objects, and the movements observed across

successive frames in a video (Zhao et al., 2019).

C3TR captures these long-term dependencies in input feature

maps through a self-attention mechanism, allowing the model

to consider a broader context and comprehend global object

information, contributing to accurate object detection. The adept
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FIGURE 4

Proposed SC3T module.

combination of lines (referring to the effective feature extraction

pathways in the CNN backbone) and transformers (utilizing a

self-attention mechanism) ensures high efficiency with a minimal

number of parameters. In the context of our methodology, the term

“lines" refers to the efficient feature extraction pathways established

within the CNNbackbone, such as the DarkNet architecture used in

YOLO. These pathways are responsible for extracting hierarchical

features from input images. On the other hand, “transformers"

denote components of our model that leverage self-attention

mechanisms to capture long-range dependencies within the input

feature maps. By integrating these effective feature extraction

pathways (lines) with the self-attention capabilities of transformers,

our model achieves high efficiency. This adept combination grants

in the model to process global contextual information while

maintaining a compact parameter footprint, leading to improved

performance in object detection tasks.

In conclusion, the amalgamation of SPP and C3TR

demonstrates effectiveness in YOLOv8 by utilizing concatenation

to synthesize features at various sizes. Given the non-uniform

input image sizes, this combined with transformer-based long-

term dependency modeling and convolution-based visual feature

extraction, enhances precise object localization and increases

classification performance. Our experiments have consistently

shown results aligning with these claims, with an mAP index

∼6.0% higher than that from the baseline model.

3.2 Ghost module

Ghost convolution which is depicted in Figure 5 emerges as

a structure strategically designed to strike a balance between

heightened accuracy and minimal computational overhead. It

specifically tackles the limitations found in conventional deep

neural networkmodels, known for their excessive intricacy, making

them challenging for deployment on resource-limited devices.

In this study, we leverage the potential of the Ghost convolution

module to enhance the performance of the YOLOv8 framework,

especially in scenarios constrained by resource limitations. The

conventional convolution module is replaced with the Ghost

convolution module, representing a streamlined alternative to

traditional convolutional layers. This transition significantly

reduces the count of model parameters, facilitating the efficient

allocation of computational resources.

3.3 SIoU loss function

After amalgamatingmodels to create a more robust framework,

we opted for the YOLOv8s-Transformer model for hardware

deployment. However, to lift the system’s performance in

accurately identifying smaller objects, especially for search and

rescue operations which need extremely high accuracy, thus

model optimization is essential. We observed that accuracy

could still be improved by modifying or optimizing the loss

function, specifically in this case, by utilizing the SIoU loss

function that has demonstrated efficacy in the previous version

of YOLOv5, and facilitated higher prediction accuracies for

small objects due to incorporating a smoothing factor into the

computation formula. This approach stabilizes the gradient of

the SIoU loss function during model training. As a result,

models using the SIoU loss function can better learn from

small bounding boxes, thereby improving the accuracy of object

localization predictions.

In the loss function officially used in YOLOv8, CIoU is adopted.

It evaluates the distance between the centers of the predicted and

ground-truth boxes, the aspect ratio difference, and the diagonal

distance ratio. These factors aim to enhance the detection accuracy,

especially for small objects. The loss function of SIoU (Gevorgyan,

2022) is a variant of CIoU that does not scale with the ratio. In

SIoU, the “distance" refers to the distance between the centers of

the predicted actual boxes, while the “diagonal distance" is the

length of the diagonal line connecting the predicted actual boxes.

Both the distance and diagonal distance are normalized by the

width and height of the ground-truth box. This normalization

allows SIoU to handle objects with different ratios, a common

challenge in object detection. The SIoU loss function is defined

by the sum of the following costs: angle cost, distance cost, shape

cost, and IoU cost. As shown in Figure 6, the expression of angle

cost is:

Lang = 1− 2 sin2
(

arcsin(x)−
π

4

)

(1)
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FIGURE 5

Structure of Ghost convolution.

FIGURE 6

Diagram of SIoU loss function for calculating the angle cost.

x =
ch

σ
= sin(α) (2)

where σ represents the distance between the centroid of the

ground truth bounding box and the prediction box as follows.

ch = max(b
g
cy t, bcy )−min(b

g
cy t, bcy ) (3)

The distance cost is formulated in the following:

Ldis =
∑

t=x,y(1− e−γρt ) (4)

ρx =

(

(b
g
cx t−bcx )
cw

)2

(5)

ρy =

(

(b
g
cy t−bcy )

ch

)2

(6)

γ = 2− Lang (7)

As α approaches 0, the impact of the distance cost diminishes

significantly. Conversely, when α is closer to γ , the influence of

Ldis increases. The difficulty of the problem grows with the angle.

Therefore, as the angle increases, γ is given greater priority over

the distance value. It is important to note that the distance cost

decreases as α approaches 0.

The formula for shape cost is:

Lshape =
∑

t=w,h

(1− e−ωt )θ (8)

ωw =
|w− wgt|

max(w,wgt)
(9)

ωh =
|h− hgt|

max(h, hgt)
(10)

Where w and wgt refer to the widths of the prediction and

ground-truth boxes, respectively, and h and hgt denote the heights

of the prediction and ground-truth boxes, respectively. The total

loss function is represented by:

Lbox = 1− IoU+
Ldis + Lshape

2
(11)

In this study, the SIoU loss function is utilized to replace CIoU

in the proposed YOLOv8s-Transformer model. We also compare

it with the other loss functions such as DIoU, GIoU, and EIoU for

an evaluation. Additionally, experimental results indicate that SIoU

when integrated with adoption in YOLOv8s, achieves superior

outcomes compared to other losses.

4 Experiment result and discussion

4.1 Dataset

Strawberries hold immense agricultural value globally.

However, their susceptibility to a diverse range of diseases poses

a significant threat, rapidly spreading within short periods. This

not only diminishes strawberry yields but also inflicts financial

losses on farmers. Consequently, we’ve developed an Android app

for detecting strawberry diseases, utilizing a dataset comprising

real-life images of both healthy and diseased strawberries. In this

work, we leverage two datasets to validate the proposed model.

The first dataset from Afzaal et al. (2021), encompasses images of

strawberries afflicted by seven distinct diseases. Unlike datasets

gathered from controlled laboratory settings, this dataset, collected

from real fields and greenhouses, presents several challenges

including variations in background, complex field conditions,

and diverse lighting environments. These variations empower our

model to be more robust and adaptable after learning. This dataset

comprises 2,500 images of strawberry diseases captured in various

greenhouses using mobile phones, under natural illumination

conditions in South Korea. Expert verification ensured the accuracy

of disease labels. The second dataset is built up by capturing the
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TABLE 1 Numbers of annotated images for five disease types.

Strawberry
dataset

Number of samples

Train Validation Test

Normal 1414 404 202

Gray mold 420 120 60

Black spot 364 104 52

Powdery mildew 287 82 41

Rubber 252 72 36

Total 630 180 90

intricacies of real-world scenarios. We trained the models using

images of strawberry diseases obtained from the Vietnam Ministry

of Agriculture. This dataset consists of 1,000 images categorized

into five classes: normal strawberries, gray mold disease, black spot

disease, powdery mildew disease, and rubber disease as listed in

Table 1. Classifications were based on crucial factors like color,

area, density of the diseased part, and the species’ shape. Rigorous

verification, involving two individuals following guidelines, was

conducted to minimize labeling errors. Incorrect images, such

as non-strawberry entities, from the controlled lab settings, and

out-of-scope images, were meticulously removed.

For the object detection task, precise bounding regions

encompassing the strawberries in a full image are imperative. To

accomplish this, we used Roboflow to annotate the leaves in each

image with bounding boxes. Recognizing that real-world images

may contain multiple strawberries or a combination of diseased

and healthy strawberries, we carefully labeled each leaf with its

corresponding class. During the labeling process, we ensured that

the bounding box fully encompassed the strawberries and that

its area was no less than approximately one-eighth of the image

size. After completing the annotations, we divided the dataset into

training, validation, and test sets with an 8:1:1 ratio. This division

allowed us to train this proposed model on a substantial portion

of the data while reserving separate subsets for model validation

and final performance evaluation. Subsequently, the model training

process commenced, encompassing the essential steps for achieving

effective object detection on strawberry images.

4.2 Implementation details

4.2.1 Training details
The proposed models were trained on the strawberry dataset

utilizing Google Colab with a high RAM runtime and Tesla V100

GPU configuration. After the training process was completed,

we obtained the weight sets for each model. The effectiveness of

each model was then evaluated using the test dataset. Lastly, the

performance of the proposed models was compared with both the

backbone version and alternative methods.

4.2.2 Metrics
In the domains of action recognition and detection, evaluation

metrics include average accuracy and video-level mAP at specific

IoU thresholds. For our study, we use an IoU threshold of

0.5 to assess detection performance. Furthermore, we report the

computational complexity in terms of FLOPs associated with

network inferences. To ensure accurate measurement and avoid

unnecessary computations, the model is frozen prior to calculating

FLOPs. The total number of operations across all convolution layers

is then determined based on factors such as the number of output

feature maps, kernel sizes, and both input and output channels.

4.3 Experimental results on the dataset

To verify the effectiveness of the proposed models, YOLOv8s-

Transformer and YOLOv8s-Transformer-Ghost, we conducted

experiments on the dataset sourced from the study (Afzaal

et al., 2021). This dataset was collected in real fields and

greenhouses and processed by Korean researchers, encompassing

seven different diseases on strawberries, comprising 2,500 samples

captured using camera-equipped mobile phones. We compared the

proposed models, YOLOv8s-Transformer and YOLOv8s-Trans-

Ghost, with the original YOLOv8s and YOLOv5s. The results of

the comparative experiments are presented in Table 2.

Regarding accuracy, we observe a significant improvement

in models incorporating the transformer in both YOLOv5s

and YOLOv8s versions, with mAP values of 89.4 and 91.2%,

respectively. These outcomes are higher than those from the

original versions and alternatives. However, the number of

parameters (params) increases considerably.

In the pursuit of a lightweight model that demands both

compactness and accuracy, our YOLOv8s-Trans-Ghost reveals

promising results. Combining the Ghost module with the

YOLOv8s-Transformer shows favorable outcomes, with a

substantial reduction in the number of parameters and GLOPS,

at 3.4M and 11.5, respectively. The complexity of the YOLOv8s-

Trans-Ghost is even lower than that of the YOLOv5s model,

which is considered lightweight. This demonstrates efficiency

and responsiveness to the problem of applying the model to the

strawberry disease detection system in our context.

From the experiments conducted on the dataset, we observe

that the transformer module proves effective in enhancing the

model’s accuracy. However, it comes with the overhead of an

increased number of model parameters. In an effort to mitigate

the parameter increase, the implementation of Ghost convolution

has demonstrated efficiency by significantly reducing the number

of parameters, down to three to four times less compared to that

from the original YOLOv8s model. This reduction in parameters

is achieved without compromising the overall performance,

showcasing the effectiveness of Ghost convolution in optimizing

the model’s efficiency.

4.4 Experimental results on our dataset

Following the validation of the proposed models on the Afzaal

et al. (2021) dataset, we proceeded to train the proposed models on

our strawberry dataset.
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TABLE 2 Performance of proposed and conventional YOLOmodels in the Strawberry dataset (Afzaal et al., 2021).

Model Activation Loss function mAP@.5 Params GLOPS

YOLOv5s SiLu CIoU 88.30% 7M 15.8

YOLOv5s-Ghost SiLu CIoU 87.30% 5.81M 13.4

YOLOv5s-Transformer SiLu CIoU 89.40% 7M 15.8

YOLOv5s-Transformer-Ghost SiLu CIoU 86.70% 5.81M 13.2

YOLOv8s SiLu CIoU 90.50% 11M 28.5

YOLOv8s-Ghost Mish CIoU 88.80% 5.18M 19.9

YOLOv8s-Ghost SiLu CIoU 86.10% 5.18M 19.9

YOLOv8s-Transformer SiLu SIoU 91.20% 20.5M 30.2

YOLOv8s-Trans-Ghost Mish SIoU 88.30% 3.4M 11.5

YOLOv8s-Trans-Ghost Mish CIoU 87.60% 3.4M 11.5

The bold values indicate highest value.

4.4.1 E�orts for YOLOv8s-transformer accuracy
model

The first approach involves augmenting accuracy. The

proposed SC3T module is integrated into the final layer of

the backbone, forming the YOLOv8s-Transformer. Subsequently,

the Ghost module is incorporated to reduce the model’s size

and complexity. In this experiment, we compare the results of

the improved YOLOv8s models with other integrated models

in YOLOv5s with the embedded modules such as ShuffleNetv2,

EfficientNet, ShuffleNetv2-Transformer, EfficientNet-Transformer,

and the original ones.

As listed in Table 3 the original YOLOv8s model has 11,127,519

parameters, mAP@.5 of 72.3, and GPLOPs of 28.4. In contrast,

the YOLOv8s-Transformer model has shown a significant increase

improvement of nearly 6% compared to the original model in terms

of mAP@.5. Similar results are observed for the YOLOv5s model,

where the YOLOv5s-Transformer model with an accuracy of 75.7%

outperforms the other integrated models based on YOLOv5s,

yielding a 2.1% increase over the original version. However, a

limitation arises as the increased accuracy comes with a substantial

increase in the number of parameters, computational operations,

and model complexity

The proposed models using the transformer and Ghost

modules have demonstrated impressive results and outperformed

all other models in all metrics. With precision at 80.4%, recall

at 70.3%, mAP@.5 at 80.3%, and a reduced parameter count of

3.4M, half of the size of the YOLOv5s model, alongside a decreased

GLOPS of 11.5, the YOLOv8s-Trans-Ghost model exhibits

remarkable efficiency. Comparing the nine models in Table 3,

it is evident that the YOLOv8s-Tran-Ghost model significantly

improves accuracy while maintaining model simplicity. Moreover,

the parameter amounts and GLOPS of this model are notably

reduced, highlighting the superior performance of the YOLOv8s-

Trans-Ghost model.

4.4.2 E�orts for YOLOv8s-trans-ghost
lightweight model

With the goal of finding a sufficiently lightweight model

applicable to real-time systems while ensuring high accuracy, we

conducted experiments to explore and integrate the embedded

modules that have shown promising results for a lightweightmodel,

such as Ghost and CBam in YOLOv5, integrated into the YOLOv8s

architecture to become the proposed YOLOv8s-Transformer.

We compared the results of these models, considering various

activations and loss functions in the experiments.

As illustrated in Table 4, YOLOv8s-Transformer models

integrated with Ghost modules exhibited a substantial reduction

in the number of parameters (Params), with 3.4M parameters,

less than one-third of that from the original model and a

half that from the YOLOv5s model. The GLOPS index also

reveals a significant improvement, decreasing by over 2.5 times

compared to that from the original model. Notably, the YOLOv8s-

Trans-Ghost-Pretrain model with precision(P) and mAP@.5 both

exceeding 80%, incorporating Silu activation and SIoU loss,

not only maintains accuracy but also shows a remarkable

increase compared to all other models. This underscores the

effectiveness of applying proposed models to hardware systems,

ensuring real-time performance while maintaining high accuracy

in object detection.

4.5 Experiments for loss functions

To assess the effectiveness of different loss functions on the

proposed YOLOv8s-Transformer model, we explored five loss

functions—CIoU (2020), DIoU, GIoU, EIoU, and SIoU (2022).

These functions are compared based on the mAP values, a critical

indicator for evaluating the target detection model’s performance,

where a higher mAP signifies superior accuracy in detecting

target objects.

As illustrated in Table 5, the YOLOv8s-Transformer model

with SIoU loss outperforms the other models, with mAP@.5 values

of 75.7 and 79.8% for YOLOv5s and YOLOv8s, representing

increases of 2.1 and 7.5%, respectively, compared to the original

versions. This indicates that employing the SIoU loss function

effectively reduces sensitivity to position deviations of small objects,

addressing the localization issue of small objects and enhancing

training accuracy.
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TABLE 3 Performance of the proposed accuracy model, YOLO, and alternatives on our dataset.

Models Precision Recall mAP@.5 Params GLOPS

YOLOv5s 76.40% 61.80% 73.60% 7M 15.8

YOLOv5s-Transformer 79.20% 62.10% 75.70% 7.5M 16.4

YOLOv5s-ShuffleNetv2 73.00% 68.00% 73.50% 21M 40.4

YOLO5s-EfficientNet 75.10% 57.00% 67.80% 23M 43.9

YOLO5s-shuffle-trans 67.40% 65.00% 67.80% 36M 50.2

YOLO5s-efficient-trans 78.90% 55.00% 65.60% 38M 53.6

YOLOv8s 79.90% 60.90% 72.30% 11M 28.4

YOLOv8s-transformer 74.80% 69.70% 78.10% 20.5M 38.2

YOLOv8s-Trans-Ghost-SIoU-Pretrain 80.40% 70.30% 80.30% 3.4M 11.5

The bold values indicate highest value.

TABLE 4 Performance of the proposed lightweight model, YOLO, and alternatives on our dataset.

Model Activation Loss P mAP@.5 Params GLOPS

YOLOv5s SiLu CIoU 76.40% 73.60% 7M 15.8

YOLOv8s SiLu CIoU 79.90% 72.30% 11M 28.4

YOLOv8s-Ghost SiLu CIoU 75.00% 72.10% 5.2M 19.9

YOLOv8s-Trans-

Ghost

Mish CIoU 66.70% 69.80% 3.4M 11.5

YOLOv8s-Trans-

Ghost

Mish SIoU 67.30% 72.60% 3.4M 11.5

YOLOv8s-Trans-

Ghost

SiLu SIoU 70.70% 74.40% 3.4M 11.5

YOLOv8s-Trans-

Ghost-CBAM

SiLu CIoU 75.70% 70.20% 3.5M 15.5

YOLOv8s-Trans-

Ghost-Pretrain

SiLu SIoU 80.40% 80.30% 3.4M 11.5

The bold values indicate highest value.

4.6 Ablation experiments

We proposed four key improvements to the YOLOv8s model:

(1) introduction of the SC3T module, (2) addition of the Ghost

module to the backbone, (3) utilization of the SIoU loss function,

and (4) application of pretraining from dataset (Afzaal et al., 2021)

to our YOLOv8s-Trans-Ghost model.

In Table 6, aiming to create a model with higher accuracy, we

introduced the transformer module, resulting in a 5.8% increase

in mAP@.5. After replacing the loss function with SIoU, accuracy

further lifted by 1.7%, reaching 79.8%. To create a lightweight

model, the Ghost module is incorporated into the original model,

reducing the parameter count by half to 5.2 million compared to

the original one, 11 million, and significantly dropping the GLOPs

index to 19.9. However, the accuracy decreases, prompting us

to combine the two modules to form the YOLOv8s-Trans-Ghost

model. This leads to an increase in mAP@.5 to 74.4%, a substantial

reduction in parameters to 3.4 million, and a notable improvement

in GLOPs to 11.5. This demonstrated an increased accuracy while

significantly reducing the model’s weight.

Continuing the pursuit of accuracy enhancement, we pre-

trained the YOLOv8s-Trans-Ghost model by the dataset (Afzaal

et al., 2021). The mAP@.5 in the proposed model surges to an

astonishing 80.3%, surpassing those from the other models where

the model maintains its lightweight structure.

In summary, our YOLOv8s-Trans-Ghost model outperforms

the others due to the following key enhancements:

SC3T transformer module: the proposed SC3T module,

combining the SPP and C3TR structures, is placed in the last layer

of the backbone. The SPP kernel has a consistent stride but varying

sizes (5 × 5, 9 × 9, and 13 × 13), with feature concatenation

through channel concatenation. C3TR consists of a transformer

block at the three outputs of the detection network, combined with

concat weighted to fuse features obtained from the transformer

block with those from other parts of the network, such as the

SPP kernel outputs or intermediate features from the backbone.

Furthermore, a standard transformer layer is employed to aggregate

global information from the final block of the backbone network.

The transformer encoder features a Multi-head Self-Attention

(MSA) mechanism, which updates and combines query (Q), key

(K), and value (V) tensors that encode global features from

various spatial locations for linear projection. This self-attention

mechanism excels at capturing contextual details and reducing the

loss of global information.
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Ghost module: this module is incorporated into the YOLOv8s

backbone by replacing the original Conv module, compressing

input feature layers through non-linear and linear convolution

operations, resulting in a reduced parameter count and improved

GLOPs index.

SIoU loss function: the SIoU loss function is a variation of CIoU

loss that normalizes distance and diagonal distance by the width

and height of the ground truth box. This normalization allows

SIoU to handle objects with different scales, a common issue in

object detection.

TABLE 5 Performance of YOLOv5s, YOLO5s-transformer, YOLOv8, and

YOLOv8-transformer using di�erent loss functions on our dataset.

Model Loss
function

mAP@.5 mAP@.95

YOLOv5s CIoU 73.60% 47.40%

YOLOv5s-

Transformer

DIoU 69.70% 44.20%

YOLOv5s-

Transformer

EIoU 64.70% 38.10%

YOLOv5s-

Transformer

GIoU 64.40% 40.00%

YOLOv5s-

Transformer

CIoU 75.60% 48.60%

YOLOv5s-

Transformer

SIoU 75.70% 46.10%

YOLOv8s CIoU 72.30% 49.40%

YOLOv8s-

Transformer

DIoU 78.20% 50.20%

YOLOv8s-

Transformer

EIoU 76.90% 49.70%

YOLOv8s-

Transformer

GIoU 77.90% 48.50%

YOLOv8s-

Transformer

CIoU 78.10% 52.90%

YOLOv8s-

Transformer

SIoU 79.80% 52.30%

The bold values indicate highest value.

Pre-trained models: initially, we pre-trained the YOLOv8s-

Trans-Ghost model on a test dataset. Subsequently, we trained the

model on our dataset based on the pre-trained model’s weights.

The performance was improved significantly as the pre-trained

model learned common features from a large dataset, enabling good

generalization for different tasks.

These collective improvements make YOLOv8s more accurate

and sensitive, especially in real-time detection scenarios, while

maintaining a lightweight structure.

4.7 Comparision and discussion on the
dataset of the proposed and conventional
models

In Table 7, we present a comparative analysis of findings

from other datasets with similar characteristics. Ouyang et al.

(2013) conducted a study focusing on three types of strawberry

diseases. Their approach began with initial segmentation, where

diseased strawberries were isolated using digital image processing

and pattern recognition techniques. They then compared the

performance of a neural network with that of an SVM classifier.

Although an exact accuracy figure was not provided, it was

concluded that SVM achieved a higher recognition rate than the

neural network as a classifier.

Kim et al. (2021) dataset, on the other hand, indicated that

the Cascaded Faster R-CNN model, pre-trained on ImageNet

with four classes, yielded a result of 78.05%. Another study by

Nie et al. (2019) reported a baseline mAP@.5 of 88.05% using

Faster R-CNN with ImageNet pre-trained weights. This study

further improved performance through a cascaded architecture

and additional pre-trained weights from the PlantCLEF dataset.

However, it is important to note that their model, designed for

coarse-grained object detection, differs from our focus on fine-

grained instance segmentation. In a related experiment (Afzaal

et al., 2021), tests involving Mask R-CNN with pre-training on the

MS COCO dataset achieved a mAP@.5 of 82.43%. In this same

study, a comparison with YOLACT was conducted to validate their

results. Regarding our accuracy model, the YOLOv8s-Transformer,

used in experiments on this dataset, we opted not to use pretraining

TABLE 6 Performance of the ablation analyses of the proposed model based on YOLOv8s on our dataset.

Model Loss P R mAP@.5 Params GLOPS

YOLOv8s CIoU 79.90% 60.90% 72.30% 11M 28.4

YOLOv8s-Ghost CIoU 75.00% 61.00% 72.10% 5.2M 19.9

YOLOv8s-Ghost SIoU 77.10% 60.00% 71.50% 5.2M 19.9

YOLOv8s-

Transformer

CIoU 74.80% 69.70% 78.10% 20.5M 38.2

YOLOv8s-

Transformer

SIoU 78.80% 65.90% 79.80% 20.5M 38.2

YOLOv8s-Trans-

Ghost

SIoU 70.70% 69.80% 74.40% 3.4M 11.5

YOLOv8s-Trans-

Ghost-Pretrain

SIoU 80.40% 70.30% 80.30% 3.4M 11.5

The bold values indicate highest value.
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TABLE 7 Comparison of the proposed and relevant models in dataset (Afzaal et al., 2021).

References Models Pretrain datasets Class no. Accuracy

Ouyang et al. (2013) SVM Faster R-CNN N/A 3 N/A

Nie et al. (2019) CNN+ Attention ImageNet 4 78.05%

Kim et al. (2021) Cascaded Faster R-CNN PlantCLEF 7 91.62%

Afzaal et al. (2021) Mask R-CNN MS-COCO 7 82.43%

YOLACT MS-COCO 7 79.71%

Our work YOLOv8s-Transformer N/A 7 91.2%

The bold values indicate highest value.

but rather trained the model from scratch. Nevertheless, the results

were notably high, reaching 91.2%.

4.8 Visualization

Following the quantitative assessments presented above, we

proceed to conduct a visual evaluation based on images identified

by the models.

4.8.1 Qualitative evaluation of the proposed
backbone and original models

To demonstrate the detection performance of the proposed

model, we randomly selected images from the test dataset for

evaluation. The results are shown in Figure 7, where the highlighted

areas represent the network’s detection outputs.

According to the experimental findings, it’s apparent that the

standard YOLOv8 model had difficulty detecting objects in the

images, particularly when a strawberry was partially obscured

by overlapping ones, which completely hid its visibility. The

integration of SC3T significantly improved the network’s sensitivity

and adaptability for detecting small objects by expanding the

receptive field. This enhancement also boosted feature recognition

and utilization efficiency, reducing missed detections through

effective feature synthesis across different scales. Additionally, the

use of Ghost convolution in the model’s lightweight optimization

has simplified deployment. The enhanced YOLOv8s model shows

improved detection performance and confidence compared to the

standard YOLOv8 in certain cases. Nevertheless, some missed

detections remain, highlighting the need for further optimization

to meet practical detection requirements.

4.8.2 Qualitative assessment of model
e�ectiveness with di�erent loss functions

Next, in Figure 8 we visualize the performance improvement

of the transformer model by comparing two versions, YOLOv5

and YOLOv8, with five different loss functions: DIoU, GIoU, CIoU,

EIoU, and SIoU. Through the images of gray mold disease below,

it is evident that most models detect accurately, and YOLOv8s-

Trans with SIoU loss demonstrates the highest accuracy at 91.2%,

surpassing most other models. This highlights the effectiveness of

accurately detecting objects in the proposed models with the SIoU

loss function.

4.8.3 Qualitative evaluation of the proposed and
conventional models on the dataset

We conduct an inference evaluation on the test dataset (Afzaal

et al., 2021). In Figure 9, we can observe that the YOLOv8s-Trans-

Ghost model accurately detects various diseases on the leaves, even

when the leaves are partially hidden in the image’s upper corner.

In contrast, the other models either fail to detect the precise frame

of the leaves in the image or, if detected, result in a large bounding

area with low accuracy. This exhibits that the proposed model is

effective in object detection as compared to the other models.

.

4.8.4 Quantization model for edge devices
In this study, we converted the proposed YOLOv8s-Trans-

Ghost-Pretrain model on our dataset to the standard format

for Edge device applications. ONNX (Open Neural Network

Exchange) serves as an open format designed for the representation

of machine learning models, enabling their portability across

diverse platforms. Through the process of exporting our model

to ONNX, we gain the ability to deploy it across various

devices, thereby harnessing hardware acceleration to enhance

inference speed in real-time applications. Particularly, we loaded

the checkpoint data during training and initialized a YOLOX

model. To export the model to ONNX with different input sizes,

we set the width and height input axes as dynamic. Finally,

when performing inference with ONNX Runtime, we focused on

the capabilities needed for inference. ONNX Runtime is a cross-

platform inference engine which is a machine-learning accelerator

suitable for mobile devices.

4.8.5 Building android apps
Upon completion of the training and quantization processes for

the model, our next step involved the development of an Android

application. Specifically, we followed seven steps outlined below:

1. Model training: we trained the model to generate a weight file

in PyTorch (.pt format), leveraging the robust capabilities of this

framework in deep learning research.

2. Conversion to ONNX format: the YOLOmodel (.pt format) was

converted into the ONNX format with FP32 weights, ensuring

compatibility and interoperability across different frameworks

and platforms.

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1480481
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Do et al. 10.3389/fcomp.2024.1480481

FIGURE 7

Diagram evaluation of the proposed backbone and original models.

FIGURE 8

Diagram detection results of the YOLOv8s-transformer and the YOLOv8s-transformer models with five di�erent loss functions.

3. Quantization with ONNX runtime: to optimize model

performance and efficiency, we performed quantization using

ONNX Runtime, resulting in an optimized ONNX file ready

for deployment.

4. Conversion to TensorFlow model: the ONNX Runtime model

(.onnx file) was further converted into a TensorFlow model (.pb

file), facilitating seamless integration with TensorFlow-based

applications and frameworks.
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FIGURE 9

Diagram evaluation of the proposed and conventional models on the dataset (Afzaal et al., 2021).

5. Conversion to TensorFlow lite model: subsequently, the

TensorFlowmodel (.pb model) underwent the conversion into a

TensorFlow Lite model, suitable for deployment on mobile and

edge devices with limited computational resources.

6. Android studio setup: to begin development for the Android

platform, we downloaded and installed Android Studio,

the official Integrated Development Environment (IDE) for

Android application development.

7. App development and deployment: finally, leveraging the

features and tools provided by Android Studio, we proceeded

to build and run our object detection App on Android

devices, demonstrating the practical implementation and real-

world applicability of our deep learning model in object

detection tasks.

Through these comprehensive steps, we seamlessly transitioned

from model training and optimization to the development

and deployment of a fully functional Android application,

showcasing the practical utility of our deep learning research in a

real-world application.

Figure 10 reveals our Android app interface, which is the

product created by members of our research team at the

International School at Vietnam National University. This app

has performed excellently on mobile phones, detecting diseases

on strawberries, and can flexibly switch between four different

YOLOv5 and YOLOv8 models.

5 Conclusion

This work introduces a valuable dataset focusing on diseases

in strawberries. Leveraging this dataset, we conducted experiments

on the proposed YOLOv8s-Trans-Ghost, aiming for fast and

accurate target detection. In this model, the SC3T module which

is a combination of the SPP and C3TR modules, was proposed.

This module excels in feature synthesis across different sizes,

incorporating transformer-based long-term dependency modeling

and convolution-based visual feature extraction to enhance object

localization precision and classification performance. Experiments

on the YOLOv8s-Transformer model demonstrated a promising

mAP result of 78.1%, with an increase of 5.8% over the

baseline model on our dataset. The adoption of the SIoU

loss function, replacing CIoU, further increases the mAP up

to 79.8%, showcasing the effectiveness of this loss function

in precise object detection. However, the model’s parameter

count doubles to 20.5M, hindering real-time applicability when

embedded in a practical hardware platform. To address this,

we substituted Conv in the YOLOv8s-Transformer with Ghost

Conv, which is proven effective in reducing parameters in

YOLOv5 versions. Experimental results are also very promising,

with a parameter a mount reduced to 3.4M, nearly one-

third of the original one. Subsequently, we employed the

weights of the proposed YOLOv8s-Trans-Ghost model which

was trained on the large test dataset (Afzaal et al., 2021) as

pretraining for the application on our dataset. The value of

mAP significantly increases to 80.3%, accompanied by notable

improvements in other metrics, such as precision at 80.4%

and recall at 70.3%, surpassing those from the other models.

Parameters and GLOPS are substantially lessened reduced to

3.4M and 11.5, respectively. These results reveal that the model

proposed offers a lightweight and efficient solution for detecting

diseases in strawberries while maintaining high precision, with

the potential to significantly promote production efficiency.
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FIGURE 10

Diagram the Android app interface utilizes TFLite for disease detection on strawberries. (A) Startup interface (B) Object detection interface.

Finally, for deploying the proposed model, we adopted the

compression technique for model optimization to meet the

computation capabilities of mobile devices by ONNX Runtime.

Additionally, the Android app was successfully built to effectively

spread the proposed model for the applications of detecting

strawberry diseases.
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