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Over the last few years, wearable devices have witnessed immense changes

in terms of sensing capabilities. Wearable devices, with their ever-increasing

number of sensors, have been instrumental in monitoring human activities,

health-related indicators, and overall wellness. One health-related area that has

rapidly adoptedwearable devices is themental healthmonitoring andwell-being

area, which covers problems such as psychological distress. The continuous

monitoring capability of wearable devices allows the detection and monitoring

of stress, thus enabling early detection of mental health problems. In this paper,

we present a systematic review of the di�erent types of sensors and wearable

devices used by researchers to detect and monitor stress in individuals. We

identify and detail the tasks such as data collection, data pre-processing, features

computation, and training of the model explored by such research works. We

review each step involved in stress detection andmonitoring. We also discuss the

scope and opportunities for further research that deals with the management of

stress once it is detected.

KEYWORDS

wearable technology, stress detection, stress monitoring, healthcare, ubiquitous

computing, a�ective computing

1 Introduction

According to the World Health Organization, stress is defined as a state of worry or

mental tension caused by a difficult situation (World Health Organization, 2024). One

can experience physiological stress in various forms; some persist briefly, while others last

longer (Dantzer et al., 2014). Short-term stress, such as one faced before an interview,

is considered normal and beneficial in some instances; this short-term stress enhances

an individual’s mental and physical performance (Dhabhar, 2018). However, it is well-

known that when physiological stress occurs frequently or if stress persists for a prolonged

duration, i.e., when one suffers from chronic stress, it can affect the mental and physical

health of the individual (Schneiderman et al., 2005; Selye, 1978). Prolonged chronic stress

can cause mental health problems such as depression and anxiety. It can also lead to

chronic diseases such as diabetes or high blood pressure (Chrousos, 2009). The field of

preventive medicine has thus been identifying and developing approaches for several years

that will enable detecting stress at its onset and reduce its negative consequences (Iqbal

et al., 2021; Chambers and Belcher, 1994).

Traditional diagnoses of stress are either (a) pen-and-paper questionnaire-based or

(b) group discussions or interview-based, or (c) via intrusive or labor-intensive approaches

such as monitoring cortisol levels of individuals (Can et al., 2019a). These approaches
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primarily focus on obtaining the momentary snapshot of the

person’s mental health, as well as general information about the

past history of an individual or family history (Sim, 2019). For

example, PSS is an assessment tool to measure perceived stress

levels in individuals (Cohen et al., 1994). It assesses how an

individual is affected by various situations in daily life with a set of

questions. An orthogonal approach to obtain a snapshot of stress

experienced by an individual is via cortisol level monitoring in

hair and saliva (Steinisch et al., 2014). Traditional questionnaire-

based assessment of stress has its own set of challenges: it puts

an extra burden on an individual to respond to the questions,

the response can be subjective and biased and the questionnaire

captures a snapshot of when the individual is filling out the

questionnaire (Conner and Barrett, 2012; Heron and Smyth,

2010). Orthogonally, cortisol or other hormone monitoring-based

approaches can be labor intensive, and similar to questionnaires,

they capture a snapshot of the individual’s stress level at a

particular time.

More recently, smartphones and wearable devices have

revolutionized the stress detection paradigm by enabling the

monitoring of mental stress continuously (Cho et al., 2019; Gimpel

et al., 2015). Smartphones and wearable devices are always “on”

the person; they are usually embedded with multiple sensors that

can continuously track various types of wearer’s mental health

information (Lane et al., 2010; Kumar et al., 2021; Jat and Grønli,

2022). It is well-known that the body of a person experiencing stress

displays stress-related responses in various manners, like elevated

heart rate, sweating, various biomarkers of HPA-Axis, and change

in skin temperature (Carter and Goldstein, 2015; Hong et al.,

2012; Noushad et al., 2021); smartphones and wearable devices

are equipped with sensors to capture these responses. Indeed,

several apps exist for modern smartwatches (either from the

manufacturer or from developers) that display the stress level using

data from the on-device sensors (Samsung, 2023; ActiveAce, 2023).

In addition to collecting sensor data, many of these devices have I/O

capabilities, which allows collecting pen-and-paper questionnaire-

like responses – often called EMA (De Vries et al., 2021; Shiffman

et al., 2008). EMAs are self-reports provided by a user for assessing

the behavior or mood of an individual by asking questions related

to the current state of mind or mood, i.e., their self-perceived

state. The advantage of smartphone-based EMAs is that they can

be delivered to the user multiple times a day. Various researchers

used smartphones to collect social activity and also the responses to

the EMAs (Sano and Picard, 2013; Sano et al., 2015; Wang et al.,

2014; Sano et al., 2018; Egilmez et al., 2017; Taylor et al., 2017).

These researchers delivered EMAs at various frequencies (Sano

et al., 2018; Wang et al., 2014; Hovsepian et al., 2015), collecting

information about mood, stress levels, or overall health condition.

EMAs thus provide the capability of capturing the ground truth, as

experienced by the end-user.

The past couple of decades have also seen a revolution in

the field of machine learning, including running the machine

learning algorithms on the wearable devices (Sen et al., 2015;

Alharbi et al., 2023). The trending machine-learning approaches

have contributed to building intelligent systems for stress detection

and monitoring. Researchers use the machine learning pipeline

in various ways on the smartphone and wearables’ data for stress

detection and monitoring (Hovsepian et al., 2015; Mishra et al.,

2020; Egilmez et al., 2017). More recently, researchers have also

used deep learning-based approaches for stress detection and

monitoring. The collected self-reports (can be in the form of

EMAs, pen-and-paper based, recall based Paulhus et al., 2007)

are used as the ground truth for the building of these stress

detection and monitoring models. In several cases, researchers

make their collected dataset available publicly; other researchers use

these publicly available datasets for developing stress detection and

monitoring models (Mitro et al., 2023; Cahoon and Garcia, 2023).

In this review paper, we present recent trends in wearable-based

stress detection and monitoring research works. We specifically

focus on field study papers that use wearable devices and machine

learning techniques for detecting and monitoring stress. This

review seeks to address the following research questions:

Q.1. Which physiological signals and wearable devices contribute

toward stress detection and monitoring? What are the

challenges involved in deciding upon these physiological

signals and wearable devices?

Q.2. What are the data collection methods used for the detection

and monitoring of stress?

Q.3. What methods are used in the machine learning pipeline for

stress detection and monitoring?

Q.4. What are the limitations in the state-of-the-art and future

directions in the field of stress detection and monitoring?

One may argue that there have been several recent surveys on

wearable-based stress detection (Vos et al., 2023; Klimek et al.,

2023; Gedam and Paul, 2021). However, these reviews are either

comprehensive reviews on publicly available datasets (Vos et al.,

2023), or using a specific type of sensor (Klimek et al., 2023), or do

not get into details about the sensors in wearable devices for stress

detection and monitoring (Gedam and Paul, 2021). Furthermore,

no review exists that investigates the fine-grained details of

the machine-learning approaches used in stress monitoring. To

summarize, these existing reviews do not cover details about

the types of wearables used, pre-processing steps involved in

cleaning the collected data, details about the features computed,

and machine learning techniques or metrics suitable for wearable-

based stress detection and monitoring. To fill in the existing gap,

in this paper, we provide an in-depth review of stress-detecting

and monitoring approaches in papers that have conducted user

studies and used machine-learning techniques for stress detection.

Wearable-based approaches for stress detection and monitoring

collect data using wearables; this data is subsequently used for

training machine learning models that can detect and monitor

physiological stress. This paper compares different commonly used

data pre-processing methods, features computed, machine learning

techniques, and metrics used for wearable-based stress detection

and monitoring.

Researchers have explored this field of stress detection and

monitoring either by using publicly available datasets or by

collecting data using physiological signals and wearable devices

of interest. Using publicly available datasets eliminates the need

for extensive data collection and thus helps save time and cost,

resulting in quick validation and replication of the research

findings. However, using publicly available datasets skips data
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collection and pre-processing steps, which hide challenges faced

during the data collection and pre-processing. The goal of this

review is to help new readers understand the stress detection

process in detail, including the data collection steps. Thus, in this

paper we do not consider the stress detection and monitoring

approaches that use publicly available datasets. More details about

the inclusion and exclusion criterion are provided in Section 2.

The rest of the paper is organized as follows: In Section 2,

we discuss our literature search approach. We also describe the

inclusion and exclusion criteria for selecting papers for review.

In Section 3, we describe the different types of wearables and

physiological signals used for detecting and monitoring stress.

In Section 4, we discuss in detail each step involved in the

stress detection pipeline. We then look at open questions and

possible future directions in Section 5. Finally, Section 6 provides

a conclusion to this review paper.

2 Materials and methods

The main objective of this work is to review papers that

utilize wearable technology for physiological stress detection. In

this section we first describe the strategy used for searching work

relevant to wearable-based detection and monitoring of stress. We

used the Preferred Reporting Items for Systematic Reviews and

Meta-Analyzes (PRISMA) guidelines for systematic review (Page

et al., 2021). We describe the steps followed (in accordance with

the PRISMA guidelines) in this systematic review.

2.1 Literature search

To provide a comprehensive overview of stress detection

and monitoring, we searched the Google Scholar database,1 the

ACM Digital Library,2 PubMed database,3 and the IEEE Xplore

database.4

For each database, the combination of keywords “wearables,"

“automated,” “stress,” “monitoring,” “detection” were used. We

performed a separate search in each database by combining these

keywords and grouping them with appropriate concepts. The

first literature search activity was performed in August 2023 and

the second literature search was performed in December 2023.

Therefore, studies published after this date were not included. The

publication start year was not restricted in the search. However, to

consider recent research approaches, we removed all papers that

appeared before 2018. For each keyword, we obtained the top 50

results that were ordered based on the rank provided by the specific

library’s relevance algorithm. Overall, we evaluated 400 articles –

100 from each database. These 400 articles underwent the following

steps. First, duplicate articles obtained from various databases were

removed. Next, we screened papers based on title and abstract

based on the eligibility and exclusion criteria. After this, we filtered

articles that did not meet our inclusion criteria (mentioned in

1 https://scholar.google.com/

2 https://dl.acm.org/

3 https://pubmed.ncbi.nlm.nih.gov/

4 https://ieeexplore.ieee.org/

Section 2.2). Finally, the remaining papers were included in the

review. We next describe the inclusion criteria and the number of

papers remaining at the end of each filtering step. From the first

search, we selected 29 papers, and later, from the second pass, we

added 10 papers from the same sources, resulting in a total of 39

papers considered for the review.

2.2 Exclusion and inclusion criteria for the
review

There has been a vast shift in the sensing from smartphones

(Sano et al., 2015;Wang et al., 2014) to wearable sensors (Sano et al.,

2018) in the last few years.

Below are the detailed exclusion criteria for this review paper:

- We consider recent and most relevant research works currently

used for stress detection and monitoring. We exclude the peer-

reviewed journal or conference articles that were published

before 2018.

- This review article focuses on physiological stress experienced by

humans. We excluded all articles that were not related to user

studies performed on human participants.

- One of the primary objectives of this article is to review usage

of wearable devices for stress monitoring. We did not consider

articles that did not utilize wearable devices.

- As the underlying cause of stress and reaction to it may vary in

teenagers and older adults (Li et al., 2016; Di Campli San Vito

et al., 2023). We excluded the research studies conducted with

the age group of less than 18 and greater than 60.

- We excluded research studies that performed stress detection or

monitoring using publicly available datasets.

- We excluded survey papers as they do not have conducted user

studies and other novel contributions (Yadav and Bokhari, 2023;

Smirthy et al., 2023; Seng et al., 2023).

2.3 Screening and selection of articles

We next describe the literature search, the screening steps, and

the number of articles excluded in each step. To start off, based

on the literature search, we obtained n = 400 articles (100 from

each database). Among these 400 articles, there were cases where

the same article was returned by different databases. Overall, we

observed that there were 66 duplicate articles that we removed. At

the end of this step, we had n = 334 articles. Next we removed

n = 122 articles that were published before 2018, leaving us with

n = 212 articles. Next, based on the exclusion criteria, we removed

n = 13 articles that were not related to user studies performed on

human participants, n = 24 articles that did not utilize wearables,

n = 71 articles that were not on stress detection or monitoring

n = 16 articles that were conducted on minors (<18 years) or

elderly (>60 years), and n = 28 articles where stress detection was

performed using publicly available datasets, i.e., that did not consist

of a user study. We did not consider survey papers n = 21. Thus,

overall n = 224 articles were filtered based on the exclusion criteria,

leaving us with n = 39 articles for this review. Figure 1 presents the

consort diagram of the search and screening strategy.
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FIGURE 1

Consort diagram of article selection process.

We next evaluate these 39 articles in terms of the wearable

technology used (Section 3) and the machine learning pipeline

used in these articles (Section 4). The table summarizing all the

research articles considered for this review are mentioned in

Supplementary material.

3 Wearable sensing devices for
detecting and monitoring stress

As mentioned in the previous section, we shall first explore

the wearables used for stress detection and monitoring. This

section describes the different wearable sensing technologies used

by researchers to acquire physiological signals for stress detection

and monitoring. However, before getting into the details of the

wearables employed (described in Section 3.2), we first discuss

various signals that show promising results in stress detection and

monitoring (Section 3.1).

3.1 Physiological signals that enable
detecting and monitoring stress

Biological processes of the human body result in changes

in electrical, chemical, and mechanical signals. Signals produced

by these processes are known as physiological signals (Cacioppo

and Tassinary, 1990). For example, the heart’s pumping activity

generates electrical signals corresponding to the expansion

and contraction of heart muscles resulting in a heartbeat

pattern (Katz, 2010). Similarly, mechanical activity in the

human body corresponds to movements of body parts such as

lungs during respiration, and hand or leg movement during

activity (Mohanavelu et al., 2017). Some physiological change or

psychological arousal in the body can result in the production

of body heat, which is then released in the form of sweat—

another measurable physiological signal’s proxy (Gerrett et al.,

2018). Our body function comprises chemical activities such as

digestion, metabolism, and hormone levels, which in turn can

be responsible for one’s physique or behavioral changes. Specific

types of physiological changes can act as a proxy for the detection

and monitoring of stress (Ghaderi et al., 2015). For example, the

sweating rate change without any change in physical activity can

be an indicator of stress (Gerrett et al., 2018). Stress levels in

individuals can also be affected by environmental factors such

as ambient temperature or ambient pressure (Gordon, 2003).

Various physiological signals that canmeasure stress levels are heart

activity, brain activity, electrodermal activity, blood volume pulse,

skin temperature, and muscle activity (Ghaderi et al., 2015).

Let us now explore physiological signals used for stress

detection and monitoring. Various physiological signals that

contribute toward stress detection are heart activity, skin

conductance, skin temperature, brain activity, and activity-related

signals (Ghaderi et al., 2015). ECG or PPG techniques allow

capturing various heart activity-related parameters such as HR,

BVP, IBI, and HRV (Shrestha et al., 2023; Montesinos et al.,

2019; Han et al., 2022; Lee et al., 2022). Heart rate indicates the

number of times the heart beats per minute (BPM), which reflects

as immediate feedback of physical activity, emotional stress or

environmental factors (Shrestha et al., 2023; Campanella et al.,

2023; Moser et al., 2023; Aristizabal et al., 2021; Aqajari et al.,

2023; Subash et al., 2023). Heart rate is one of the physiological

signals used in stress detection and monitoring. ECG measures the

heart rate by capturing electrical signals using electrodes placed
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near the chest or arms (Bin Heyat et al., 2022; Donati et al., 2023;

Akbulut et al., 2020; Chalmers et al., 2021; Tazarv et al., 2021;

Sheeraz et al., 2022; Betti et al., 2017; Xefteris et al., 2023; Lee et al.,

2022; Montesinos et al., 2019; Akmandor and Jha, 2017; Ashwin

et al., 2022; Smets et al., 2018b; Amalan et al., 2019), whereas

PPG captures heart rate by capturing optical signals using light

and measuring the blood volume from reflected light (Shrestha

et al., 2023; Campanella et al., 2023; Can et al., 2020). For heart

rate measurement, ECG is considered to be more accurate than

PPG (Pinge et al., 2022). But ECG has motion artifacts and requires

putting the electrodes near the heart that is on the chest or on

arms, which can lead to discomfort in individuals during long-

run studies (Beeler et al., 2018). PPG, on the other hand, can

collect heart rate from body positions such as wrist, neck, or

finger, making it feasible for long-run studies. Other heart activity

parameters include BVP which measures changes in blood volume

(Montesinos et al., 2019), IBI which refers to the time interval

between consecutive heartbeats, measured in milliseconds (Han

et al., 2022; Tazarv et al., 2021) and HRV which is the variation

in the time intervals between heartbeats. It is a measure of the

variations in the IBIs (Lee et al., 2022; Rony and Ahmed, 2020; Park

et al., 2018; Mishra et al., 2020; Benchekroun et al., 2022; Szakonyi

et al., 2021). BVP is collected using PPG where as HRV and IBI can

be collected using ECG or PPG techniques.

Stress, which is psychological arousal, results in the generation

of sweat; the rate of change of sweat generation results in a

change in moisture level on the skin, thus leading to a change

in skin conductance (Wilkinson et al., 1964). This change in

skin conductance is measured using EDA technique and is also

known as GSR. Skin conductance also contributes toward stress

detection andmonitoring (Anusha et al., 2019; Carreiro et al., 2020;

Campanella et al., 2023; Can et al., 2020; Ashwin et al., 2022; Can

et al., 2019b; Betti et al., 2017; Amalan et al., 2019). Along with

skin conductance, researchers also used skin temperature (Carreiro

et al., 2020; Akbulut et al., 2020; Li and Sano, 2020; Smets et al.,

2018b; Shajari et al., 2023; Rachakonda et al., 2020), respiration

rate (Xefteris et al., 2023; Montesinos et al., 2019; Momeni et al.,

2021), activity related signals (Carreiro et al., 2020; Tazarv et al.,

2021; Shrestha et al., 2023; Xefteris et al., 2023; Smets et al.,

2018b; Rachakonda et al., 2020; Rodrigues et al., 2018; Han et al.,

2022). Other physiological signals used for stress detection and

monitoring are blood oxygen level (Akbulut et al., 2020; Akmandor

and Jha, 2017), blood pressure (Akmandor and Jha, 2017), EEG—a

measurement of brain activity (Sheeraz et al., 2022; Betti et al., 2017;

Lee et al., 2020; Ashwin et al., 2022), and EMG—a measurement of

muscle activity (Mishra et al., 2020).

3.2 Wearable devices with stress detection
and monitoring capabilities

Stress detection and monitoring requires capturing various

body-generated signals from the individuals, as discussed in the

previous subsection. Wearable devices with embedded sensors

allow automatic collection of these physiological signals (Vijayan

et al., 2021). Let us now look at wearable devices used for stress

detection and monitoring.

Traditional medical ECG is captured using 12 leads (Khunti,

2014). This process of capturing the accurate ECG signal is

sensitive toward the placement of these electrodes on specific

parts of the body, such as the chest, arms, and legs. Therefore,

the process of capturing ECG using the 12-leads can be tedious

and time-consuming (Tomašić and Trobec, 2013). Another issue

with traditional 12-lead ECG is that the setup is immobile, which

makes it unsuitable for continuous monitoring of heart activity.

Furthermore, traditional 12-lead ECG provides information that is

usually interpreted by trained experts (Tomašić and Trobec, 2013).

To avoid these issues, many healthcare companies have developed

wearable devices with a varying number of leads to capture ECG

and make it efficient and portable (Polar, 2024).

Chest-worn off-the-shelf devices: There are numerous

chestbands available for commercial use. Along with heart activity,

such chestbands are capable of collecting signals such as respiration,

an inertial sensor, skin conductance, ambient temperature, and

ambient pressure. For example, a Polar chestband can collect heart

activity using ECG (Polar, 2024). Many researchers used earlier

versions of the Polar chestband Polar H7 (Mishra et al., 2020) and

recent Polar H10 (Lee et al., 2022; Zhao et al., 2023; Montesinos

et al., 2019). Another chest-worn device that can capture ECG

using one lead is Garmin HRM Dual (Garmin, 2024a). Similarly,

Shimmer 3 ECG is another such chest-worn device that captures

ECG with four leads (Shimmer, 2024). It also has 10 DoF (Degrees

of Freedom) with an accelerometer, gyroscope, magnetometer,

and air pressure sensor. Researchers used a similar device, Zephyr

BioHarness 3 (BH3), which can capture one lead and other

physiological signals such as respiration, body temperature,

and body movement (Zephyr, 2024; Betti et al., 2017). A chest

band from Autosense: a wireless system dedicated to stress

detection captures 2-lead ECG along with respiration, ambient

temperature, skin temperature, and accelerometer (Hojjatinia

et al., 2021). Another chestband from BIOPAC measures EGG and

respiration (BIOPAC, 2024; Kim et al., 2020). Various devices and

their sensing capabilities are listed in Table 1.

Wrist-worn off-the-shelf devices: Another commonly used

class of wearables are wrist-worn devices. Several wrist-worn

devices are embedded with the PPG sensor (Biswas et al., 2019).

PPG measures heart rate by emitting light toward the skin and

measuring changes in the blood volume from reflected light (Allen

et al., 2021). PPG can be measured accurately from different

body parts such as the forehead, ear, nose, neck, finger, wrist, or

arm (Allen et al., 2021). Unlike the chest-worn devices, the wrist-

worn devices capture heart activity by using PPG technique (Biswas

et al., 2019). Researchers used wrist-worn devices such as Empatica

E4 (Campanella et al., 2023;Moser et al., 2023; Carreiro et al., 2020),

Fitbit (fitbit, 2024), Samsung Gear Sports Smartwatch (Samsung,

2024), and Garmin Vivosmart 4 (Garmin, 2024b) for stress

detection and monitoring.

Other off-the-shelf devices: Researchers experimented with

other devices, such as sensorized garments i.e., smart garments,

to collect ECG and EDA signals (Bin Heyat et al., 2022; Donati

et al., 2023; Xefteris et al., 2023; Wu et al., 2018). Researchers

also used EEG signals, which are captured by sensing near

the brain. Researchers used existing devices such as MindWave

Mobile EEG headset (Betti et al., 2017) for collecting EEG
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TABLE 1 Sensorwise details and sampling frequency of chest-worn devices.

Device ECG IMU RESP SC ST EGG AT AP References

Polar H7 & H10 X X X X X X X X Montesinos et al., 2019; Mishra et al.,

2020; Lee et al., 2022

Zephyr BH3 X X X X X X X X Betti et al., 2017

Autosense X X X X X X X X Hojjatinia et al., 2021

Shimmer 3 ECG X X X X X X X X Montesinos et al., 2019; Ashwin et al.,

2022; Benchekroun et al., 2022

ADI-VSM X X X X X X X X Anusha et al., 2019

BIOPAC X X X X X X X X Kim et al., 2020; Momeni et al., 2021

IMU, Inertial Measurement Unit; RESP, Respiration; SC, Skin Conductance; ST, Skin Temperature; AT, Ambient Temperature; AP, Ambient Pressure.

TABLE 2 Sensorwise details and sampling frequency of wrist-worn devices.

Device HR IMU SC ST AP References

Empatica E4 X X X X X Campanella et al., 2023; Moser et al.,

2023; Shrestha et al., 2023; Park et al.,

2018; Montesinos et al., 2019; Carreiro

et al., 2020; Can et al., 2020; Aristizabal

et al., 2021

Fitbit X X X X X Chalmers et al., 2021

Garmin

Vivosmart 4

X X X X X Shrestha et al., 2023; Han et al., 2022

Samsung Gear

Sports 3

X X X X X Tazarv et al., 2021; Aqajari et al., 2023;

Can et al., 2019b

HR, Heart Rate; IMU, Inertial Measurement Unit; SC, Skin Conductance; ST, Skin Temperature; AP, Ambient Pressure.

signals. The wrist-worn devices and their sensing ability are listed

in Table 2.

The sensing capabilities of all the wrist-worn devices are almost

identical except for a few sensors, such as skin temperature,

skin conductance or ambient pressure. The most commonly used

device, Empatica E4, allows effortless data collection and retrieval

via the suite provided, where the data can be downloaded at the

click of a button, unlike Garmin Vivosmart 4, which needs a

Bluetooth application to receive the data from the watch. Empatica

E4 is costlier as compared to other devices such as Garmin

Vivosmart 4, Fitbit, or Samsung Gear Watch (Empatica, 2024;

Garminvivo, 2024). Researchers need to take into account the

trade-off between the cost and effort involved in data collection

when choosing these devices.

The chest-worn devices capture heart rate using ECG and hence

are considered as more accurate as compared to PPG (Bent et al.,

2020). But chest-worn devices are sensitive to motion artifacts

which can result in the collection of noisy data (Rasti et al.,

2023). Although the chest-worn devices are considered to be

accurate, they may not be comfortable for long-run studies (Cosoli

et al., 2020). In such cases, wrist-worn devices are considered

for data collection. Additionally, wrist-worn devices have built-

in memory, which helps to collect and store the data within the

device, whereas most off-the-shelf chest-worn devices need an

application to constantly receive the data. One major challenge

in using the off-the-shelf device is that these devices may not

have all the necessary sensors of interest in one device. Hence,

researchers develop devices with custom sensors, which we will

discuss next.

Custom-made devices: Custom-made devices have a micro-

controller, which can control and synchronize between the various

sensors connected to it. Researchers have developed their own

devices with sensors like ECG (Akbulut et al., 2020; Sheeraz et al.,

2022), PPG (Zubair and Yoon, 2019), EDA (Subash et al., 2023;

Shajari et al., 2023) skin temperature (Rachakonda et al., 2020;

Subash et al., 2023), EEG (Sheeraz et al., 2022; Lee et al., 2020),

and IMU (Rachakonda et al., 2020). However, deciding on whether

to use off-the-shelf devices or develop a custom-made device is

dependent upon physiological signals of interest. Using either

of these devices has its advantages and challenges and can be

application dependent. The off-the-shelf devices might not have

all the sensors of interest or expected sampling frequency. In

turn, one might have to consider using more than one wearable

device or develop a custom-made device with the sensors of

interest (Rachakonda et al., 2020; Zubair and Yoon, 2019; Akbulut

et al., 2020).

Summary: Research studies for stress detection and monitoring

use both off-the-shelf devices or custom-made devices as shown

in Figure 2. Several researchers used off-the-shelf devices to collect

physiological signals for stress detection and monitoring (Mishra

et al., 2020; Campanella et al., 2023). In the research articles

considered in our review, the off-the-shelf devices are majorly

(85%) chest-worn or wrist-worn, with some researchers using other

body-worn devices such as headset. Chest-worn devices placed

near the heart are prominently used to observe heart activity using

ECG, and Wrist-worn devices placed at various parts such as

finger, wrist, and ear can collect information about heart activity,

accelerometer (movement of an attached body part) and also skin
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FIGURE 2

Overview of the wearable devices used for collecting physiological signals.

conductance (Cosoli et al., 2020). This section helps to understand

wearables and physiological signals used for stress detection and

monitoring answering RQ1.

4 Stress detection approaches

Now that we have a basic understanding of the sensors and

physical devices used in stress detection and monitoring research,

let us next understand how data from these devices are analyzed

to detect and monitor stress. Stress detection and monitoring

approaches using wearables rely on machine learning algorithms.

One can utilize machine learning approaches in a real-time

mode (to detect stress as soon as it occurs in real-time) or in

offline mode (to detect any physiological stress episode (post-

analysis) experienced by the individual). Both these modes use

machine learning techniques for detecting and monitoring stress.

However, unlike real-time stress detection, one cannot provide

real-time interventions when the data is analyzed offline. In this

review, we do not differentiate between online (and in-situ) stress

detection and offline stress detection. We identify and evaluate

the standard machine-learning steps necessary for stress detection

and monitoring.

A standard machine learning pipeline for stress detection

and monitoring involves data collection, data pre-processing,

feature computation, training, and testing the model. We present

these steps in Figure 3. Data collection includes collecting

physiological signals using wearable devices either (a) in a

controlled environment by inducing stress using stressors or

(b) in free-living conditions with domain-specific stress conditions.

Then, during the data pre-processing step, the collected data

is cleaned using various techniques. The next step is feature

computation, which enables a meaningful representation of the

data. These features are then used for training and evaluating

the machine learning model. Now, let us look at each of these

steps in detail.

4.1 Data collection methods

As described in Section 3.2, various off-the-shelf or custom-

made devices can be used for data collection in user studies that

aim to detect and monitor stress. Data collection also involves

the collection of ground truth needed for developing the model.

Data can be collected either from a controlled environment or

from a free-living study. For controlled studies, researchers analyze

the physiological signals either by inducing stress in a laboratory

environment or by observing stressful activities that an individual

performs. Orthogonally, in free-living studies, researchers provide

one or more devices to participants, who wear these devices

continuously while performing their normal everyday activities.

Laboratory studies: Data collection in a controlled environment

is conducted by inducing stress via stressors. Researchers use

a combination of these stressors with interleaved rest periods

between such stressors for detecting and monitoring stress

in a controlled environment. Researchers use a well-defined

combination of stressors such as TSST. Several researchers used

the Trier Social Stress Test (TSST; Allen et al., 2017) which has

stressors such as preparing and presenting a short speech and

mental arithmetic tasks with interleaved resting periods (Chalmers

et al., 2021; Rodrigues et al., 2018; Rachakonda et al., 2020; Momeni

et al., 2021).

In addition to the stressors introduced by TSST, researchers

have also introduced additional stressors in their studies, such

as watching a horror movie (Lee et al., 2022). The original

TSST approach reduced residual stress by asking participants

to rest between stressors. However, some researchers replaced

the rest period with a short neutral video presented to the

participants (Zhao et al., 2023).

Other than TSST, many researchers have used different

combinations of stressors. Campanella et al. conducted a study

with five different stressors or tasks with rest periods in

between (Campanella et al., 2023). These tasks included the

assembly of a Lego puzzle with instructions, without instructions,
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FIGURE 3

Commonly used machine learning framework for detecting, monitoring, and tracking an individual’s stress level. The ground truth enables validating

the predictions made by the machine learning models.

and a Resume presentation. Can et al. collected data from a

controlled study, where the stress is induced by listening to the

lectures, followed by an exam, which is similar to the mental

arithmetic task in TSST (Can et al., 2020). Sheeraz et al. and

Xefteris et al. used laboratory protocol with two stressors—

Mental Arithmetic Task and Stroop Color-Word Test (SCWT).

In the mental arithmetic task, participants were instructed to

keep subtracting value 17 from 1,000 for a fixed duration of

∼5 min (Mishra et al., 2020; Pinge et al., 2022), whereas in the

SCWT (Scarpina and Tagini, 2017), where a word was presented

to the participant, the participant was instructed to speak aloud the

color of the word, and not the actual word (Sheeraz et al., 2022;

Xefteris et al., 2023). For example, the word “Red” might have been

written using the color purple. Participants were instructed to say

aloud the word “Purple” (the color) and not “Red” (the word).

Lee et al. (2020) also used a memory search stressor for inducing

stress along with mental arithmetic and SCWT stressors (Sheeraz

et al., 2022). Akbulut et al. (2020) collected physiological data

using a stressor where participants had to watch a video with

different emotions such as sadness, fear, anger, disgust, calmness,

and happiness along with physical stressors – walking. Similar to

watching videos containing different emotions as stressor was used

by Wu et al. (2021) to collect physiological data. Betti et al. (2017),

Xefteris et al. (2023), and Mishra et al. (2020) conducted lab studies

where they employed two stressors – one stressor was a short

presentation followed by a second stressor—a cold pressor task.

Similarly, Shajari et al. (2023) used physical activity, 30–60 min of

walking on the treadmill, as a stressor for collecting physiological

signals. Moser et al. (2023) used acoustic stressors with 60–90 s of

air horn which was amplified by speakers.

To summarize, Stressors can be broadly categorized as

psychological and physical (Roldán-Rojo et al., 2021). The various

psychological stressors used by various researchers are mental

arithmetic task, short presentation, watching horror movie (Lee

et al., 2022; Akbulut et al., 2020), Lego Puzzle (Campanella

et al., 2023), Resume Presentation (Campanella et al., 2023),

SCWT (Sheeraz et al., 2022; Xefteris et al., 2023), memory search

task (Lee et al., 2020), acoustic stressors (Moser et al., 2023) and

physical stressors include walking/running (Akbulut et al., 2020;

Shajari et al., 2023), and cold pressor tasks (Mishra et al., 2020).

Free-living studies: Free-living data collection provides a

naturalistic view of a person’s life; the stressors here are usually

not artificially provided but are natural—based on everyday

activities. In the stress detection and monitoring literature in

free-living conditions, the duration of such studies varies from

a few hours, days or months (Smets et al., 2018a). Longer

free-living studies usually assist in monitoring fine-grained

activities and stressors more accurately. Data from long free-

living studies help develop more accurate and personalized stress

detection models.

Medical emergencies are known to induce stress in individuals.

Researchers have used medical emergencies to understand free-

living stress. Anusha et al. (2019) and Amalan et al. (2019) collected

data for 3 h to understand pre-surgery stress (Betti et al., 2017).

Bin Heyat et al. (2022) collected data for 12 h with usual activities

allowed within lab. Hojjatinia et al. (2021) collected data for 3

days, Carreiro et al. (2020) collected data 4–5 days using wrist-

worn Empatica E4 device. Park et al. (2018) collected physiological

signals for 7 days, but data was collected three times a day for

30 s but was not collected continuously. Aqajari et al. (2023)

collected data for 2 weeks. Shrestha et al. (2023) collected data for 30

consecutive days, whereas Li and Sano (2020) collected data for 30–

90 days from each participant for stress detection and monitoring.

There can be challenges involved while collecting data in free-

living studies. These challenges involve either technical errors from

wearable devices used for the data collection or human error

while starting and stopping the collection on a daily basis. Longer

duration of free-living studies ensure robust data collection and

also help to gain useful insights from the physiological responses

to various situations in day-to-day life. This also helps to identify

the underlying cause of environmental conditions that can trigger

stress in an individual.

Ground truth collection approaches: Data collection phase

involves collection of ground truth as well. Ground Truth collection

is an important task prior to the training of a model. During

the laboratory study, the periods for which stressors are provided

to participants are labeled as "Stressed" and all other periods are

labeled as "Not Stressed." For free-living studies, ground truth can

be collected using EMA (Li and Sano, 2020; Tazarv et al., 2021).

EMA is a method that involves sending questions to the users

and collecting in-situ information. Researchers often use existing

questionnaires such as DASS (BinHeyat et al., 2022; Chalmers et al.,

2021), STAI (Anusha et al., 2019), and PSS (Park et al., 2018) to

gather necessary stress-related information. Some researchers send

questions based on the information needed. For example, Li and

Sano (2020) collected self-reports via email, where they collected

details of mood (sad or happy), health (sick or healthy) and stress

level (stressed-calm). Aqajari et al. (2023) collected self-reports by

sending questions based on time or activity with seven number of

EMA’s per day.
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The performance of the stress detection model is dependent

upon the ground truth. There are challenges involved in using

the collected ground truth. For laboratory studies, most of the

researchers use protocol for ground truth collection. Although it

is considered more accurate, sometimes it could be misleading.

For example, during rest periods of laboratory study, if a user is

continuously thinking/worried or, in another way, if some stressors

are not capable of inducing stress, then such situations can have an

impact on the performance of the stress detection model. On the

other hand, the challenges with free-living studies are users might

not respond accurately or not respond at all. In such cases, training

the model without ground truth labels becomes challenging. To

overcome such problems, researchers sometimes ignore part of the

rest period data (to remove residual stress) or provide incentives for

EMA responses to the participants (Mishra et al., 2020).

4.2 Data pre-processing techniques

Sensor data collected from wearable devices may contain noise

because of the presence of the body, the sensor’s movement, and

environmental noise. The most commonly used pre-processing

steps involve noise and outlier removal, interpolation, and

normalization. Physiological signals obtained from various sensors

such as ECG, PPG, EDA, Skin Temperature, and Accelerometer

are passed through different filters to remove noise. Researchers

filtered ECG and PPG signals using Butter-worth filter (Akmandor

and Jha, 2017; Benchekroun et al., 2022; Aqajari et al., 2023). ECG

signal are also filtered using Fast Fourier Transform (Bin Heyat

et al., 2022; Li and Sano, 2020; Akmandor and Jha, 2017), Discrete

Wavelet Transform (Akbulut et al., 2020; Benchekroun et al., 2022;

Moser et al., 2023), and Chebyshev II (Campanella et al., 2023).

Some researchers used a bandpass filter to remove the noise and

smoothed the signals using average filter (Ashwin et al., 2022; Park

et al., 2018; Campanella et al., 2023). These filtered signals are then

passed to the peak detector to get heart rate signals (Akbulut et al.,

2020; Rodrigues et al., 2018; Campanella et al., 2023; Tazarv et al.,

2021; Wu et al., 2021; Zhao et al., 2023).

EDA signal is comprised of two components: Phasic and

Tonic. The phasic component is known as Skin Conductance

Response(SCR). The tonic component is known as Skin

Conductance Level (SCL; Posada-Quintero and Chon, 2019).

For EDA, most of the researchers used the Butter-worth filter of

order 4 (Anusha et al., 2019; Tazarv et al., 2021; Betti et al., 2017)

for each component.

After noise removal, some researchers removed

outliers (Mishra et al., 2020; Wu et al., 2021; Lee et al., 2022).

The removal of noise and outliers may result in missing values for

some data points. Researchers use interpolation in such cases. The

missing data are interpolated using Cubic Spline (Lee et al., 2022;

Mishra et al., 2020) and linear interpolation (Hojjatinia et al., 2021;

Can et al., 2020; Moser et al., 2023). Some researchers normalized

the data before computing features (Li and Sano, 2020; Mishra

et al., 2020). Pre-processing steps are dependent upon the type

of features computed. For example, most of the researchers use

Fast Fourier Transform to convert the data from time-domain to

frequency domain (Moser et al., 2023; Amalan et al., 2019; Aqajari

et al., 2023; Akbulut et al., 2020).

4.3 Feature computation methods

The next step in the process of stress detection and monitoring

is feature computation. We will now look at the different types of

features computed using various physiological signals.

Researchers compute time-domain and frequency-domain

features from physiological signals such as ECG, PPG, EDA,

Skin Temperature, and Accelerometer. Various time-domain

and frequency-domain features are computed from the sensor

data obtained from various wearables. Computing frequency

domain features involves transforming time series data into the

frequency spectrum using mathematical transformations like the

Fourier Transform (Ashwin et al., 2022). These features help in

understanding how the signals are distributed across different

frequency bands.

As discussed in the earlier section, ECG and PPG can give

physiological signals such as heart rate (HR), R-R intervals (RR),

also known as heart rate variability (HRV), and inter-beat interval.

Researchers compute statistical time-domain features such as

mean of HR or RR intervals, standard deviation of HR or RR

intervals, minimum, maximum, median of heart rate or RR

intervals (Akbulut et al., 2020; Mishra et al., 2020; Rodrigues

et al., 2018). Other time-domain features include RMSSD (Root

mean square of successive differences between the adjacent RRs),

SDSD (Related standard deviation of successive RR interval

difference; Amalan et al., 2019; Aqajari et al., 2023; Benchekroun

et al., 2022; Ashwin et al., 2022; Lee et al., 2022; Rony and Ahmed,

2020), NN50 (Number of successive RR intervals pairs that differ

more than 50s), PNN50 (NN50 divided by the number of RR

intervals), SDNN (Standard Deviation of normal RR intervals;

Amalan et al., 2019; Montesinos et al., 2019; Tazarv et al., 2021;

Betti et al., 2017), HRV triangular index (total number of RR

intervals divided by the height of the histogram of all RR intervals

measured on a scale with bins of 1/128 s), TINN (triangular

interpolation of RR interval histogram; Can et al., 2019b; Akbulut

et al., 2020). Researchers also computed breathing rate using PPG

signals (Aqajari et al., 2023; Tazarv et al., 2021).

Researchers computed frequency-domain features by using

band pass filter for VLF (very low frequency; Chalmers et al.,

2021; Betti et al., 2017; Momeni et al., 2021), LF (low

frequency; Benchekroun et al., 2022; Can et al., 2019b; Wu et al.,

2021), HF (high frequency) and LF/HF Ratio (Chalmers et al., 2021;

Wu et al., 2021; Betti et al., 2017; Wu et al., 2018). Some researchers

computed total power (Benchekroun et al., 2022; Amalan et al.,

2019), energy (Can et al., 2020) pLF (prevalent low-frequency

oscillation of heart rate), pHF (prevalent high-frequency oscillation

of heart rate; Can et al., 2019b, 2020).

Researchers compute statistical, phasic, and tonic features

of EDA. Statistical features of EDA include mean, median,

mode standard deviation, maximum, and a minimum of

EDA (Campanella et al., 2023). Phasic features capture rapid

transient changes as a response to the situation, whereas tonic

features vary slowly over time, which helps to understand

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1478851
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Pinge et al. 10.3389/fcomp.2024.1478851

psychological state over a longer period of time (Cecchi et al.,

2020). Features of phasic and tonic components are mean and

standard deviation of Phasic component (Wu et al., 2021; Betti

et al., 2017), peaks phasic (Can et al., 2020) mean and standard

deviation of tonic component (Can et al., 2020), Skin conductance

response is a rapid, transient change in skin conductance in

response to the events. Hence, researchers computed features such

as startle (number of detected startles), Startle mean (mean of

the amplitude of the startles), Startle SD (standard deviation of

the amplitude of the startles), Rise time mean (mean of the rise

time of the startles), Rise time SD (standard deviation of the rise

time of the startle), Fall time mean (mean of the fall time of the

startles), and Fall time SD (standard deviation of the fall time of

the startles) (Wu et al., 2021; Betti et al., 2017).

Some researchers computed features such as mean of

respiration duration, SD of respiration signal, and median of

respiration duration for respiration signal (Akmandor and Jha,

2017; Momeni et al., 2021). Other features computed are mean

blood pressure, mean blood oximeter (Akmandor and Jha, 2017),

mean X, mean Y, mean Z, and magnitude for accelerometer

signals (Can et al., 2019b). Overview of the features computed are

shown in Table 3.

4.4 Machine learning techniques

Researchers perform stress detection and monitoring either

by developing classification models or by performing statistical

analysis. The features computed from various physiological

signals extract meaningful information. from the raw signals.

These features are then passed on to train the machine learning

model. Instead of developing a classificationmodel, few researchers

analyze the data collected using wearables using statistical

analysis (Rony and Ahmed, 2020). Some of the commonly

used statistical tests used are Paired-test, Anova, or Pearson’s

Correlation (Chalmers et al., 2021; Amalan et al., 2019).

4.4.1 Classification techniques
Researchers used machine learning and deep learning methods

for detecting and monitoring stress. For stress detection and

monitoring, the researchers perform two-class classification as

stressed or not stressed. Researchers considered a Decision Tree,

which is a simple and versatile rule-based technique that can

be used for a numerical type of data (Momeni et al., 2021).

Decision trees are sensitive toward imbalanced datasets, and they

can generate complex trees that may not be able to generalize, thus

leading to overfitting the data. Hence, instead of using a single

decision tree, an ensemble of decision trees is used for making

predictions. Each of these decision trees makes a prediction and,

based on majority voting, is the model’s predicted output. This

technique is called Random Forest (Liu et al., 2012). This random

forest algorithm gives high accuracy and is robust to overfitting. It

works well even with unbalanced datasets hence many researchers

used this for stress detection and monitoring (Aqajari et al.,

2023; Bin Heyat et al., 2022; Campanella et al., 2023; Can et al.,

2019b; Momeni et al., 2021; Ashwin et al., 2022; Can et al., 2020).

TABLE 3 Physiological signals with their features.

Physiological
signal

Features
computed

References

ECG (Time

domain)

Mean, Standard

Deviation, Minimum,

Maximum, Median,

RMSSD, SDSD, NN50,

PNN50, HRV triangular

index, TINN

Akbulut et al., 2020;

Mishra et al., 2020;

Rodrigues et al., 2018

ECG (Frequency

domain)

VLF, LF, HF, LF/HF,

Total Power, Energy,

pLF, pH

Chalmers et al., 2021;

Betti et al., 2017;

Momeni et al., 2021; Wu

et al., 2018

PPG Breathing rate Aqajari et al., 2023;

Tazarv et al., 2021

EDA (Time

domain)

Mean, Standard

Deviation, Minimum,

Maximum, Median,

Mode

Campanella et al., 2023

EDA (Phasic and

tonic)

Startle Mean, Startle SD,

Rise Time Mean, Rise

Time SD, Fall Time

Mean, Fall Time SD

Wu et al., 2021; Betti

et al., 2017

Respiration Mean, Standard

Deviation, Median

Akmandor and Jha, 2017;

Momeni et al., 2021

Accelerometer Mean X, Mean Y, Mean

Z, Magnitude

Can et al., 2019b

Others Mean Blood Pressure,

Mean Blood Oximeter

Akmandor and Jha, 2017

Another ensemble machine learning technique used by researchers

is XGBoost (Aqajari et al., 2023; Tazarv et al., 2021; Xefteris et al.,

2023).

SVM is another technique used for classification of

stress (Aqajari et al., 2023; Campanella et al., 2023; Lee et al.,

2022; Can et al., 2019b). SVM aims to find a hyperplane that

divides data into desired classes. It is robust to overfitting and

its performance is dependent on class separability in the data.

Physiological signal values for the classes of not stressed and

stressed might overlap and are inseparable; in such cases, SVMmay

not work well, and a complex classification technique is needed.

Some researchers used KNN machine learning algorithm for

stress detection and monitoring (Akmandor and Jha, 2017; Aqajari

et al., 2023; Tazarv et al., 2021; Can et al., 2019b; Anusha et al.,

2019). KNN works by computing distances between data points

and forming groups of similar characteristics. Since KNN does

not make any prior assumptions about the data, it is capable of

capturing prominent insights from the data on its own. However,

KNN has a challenge in choosing the value of K(number of nearest

neighbors) and may also suffer when the boundaries of the two

groups overlap. Some researchers also used Naive Bayes (Bin Heyat

et al., 2022; Ashwin et al., 2022), Logistic Regression (Can et al.,

2019b; Campanella et al., 2023), and regression-based approach

using linear regression (Park et al., 2018).

Researchers experimented with other deep-learning approaches

for stress detection and monitoring. Multi-layer Perceptron with

hidden layer is capable of performing binary as well as multi-

class classification (Can et al., 2019b, 2020; Tazarv et al., 2021;
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TABLE 4 Various machine learning techniques used by researchers to

train the stress detection and monitoring model.

Approach Technique References

Machine Learning Decision Tree Momeni et al., 2021

Random Forest Aqajari et al., 2023; Bin Heyat

et al., 2022; Campanella et al.,

2023; Can et al., 2019b;

Momeni et al., 2021; Ashwin

et al., 2022; Can et al., 2020;

Liu et al., 2012

XGBoost Aqajari et al., 2023; Tazarv

et al., 2021; Xefteris et al., 2023

SVM Aqajari et al., 2023;

Campanella et al., 2023; Lee

et al., 2022; Can et al., 2019b

KNN Akmandor and Jha, 2017;

Aqajari et al., 2023; Tazarv

et al., 2021; Can et al., 2019b;

Anusha et al., 2019

Naive Bayes Bin Heyat et al., 2022; Ashwin

et al., 2022

Linear Regression Park et al., 2018

Logistic Regression Can et al., 2019b; Campanella

et al., 2023

Deep Learning MLP Can et al., 2019b, 2020; Tazarv

et al., 2021; Rachakonda et al.,

2020; Akbulut et al., 2020

LSTM Wu et al., 2021; Li and Sano,

2020

CNN Subash et al., 2023; Donati

et al., 2023

Rachakonda et al., 2020; Akbulut et al., 2020). Stress can cause

gradual changes in physiological signals, which can be captured

using LSTM (Wu et al., 2021; Li and Sano, 2020) method. Some

researchers also used CNN (Subash et al., 2023; Donati et al., 2023).

The classification techniques are summarized in Table 4.

Summary: In the past two decades, researchers have

experimented with various machine-learning techniques. Most

of the researchers observed that Random Forest and XGBoost

work well for stress detection and monitoring approaches.

Similarly, researchers are now experimenting with using deep

learning approaches for stress detection and monitoring, and

there is scope to improve the performance, such as the stress

detection and monitoring approach, by fine-tuning these deep

learning architectures.

4.4.2 Metrics used
The performance of the developed model can be evaluated

using Accuracy. Accuracy is a good measure to evaluate the stress

detection model if dataset is balanced (Akmandor and Jha, 2017;

Aristizabal et al., 2021; Benchekroun et al., 2022; Momeni et al.,

2021; Park et al., 2018; Can et al., 2019b; Ashwin et al., 2022;

Campanella et al., 2023; Can et al., 2020). Since the F1-score

considers Precision and Recall, it is a good measure when the

dataset is imbalanced (Szakonyi et al., 2021; Bin Heyat et al.,

2022; Lee et al., 2022; Aqajari et al., 2023; Mishra et al., 2020;

Smets et al., 2018b). Other metrics used for evaluating the stress

TABLE 5 Various metrics used by researchers to evaluate the stress

detection and monitoring model.

Metrics used References

Accuracy Akmandor and Jha, 2017; Aristizabal et al.,

2021; Benchekroun et al., 2022; Momeni

et al., 2021; Park et al., 2018; Can et al., 2019b;

Ashwin et al., 2022; Campanella et al., 2023;

Can et al., 2020

F1-score Szakonyi et al., 2021; Bin Heyat et al., 2022;

Lee et al., 2022; Aqajari et al., 2023; Mishra

et al., 2020; Smets et al., 2018b

Specificity &

Sensitivity

Bin Heyat et al., 2022; Aristizabal et al., 2021;

Zubair and Yoon, 2019

AUC Benchekroun et al., 2022; Bin Heyat et al.,

2022

detection model are Specificity (True Negative Rate), Sensitivity

(True Positive Rate) (Bin Heyat et al., 2022; Aristizabal et al.,

2021; Zubair and Yoon, 2019). Using the specificity and sensitivity

of the model, the ROC curve can be plotted, and AUC can be

used to quantify the model performance (Benchekroun et al., 2022;

Bin Heyat et al., 2022). Table 5 summarize the metrics used by

different researchers.

The performance of the classification techniques is dependent

on the data used for training and testing. Researchers trained and

tested the stress detection approach using various classification

techniques. Most researchers observed higher performance with

Random Forest classifier (Can et al., 2019b, 2020; Campanella et al.,

2023) when compared with SVM, KNN ranging from accuracy of

76.5–88.20%. Some researchers SVM (Accuracy = 82%) worked

slightly better as compared to RF (Accuracy = 80%) (Mishra

et al., 2020), and for some Decision Trees (Bin Heyat et al., 2022)

performed better (Accuracy = 95%). Figure 4 summarizes the stress

detection and monitoring approaches.

Summary: When conducting studies for stress detection either

in a controlled or in a free-living environment, the physiological

data collectedmay not be balanced. Hence, in such cases, it is logical

to analyze the model using precision, recall, and F1-score in order

to have a better understanding of the performance of the model.

This section helps to understand stress detection and monitoring

approaches in detail answering RQ2 & 3.

4.5 Applications of stress detection and
monitoring

Daily life situations or work pressure can cause chronic stress

or frequent episodes of acute stress. In order to cope with such

stress, individuals often get involved in substance use disorder

or other harmful habits such as smoking, excessive alcoholism,

or even overeating. Detecting and monitoring stress helps in

keeping the wellbeing of individuals. Researchers considered

stress in different areas such as daily habits (Tazarv et al.,

2021; Han et al., 2022; Moser et al., 2023), stress experienced

at the workplace (Donati et al., 2023; Xefteris et al., 2023),

in college students (Li and Sano, 2020; Park et al., 2018; Can

et al., 2019b), or while driving (Rony and Ahmed, 2020).

Some researchers detected stress in patients before undergoing
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FIGURE 4

Overview of stress detection and monitoring approaches.

surgery (Anusha et al., 2019; Amalan et al., 2019), patients with

metabolic syndrome (Akbulut et al., 2020) or cravings during

treatment for substance use disorder (Carreiro et al., 2020; Shrestha

et al., 2023) and stress levels before and after smoking events

(Hojjatinia et al., 2021; Akbulut et al., 2020).

5 Discussion

This review of research work on stress detection and

monitoring throws light on existing research gaps, challenges faced,

and future directions in this field. Let us understand the various

challenges in the existing approaches and possible future directions

to overcome them. In this section we present answer to RQ4.

Stress detection using publicly available datasets: During our

literature search, we observed that researchers (n = 28) had

used the publicly available datasets WESAD for stress detection

and monitoring purposes (Schmidt et al., 2018). This dataset is

collected using the wrist-worn device Empatica E4 and the chest-

worn device Resbipan. This dataset has physiological signals ECG,

EDA, respiration, body temperature, and accelerometer signals.

Researchers have experimented using various physiological signals

such as heart rate (Albaladejo-González et al., 2023; Dahal et al.,

2023), EDA (Islam and Washington, 2023; Zhu et al., 2023), or

combinations such as heart rate and EDA (Gupta et al., 2023) or

considering all the physiological signals of the dataset (Garg et al.,

2021; Pogliaghi et al., 2022). Since the publicly available datasets

are with particular demographics, this can prove a limitation to be

used in the research works. Also, these publicly available datasets

can limit the user with using existing physiological signals and may

have to repeat the entire data collection process in order include

new physiological signals. Using the popular dataset on a wide scale

may lead to redundant analysis of the same existing dataset with the

absence of new insights into the findings.

Choice of wearables: The performance of the stress detection

and monitoring model is dependent upon the choice of

physiological signals, context, and environmental information.

Based on research, changes in heart rate and skin conductance

levels have been identified as a good indicator of stress (Akbulut

et al., 2020; Chalmers et al., 2021; Campanella et al., 2023).

Researchers have also experimented with other signals, such as

brain signals captured using EEG, or via monitoring activity

information and environmental conditions such as ambient

temperature and pressure (Akmandor and Jha, 2017). Literature

reveals that it is currently a challenge to decide which sensors and

devices to use to collect these physiological signals. Researchers

must consider user comfort and usability while deciding on the

device to use for their study. Usability can either be in terms

of physical comfort of wearing the devices or the social stigma

associated with the devices (Beeler et al., 2018). Although devices

worn on the wrist might be more usable and acceptable, however,

they might not be well-suited to capture certain physiological

markers. For example, a wrist-worn heart rate monitor might

be less accurate than a chest-worn monitor in capturing heart

rate related information (Pinge et al., 2022). This opens up

several research questions, such as how do we ensure devices

that are comfortable to wear can accurately capture physiological

signals? What measures can be taken to increase the comfort

of non-traditional wearable devices? What is the balancing point

between usability, acceptability, and accuracy?

In addition to the comfort of wearing these devices, the

question of social stigma also arises. Users of mental health

monitoring devices might be worried that context-capturing

sensors might not be acceptable to bystanders or observers might

be able to determine specific health conditions based on the devices

that one is wearing. This raises some interesting research directions:

Is it possible to develop miniaturized wearables that are not easily

noticeable? An interesting example of such wearables are the
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hearing aid devices that are often not observable. Alternatively,

further research is necessary to improvise regularly worn devices

so that they can be used for monitoring mental health. Devices

such as smartwatches, smart bands, smart rings, and wearables

have become popular. They are often embedded with multiple

sensors. Innovations in terms of more accurate mental health

disorder detection using these commercial devices are the need

of the hour.

Ground truth from users: Traditional wearable-based mental

health monitoring systems collected physiological signals and used

those signals to determine specific health disorders (Cella et al.,

2018; Tsai et al., 2022). These systems often do not use the wearer

of the device to validate their predictions in real time. However,

a human-in-the-loop approach to mental health monitoring is the

need of the hour.

Current machine learning based stress detection approaches

are largely dependent on the collected human responses. But these

approaches require high quality self-reports and high response

rates (Gao et al., 2023). One needs to consider various factors

while collecting user’s responses. First, as the quantification of

whether one is stressed or not stressed can be subjective, one has

to be selective in choosing the type of questions delivered to the

user to capture the user’s state of mind. Second, it is necessary

to decide upon the frequency of the questions delivered, that is,

how often the questions should be delivered so that the user’s

response captures the variations in state of mind. If the time

interval between these questions delivered is longer, then there

can be recall bias in the responses of the individuals (Chan et al.,

2018). On the other hand, users might be reluctant to answer if

the questions are delivered within a short span of time (Moskowitz

and Young, 2006). The number of questions to be answered by a

user is also a concern while collecting responses from individuals.

Lengthier the questionnaires, there is a chance that users might

prefer skipping. To handle this issue, some researchers explored

providing microEMAs to reduce user burden (Intille et al., 2016;

King et al., 2019). One can possibly explore approaches to reduce

the size of EMAs so that it is easy to respond via wearables. Further,

it is necessary to explore approaches to even reduce the number

of micro-EMA probes or use an AI-based approach for self-report

collection with a reduced burden on the user to respond to the

probes (Ghosh et al., 2024).

Machine learning techniques: Finally, we have observed

that most work (including our methodology) relies on a

shallow learning approach for stress detection and monitoring.

With the recent proliferation of deep learning, they have

become an interesting candidate for stress detection and

monitoring (Albertetti et al., 2020; Zhang et al., 2021). However,

rather than using deep learning blindly, one might consider

analyzing whether the improvements in performance provided

by deep learning approaches over shallow learning approaches

outweigh the need for computational and need for large dataset-

like challenges. One such approach used Auto Encoders to use

unlabeled data for detection (Yu and Sano, 2023). One must

remember that it is not easy to collect large volumes of health data

with labels.

Stress management: The major aim of detecting and

monitoring stress is to provide support for its management.

However, very few research work moves beyond proof of concept

development. JITAI is a recent technique where the interventions

are provided as a support that can help an individual to adapt

to the undesirable changes in the state of mind (Sharmin et al.,

2015; Mishra et al., 2021). These techniques involve challenges

such as what kind of support is to be provided, how to provide it,

and opportune timings to deliver the interventions. Researchers

have been working on developing methods to find the right

time to provide based on user’s receptivity (Künzler et al.,

2019; Choi et al., 2019). Such research approaches are based

on simulation or controlled environments (Lee et al., 2021).

Also, very few researchers have used JITAI’s toward stress

detection and monitoring (Howe et al., 2022) in real-time. Hence,

providing support using JITAIs for free living or real-time remains

a challenge.

Stress detection in-situ: One of the motivation behind detecting

and monitoring stress is to provide support for its management.

Hence, performing stress detection in real-time is needed.

Considering the scope of this review, some wearable devices, such

as the Samsung Gear Sports Watch, are capable of collecting

physiological signals and processing them on the device, allowing

real-time stress detection. However, some wearable devices allow

the collection of data but cannot process these collected signals

on the device. In such cases, it is possible to perform real-time

stress detection by having another device that can process the

data and run a stress detection model to detect stress. However,

research works considered for this review focus on the offline

analysis of the physiological signals. Hence, we do not elaborate on

the onboard computational power of the wearable devices used for

stress detection and monitoring.

Limitations of the current review: In this review, we primarily

focus on devices and machine learning approaches used for stress

detection and monitoring. Of course, there are several details that

have not been covered in the manuscript, which we believe will be

useful for researchers focusing on stress detection and monitoring.

In this article, we do not consider the clinical acceptability of the

devices. For example, a device like the Empatica might be more

clinically accepted thanmany other wearables.We also do not focus

on the capabilities and acceptability of the devices by individual

users. Specifically, many existing wearables might run out of battery

within a few hours if all the sensors are kept on. Similarly, many

existing devices might heat up if on-device machine learning is

performed on them. In this review, we have ignored these concerns.

In terms of software, the current review does not focus on

the privacy and security aspects of the devices and analysis. For

example, the heart rate collection might introduce a vulnerability

in the devices. We also do not focus on the advantages and

disadvantages of the machine learning models from a theoretical

point of view. Researchers interested in these aspects might have to

refer to other stress detection surveys such as Mentis et al. (2024),

Gomes et al. (2023), and Oh et al. (2021).

6 Conclusion

This paper reviews state-of-the-art works for stress detection

and monitoring. Much research is done in developing systems

that can detect and monitor stress using smartphones. However,

we considered approaches that use wearables for detecting and
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monitoring stress. The papers considered for this review were

retrieved from Google Scholar, ACM Digital Library, PubMed, and

IEEE Xplore. We emphasized critical phases in stress detection

and monitoring systems. This includes data collection, data pre-

processing, feature computation, machine learning, and model

evaluation. This survey will help new researchers to understand the

details of the state-of-the-art methods used in stress detection and

monitoring systems.
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